On 3-manifolds admitting orientationreversing involutions

By Akio Kawauchi*

(Received Dec. 19, 1979)

1. Statement of main results.

Throughout this paper, spaces and maps will be considered in the piecewiselinear category, unless otherwise specified. The purpose of this paper is to discuss some properties of a pair (M, α), where M is a closed, oriented 3 -manifold, and α is an orientation-reversing involution on M (that is, $\alpha^{2}=$ identity, and $\alpha_{*}[M]=-[M]$ for the fundamental class $[M]$ of M).

The following is perhaps known, but no reference could be found.
Theorem I. Given a pair (M, α), then the torsion subgroup $T_{1}(M ; Z)$ of the homology group $H_{1}(M ; Z)$ is isomorphic to a direct double $A \oplus A$ or a direct sum $A \oplus A \oplus Z_{2}$ for some A.

For example, the lens space $L(p, q), p>2$, does not admit any orientationreversing involution, though the projective 3 -space $P^{3}=L(2,1)$ admits a unique orientation-reversing involution α, whose fixed point set $\operatorname{Fix}\left(\alpha, P^{3}\right)$ is the topological sum $P^{0}+P^{2}$ of the projective 0 -space P^{0} (=one point) and the projective 2 -space P^{2}. (Cf. K. W. Kwun [15].)

By © we denote the class of finitely generated abelian groups with torsion parts of the form $A \oplus A$ or $A \oplus A \oplus Z_{2}$.

Definition 1.1. For any $G \in \mathbb{C}$, we define $\sigma(G)$ to be 0 or 1 , according to whether the torsion subgroup of G is a direct double or not. By using Theorem I, we define $\sigma(M)=\sigma\left(H_{1}(M ; Z)\right)$ for any pair ($\left.M, \alpha\right)$.

The following shows enough that the homological classification of Theorem I is complete, where a 3 -manifold is irreducible if any imbedded 2 -sphere bounds a 3-ball in it.

Theorem II. For any $G \in \mathbb{C}$ there exists a pair (M, α) with $H_{1}(M ; Z)=G$ so that if $\sigma(G)=0$, then M is connected and irreducible, or if $\sigma(G)=1$, then $M=M_{1} \# P^{3}$ with M_{1} connected and irreducible, and α preserves the factors.

Some G with $\sigma(G)=1$ is probably still realizable by a pair (M, α) with M connected and irreducible, but the following may be noted:

[^0]Remark to Theorem II. Suppose for a pair (M, α) M is connected and $H_{1}(M ; Z) /$ odd torsion $\approx Z_{2}$. Then M necessarily splits: $M=M_{1} \# P^{3}$, and α preserves the factors.

This can be derived from the equivariant cohomology theory (cf. G. Bredon [4], W. Y. Hsiang [9]], but we shall give a simple proof by using our Theorem III.

According to Smith theory (cf. Proposition 6.1 and A. Borel [3], III §4), each component of $\operatorname{Fix}(\alpha, M)$ is a point or a closed surface (unless it is empty), and the Euler characteristic $\chi(\operatorname{Fix}(\alpha, M)) \equiv 0(\bmod 2)$, since $\chi(M)=0$.

Definition 1.2. $\quad \sigma(\alpha, M)=\operatorname{rank}_{Z_{2}} H_{1}\left(\operatorname{Fix}(\alpha, M) ; Z_{2}\right)(\bmod 2)$.
Clearly, $\sigma(\alpha, M)$ is equal to the Stiefel-Whitney number $w_{1}^{2}(F)$ of the 2-dimensional part F of $\operatorname{Fix}(\alpha, M)$. Using $\chi(\operatorname{Fix}(\alpha, M)) \equiv 0(\bmod 2)$, we see also that it is equal to the number $(\bmod 2)$ of the discrete points of $\operatorname{Fix}(\alpha, M)$.

From the following, we see that the number $\sigma(\alpha, M)$ does not depend on a particular involution α on M.

Theorem III. For any pair (M, α) the following are equivalent:
(1) $\sigma(M)=0$,
(2) $\sigma(\alpha, M)=0$,
(3) There exists a compact (possibly, non-orientable) 4-manifold W_{1} admitting an involution β_{1} such that $\partial W_{1}=M$ and $\beta_{1} \mid M=\alpha$,
(4) There exists a compact, oriented 4-manifold W_{2} admitting an orientationreversing involution β_{2} such that $\partial W_{2}=M$ and $\beta_{2} \mid M=\alpha$.

Let $\Omega_{3}\left(Z_{2}^{-}\right)$be the 3 -dimensional, equivariant, oriented bordism group of all pairs (M, α), where M is a closed, oriented 3 -manifold, and α is an orientationreversing involution on M.

The following is direct from Theorem III, since $\sigma\left(P^{3}\right)=1$.
Corollary 1.1. $\Omega_{3}\left(Z_{2}^{-}\right)$is isomorphic to Z_{2} and generated by $\left(P^{3}, \alpha\right)$ where α is any orientation-reversing involution on P^{3}.

From an argument concerning Theorem III (cf. Theorems 5.1 and 6.1), we see also the following :

Theorem IV. For any pair (M, α) with M a Z_{2}-homology 3 -sphere, the μ-invariant, $\mu(M)=0$.

This has been independently obtained by J.S. Birman [2], W. C. Hsiang and P. Pao [8] and D. Galewski and R. Stern [6]. A great difference between their methods ([2], [8], [6]) and our method is that their methods are effective only in the involutional case, but our method is more general. For example, from a direct use of our method, one will see in [14] that the μ-invariant of a Z_{2}-homology 3 -sphere vanishes if it admits an orientation-reversing auto-homeomorphism of finite order.

The invariant $\sigma(M)$ of a given pair (M, α) can be stated in terms of the
semi-characteristics of M. For an oriented closed $(2 r+1)$-manifold X, the semicharacteristic of X with respect to a field K, denoted by $\sigma(X ; K)$ is the sum $\Sigma_{i=0}^{r} \operatorname{dim}_{K} H_{i}(X ; K)(\bmod 2)$. The invariant $\sigma(M)$ is clearly equal to the difference $\sigma\left(M ; Z_{2}\right)-\sigma(M ; Q)$.

Now we are ready to notice that there exist analogous structures between a pair (M, α) and a closed oriented piecewise-linear 5-manifold X^{5}. In the first place, the second homology group $H_{2}\left(X^{5} ; Z\right)$ necessarily belongs to the class (5 (cf. Remark 2.1 in § 2). Defining $\sigma\left(X^{5}\right)=\sigma\left(H_{2}\left(X^{5} ; Z\right)\right.$), we see easily that $\sigma\left(X^{5}\right)$ is equal to the difference $\sigma\left(X ; Z_{2}\right)-\sigma\left(X^{5} ; Q\right)$ (cf. Lemma 6.1), and according to Lusztig, Milnor and Peterson [16], this is equal to the Stiefel-Whitney number $w_{2} w_{3}\left[X^{5}\right]$. Thus, we see the following known proposition, analogous to our Theorem III :

Proposition 1.1. The following are equivalent:
(1) $\sigma\left(X^{5}\right)=0$,
(2) $w_{2} w_{3}\left[X^{5}\right]=0$,
(3) X^{5} is the boundary of a compact (possibly, non-orientable) 6-manifold,
(4) X^{5} is the boundary of a compact, oriented 6-manifold.

No proof is given (cf. D. Barden [1]).
Let γ be the non-trivial covering transformation of the covering $S^{2} \rightarrow P^{2}$, which is clearly orientation-reversing. Given a pair (M, α), then we form an orientation-preserving, free involution $\alpha \times \gamma$ on $M \times S^{2}$ by the identity

$$
\alpha \times \gamma(x, y)=(\alpha x, \gamma y)
$$

for $(x, y) \in M \times S^{2}$. Then the orbit space $X(M, \alpha)=M \times S^{2} / \alpha \times \gamma$ is a closed, oriented 5 -manifold.

Theorem V. $\sigma(M)=\sigma(X(M, \alpha))$ for all pairs (M, α) and the assignment $(M, \alpha) \rightarrow X(M, \alpha)$ induces a well-defined isomorphism from $\Omega_{3}\left(Z_{2}^{-}\right)$onto the 5 -dimensional oriented cobordism group Ω_{5}.

The author would like to thank J.S. Birman, W. Jaco and T. Matumoto for assistance in preparing this paper.

2. Proof of Theorem I.

Theorem I is a special case of the following:
Theorem 2.1. Let X be a Poincaré duality space with fundamental class $[X]$ of dimension $2 m+1$ with odd $m \geqq 1$. Suppose X admits a map $f: X \rightarrow X$ with $f_{*}[X]=-[X]$ and $f_{*}^{2}=$ identity on $T_{m}(X ; Z)\left(=\right.$ Tor $H_{m}(X ; Z)$. Then $H_{m}(X ; Z)$ belongs to the class \mathfrak{c}.

Proof. Consider the non-singular linking pairing $L: T_{m}(X ; Z) \times T_{m}(X ; Z)$ $\rightarrow Q / Z$ defined by Poincaré duality. Since m is odd, L is symmetric. Define a
new pairing

$$
L_{f}: T_{m}(X ; Z) \times T_{m}(X ; Z) \longrightarrow Q / Z
$$

by the identity

$$
L_{f}(x, y)=L\left(x, f_{*}(y)\right)
$$

for $x, y \in T_{m}(X ; Z)$. Since $f_{*}[X]=-[X], f_{*}$ is an automorphism on $H_{*}(X ; Z)$ by Poincaré duality and the formula $f_{*}\left(f^{*}(u) \cap[X]\right)=u \cap f_{*}[X]\left(u \in H^{*}(X ; Z)\right)$, so that L_{f} is non-singular. Since $L\left(f_{*}(x), f_{*}(y)\right)=-L(x, y)$ and $f_{*}^{2}=$ identity on $T_{m}(X ; Z)$ we see that $2 L_{f}(x, x)=0$ for all $x \in T_{m}(X ; Z)$. Now the proof is completed by the following lemma:

Lemma 2.1. Suppose a finite abelian group T admits a non-singular pairing $L: T \times T \rightarrow Q / Z$ such that $2 L(x, x)=0$ for all $x \in T$. Then T is of the form $A \oplus A$ or $A \oplus A \oplus Z_{2}$.

Proof of Lemma 2.1. First, split T into the primary components which are mutually orthogonal with respect to L. Let T_{p} be the p-primary component of T. It is known that T_{p} admits an orthogonal splitting $T_{p}^{1} \oplus \cdots \oplus T_{p}^{s}$ with respect to L where T_{p}^{i} is a direct sum of copies of $Z_{p i}$. (See, for example, [13], p. 50 for $p=2$.) For either $p=2$ and $i \geqq 2$ or an odd p and $i \geqq 1$, let $\widetilde{T}_{p}^{i}=T_{p}^{i} \otimes Z_{p}$. Define a non-singular pairing

$$
\tilde{L}: \widetilde{T}_{p}^{i} \times \widetilde{T}_{p}^{i} \longrightarrow Q / Z
$$

by the identity

$$
\tilde{L}(x \otimes 1, y \otimes 1)=p^{i-1} L(x, y)
$$

for $x, y \in T_{p}^{i}$. By translating $1 / p$ of Q / Z to 1 of Z_{p}, \tilde{L} is regarded as a nonsingular bilinear form over Z_{p}. Since $2 L(x, x)=0$ for $x \in T_{p}^{i}$, we see that $\tilde{L}(a, a)=0$ for $a \in \widetilde{T}_{p}^{i}$, that is, the form \tilde{L} is symplectic. Thus, $\operatorname{dim}_{z_{p}} \tilde{T}_{p}^{i}$ is even by taking a symplectic basis. This implies that T is of the form $A \oplus A$ or $A \oplus A \oplus Z_{2}$. This completes the proof of Lemma 2.1.

Remark 2.1. Let X be a Poincaré duality space of dimension $2 m+1$ with even m. In this case, the non-singular linking pairing $L: T_{m}(X ; Z) \times T_{m}(X ; Z)$ $\rightarrow Q / Z$ is skew-symmetric, so that $2 L(x, x)=0$ for $x \in T_{m}(X ; Z)$. By Lemma 2.1, $H_{m}(X ; Z)$ belongs to the class © (cf. W. Browder [5] and D. Barden [1], p. 372).

3. Proof of Theorem II.

Lemma 3.1. There exists a pair (M, α) such that M is an irreducible Z-homology 3 -sphere with $\pi_{1}(M)$ infinite.

Proof. Let $k_{i} \subset S^{3}, i=1,2$, be non-trivial knots, invariant under some orientation-reversing involutions α_{i} such that $\operatorname{Fix}\left(\alpha_{i}, S^{3}\right)=S_{i}^{0}, 0$-spheres, and $S_{1}^{0} \subset k_{1}$ and $S_{2}^{0} \cap k_{2}=\emptyset$. [For example, take as k_{1} the composite knot $k \#-k^{*}$
and, as k_{2}, the composite knot $k \# k^{*}$ for a non-trivial knot k, where $-k^{*}$ and k^{*} denote the reflected inverse and the reflection of k, respectively.] Let E_{i} be the manifold obtained from S^{3} by removing an α_{i}-invariant open tubular neighborhood of k_{i} in S^{3}. We may assume $S_{2}^{0} \subset \operatorname{Int} E_{2}$. Then one can easily paste the boundaries of $E_{i}, i=1,2$, together so that the result M is a Z-homology 3 -sphere and admits an orientation-reversing involution defined by $\alpha_{i} \mid E_{i}, i=1,2$. Note that E_{i} is irreducible (since $\left.E_{i} \subset S^{3}\right)$ and the homomorphism $\pi_{1}\left(\partial E_{i}\right) \rightarrow \pi_{1}\left(E_{i}\right)$ induced from inclusion is injective (since the knot k_{i} is non-trivial). Then we see that M is irreducible and $\pi_{1}(M)$ is infinite. This completes the proof.

Remark 3.1. Another construction of a similar homology 3-sphere has been obtained earlier by W. Jaco and B. Myers. Their construction uses a nonsplittable, 2-component link $k_{1} \cup k_{2} \subset S^{3}$ such that there is an orientation-reversing involution α of S^{3} with $\alpha\left(k_{1}\right)=k_{2}$. (Such a link exists.) Take a tubular neighborhood $T_{1} \cup T_{2}$ of this link $k_{1} \cup k_{2}$ so that $\alpha\left(T_{1}\right)=T_{2}$. Replace T_{1} and T_{2} by two copies of a non-trivial knot exterior E, so that the result M is a Z-homology 3 -sphere with an orientation-reversing involution extending $\alpha \mid S^{3}-T . \quad M$ is irreducible, since the link is not splittable and E is a non-trivial knot exterior.

Let α be an orientation-reversing involution on a homology 3 -sphere M. By Smith theory (cf. Proposition 6.1 and [3], III §4) $\operatorname{Fix}(\alpha, M)=S^{0}$ or S^{2}. So, if M is irreducible and not S^{3}, then we must have $\operatorname{Fix}(\alpha, M)=S^{0}$. In this case, let M_{0} be the 3 -manifold obtained from M by removing two open 3-balls B_{1}, B_{2} with $\alpha\left(B_{i}\right)=B_{i}$. The orbit space $M^{\prime}=M_{0} / \alpha$ is a homology $P^{2} \times[0,1]$. Since M is irreducible, it follows that M^{\prime} is irreducible and any $P^{2} \subset \operatorname{Int} M^{\prime}$ is bound-ary-parallel (that is, the union of this P^{2} and one component of ∂M^{\prime} bounds a manifold homeomorphic to $P^{2} \times[0,1]$). Thus, from Lemma 3.1 we see the following :

Corollary 3.1. There exists an irreducible homology $P^{2} \times[0,1]$, not homeomorphic to the product $P^{2} \times[0,1]$, such that any P^{2} in the interior is boundaryparallel.

Proof of Theorem II. First, suppose G is a direct double $\bigoplus_{i=1}^{r} Z_{n_{i}} \oplus Z_{n_{i}}$ where n_{i} may be 0 . By Lemma 3.1 let S be an irreducible Z-homology 3 -sphere with orientation-reversing involution α such that $\pi_{1}(S)$ is infinite. Let k be a knot in S so that $k \cap \alpha k=\emptyset$ and $[k] \neq 1$ in $\pi_{1}(S)$. Let $k_{i}, i=1, \cdots, r$, be mutually disjoint knots isotopic to k in a small tubular neighborhood of k in S such that $\operatorname{Link}_{S}\left(k_{i}, k_{j}\right)=0, i \neq j$. Let $k_{i}^{\prime}=\alpha k_{i}$. The link $L=\cup_{i=1}^{r} k_{i} \cup \bigcup_{i=1}^{r} k_{i}^{\prime}$ is clearly α-invariant and any two components of L have the linking number 0 (in S). $\left[\right.$ Note that $\operatorname{Link}_{S}(k, \alpha k)=0$, since $\operatorname{Link}_{S}(k, \alpha k)=-\operatorname{Link}_{S}\left(\alpha k, \alpha^{2} k\right)$.] Remove from S a small α-invariant, open tubular neighborhood T of L in S. Then we can easily attach the boundaries of $2 r$ copies of a non-trivial knot exterior to the boundary ∂E of $E=S-T$ so that the result M has $H_{1}(M ; Z)=G$ and admits
an involution extending $\alpha \mid E . \quad M$ is irreducible, since the map $\pi_{1}(\partial E) \rightarrow \pi_{1}(E)$ induced by inclusion is injective. Next, to obtain a desired manifold for $G \oplus Z$ with G a direct double as above, we assume by construction of S (by Lemma 3.1) that there is a knot $\bar{k}(\subset \operatorname{Int} E) \subset S$ with $[\bar{k}] \neq 1$ in $\pi_{1}(S), \operatorname{Link}_{S}(k, \bar{k})=0$, $\alpha(\bar{k})=\bar{k}$ and $\operatorname{Fix}(\alpha, S) \cap \bar{k}=\emptyset$. Remove from E an α-invariant, open tubular neighborhood of \bar{k}. The result E^{\prime} contains $\operatorname{Fix}(\alpha, S)\left(=S^{0}\right)$ in the interior. Let $E^{\prime \prime}$ be a knot exterior of $\bar{k} \subset S$ with $\alpha\left(E^{\prime \prime}\right)=E^{\prime \prime}$ and $\operatorname{Fix}(\alpha, S) \subset \operatorname{Int} E^{\prime \prime}$. Attach $\partial E^{\prime \prime}$ to ∂E^{\prime} so that the result \bar{E} admits an involution defined by $\alpha \mid E^{\prime}$ and $\alpha \mid E^{\prime \prime}$, and the inclusion $E^{\prime} \subset \bar{E}$ induces an isomorphism $H_{1}\left(E^{\prime} ; Z\right) \approx H_{1}(\bar{E} ; Z)$. Apply the above construction for $\partial \bar{E}=\partial E$ to obtain a desired manifold with $H_{1}=G \oplus Z$. In case $\sigma(G)=1$, we let $G=G_{1} \oplus Z_{2}$. By the above construction, we have a pair (M_{1}, α_{1}) such that $H_{1}\left(M_{1} ; Z\right)=G_{1}$, and M_{1} is connected and irreducible. From construction, $\operatorname{Fix}\left(\alpha_{1}, M_{1}\right)$ contains a discrete point x. Remove from M_{1} an α_{1}-invariant, small 3 -ball B containing x, and replace it by a twisted line bundle of P^{2}. The result is a connected sum $M_{1} \# P^{3}$ and $\alpha_{1} \mid M_{1}-B$ is extendable to an involution on $M_{1} \# P^{3}$ preserving the factors. This completes the proof.

4. The Arf invariant of a Z_{2}-homology handle and a cobordism theory.

A closed (possibly, non-orientable) 3-manifold M is a Z_{2}-homology handle, if $H_{*}\left(M ; Z_{2}\right) \approx H_{*}\left(S^{1} \times S^{2} ; Z_{2}\right)$ and $H_{1}(M ; Z)$ is infinite. Note that $H_{1}(M ; Z)$ is always infinite, if M is non-orientable. Throughout this section we denote by M a Z_{2}-homology handle. We shall define an invariant of an integer $(\bmod 2)$ for M, which is analogous to an invariant of Robertello [18] for classical knots. Let $f: M \rightarrow S^{1}$ be a map such that $f_{*}: H_{1}(M ; Z) \rightarrow H_{1}\left(S^{1} ; Z\right)$ is onto. Using $H_{1}(M ; Q)=Q$ and $H_{1}\left(M ; Z_{2}\right)=Z_{2}$, we can assume that for a point $p \in S^{1}$, $f^{-1}(p)=F$ is a closed, connected, orientable surface (cf. [11], Lemma 2.5). Define a Z_{2}-linking pairing $L: H_{1}\left(F ; Z_{2}\right) \times H_{1}\left(F ; Z_{2}\right) \rightarrow Z_{2}$ by the identity

$$
L(x, y)=Z_{2} \text {-linking number }{ }_{M}\left(x^{\prime}, i_{*}\left(y^{\prime}\right)\right)
$$

for Z_{2}-cycles x^{\prime}, y^{\prime} in F with $x=\left\{x^{\prime}\right\}, y=\left\{y^{\prime}\right\}$, where $i_{*}\left(y^{\prime}\right)$ denotes a cycle in M obtained from y^{\prime} by translating in the positive normal direction (associated with f and S^{1}). [Note that the Z_{2}-linking number is well-defined, since x^{\prime} and $i_{*}\left(y^{\prime}\right)$ are Z_{2}-null-homologous in M (cf. [12], 2.19).] Clearly,

$$
L(x, y)+L(y, x)=x \cdot y
$$

where $x \cdot y$ denotes the usual intersection number $(\bmod 2)$ on F. Define a map $q: H_{1}\left(F ; Z_{2}\right) \rightarrow Z_{2}$ by the identity

$$
q(x)=L(x, x)
$$

for $x \in H_{1}\left(F ; Z_{2}\right)$. It follows that

$$
q(x+y)=q(x)+q(y)+x \cdot y .
$$

So q is a quadratic form $(\bmod 2)$, and the Arf invariant of q is defined.
Definition 4.1. $\varepsilon(M)$ is the Arf invariant of q.
To show that $\varepsilon(M)$ is an invariant of the topological type of M, we make use of the Z_{2}-Alexander polynomial $A(t)\left(\in Z_{2}\langle t\rangle\right)$ of M associated with an epimorphism $\pi_{1}(M) \rightarrow\langle t\rangle,\langle t\rangle$ being the infinite cyclic group with a fixed generator t. This is defined to be any generator of the order ideal of the $Z_{2}\langle t\rangle-$ module $H_{1}\left(\tilde{M} ; Z_{2}\right)$, which is a finitely generated torsion $Z_{2}\langle t\rangle$-module, where \tilde{M} is the infinite cyclic cover of M associated with an epimorphism $\pi_{1}(M) \rightarrow\langle t\rangle$. As an analogy of [11], $A(t) \in Z_{2}\langle t\rangle$ has that $A(t)=t^{m} A\left(t^{-1}\right)$ for some m and $A(1)=1$. Therefore, $A(t)$ (up to multiples of t) is an invariant of the topological type of M. Using $A(1)=1$, we see that $A(t)$ is of the form $a(t)\left(t^{4}+1\right)+t^{b}$ or $a(t)\left(t^{4}+1\right)+t^{b}\left(t^{2}+t+1\right)$. [These forms do not occur at the same time.]

Lemma 4.1. $\varepsilon(M)=0$ if $A(t)=a(t)\left(t^{4}+1\right)+t^{b}$, and

$$
\varepsilon(M)=1 \text { if } A(t)=a(t)\left(t^{4}+1\right)+t^{b}\left(t^{2}+t+1\right) .
$$

Corollary to Lemma 4.1. $\varepsilon(M)$ is an invariant of the topological type of M.

Proof of Lemma 4.1. By choosing a symplectic basis for $H_{1}\left(F ; Z_{2}\right)$, the linking pairing $L: H_{1}\left(F ; Z_{2}\right) \times H_{1}\left(F ; Z_{2}\right) \rightarrow Z_{2}$ is represented by a matrix $V=$ ($v_{i j}$) $\left(v_{i j} \in Z_{2}\right)$ so that

$$
V+V^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { (block sum) }
$$

since $L(x, y)+L(y, x)=x \cdot y$, where V^{\prime} is the transpose of V. Note that $A(t)$ $=\operatorname{det}\left(t V+V^{\prime}\right)$ and $\varepsilon(M)=\sum_{i=1}^{g} v_{2 i}{ }_{2 i} \cdot v_{2 i-12 i-1}$, where g is the genus of F. Now we can apply the same calculation as R. Robertello [18], pp. 551-553 and obtain our desired result.

Lemma 4.2. If M^{\prime} is a connected double cover of a Z_{2}-homology handle M, then M^{\prime} is also a Z_{2}-homology handle, and the Z_{2}-Alexander polynomial of M^{\prime} is equal to the Z_{2}-Alexander polynomial of M. In particular, $\varepsilon\left(M^{\prime}\right)=\varepsilon(M)$.

Proof. Let \tilde{M} be an infinite cyclic cover of M associated with an epimorphism $\pi_{1}(M) \rightarrow\langle t\rangle$. Note that M^{\prime} is identical with the orbit space $\tilde{M} /\left\langle t^{2}\right\rangle$. Consider the following part of Wang exact sequence

$$
H_{1}\left(\tilde{M} ; Z_{2}\right) \xrightarrow{t-1} H_{1}\left(\tilde{M} ; Z_{2}\right) \longrightarrow H_{1}\left(M ; Z_{2}\right) \longrightarrow \dot{H}_{0}\left(\tilde{M} ; Z_{2}\right) \longrightarrow 0 .
$$

Similarly,

$$
H_{1}\left(\tilde{M} ; Z_{2}\right) \xrightarrow{t^{2}-1} H_{1}\left(\tilde{M} ; Z_{2}\right) \longrightarrow H_{1}\left(M^{\prime} ; Z_{2}\right) \longrightarrow H_{0}\left(\tilde{M} ; Z_{2}\right) \longrightarrow 0
$$

Since $H_{1}\left(M ; Z_{2}\right) \approx H_{0}\left(\tilde{M} ; Z_{2}\right)\left(=Z_{2}\right), t-1: H_{1}\left(\tilde{M} ; Z_{2}\right) \rightarrow H_{1}\left(\tilde{M} ; Z_{2}\right)$ is onto. Hence $(t-1)^{2}=t^{2}-1: H_{1}\left(\tilde{M} ; Z_{2}\right) \rightarrow H_{1}\left(\tilde{M} ; Z_{2}\right)$ is so, which implies that $H_{1}\left(M^{\prime} ; Z_{2}\right) \approx$ $H_{0}\left(\tilde{M} ; Z_{2}\right) \approx Z_{2}$. Using an epimorphism $\pi_{1}\left(M^{\prime}\right) \rightarrow\left\langle t^{2}\right\rangle$, we see that M^{\prime} is a Z_{2}-homology handle. Let $A(t), A^{\prime}(t)$ be the Z_{2}-Alexander polynomials of M, M^{\prime}, respectively. Note that $A(t)$ is the characteristic polynomial of $t: H_{1}\left(\tilde{M} ; Z_{2}\right) \rightarrow$ $H_{1}\left(\tilde{M} ; Z_{2}\right)$ and $A^{\prime}\left(t^{2}\right)$ is the characteristic polynomial of $t^{2}: H_{1}\left(\tilde{M} ; Z_{2}\right) \rightarrow H_{1}\left(\tilde{M} ; Z_{2}\right)$. So using the field Z_{2},

$$
A^{\prime}\left(t^{2}\right)=A(t) A(-t)=A(t)^{2}=A\left(t^{2}\right)
$$

(cf. [12], Lemma 3.11), which implies $A^{\prime}(t)=A(t)$. By Lemma 4.1, $\varepsilon(M)=\varepsilon\left(M^{\prime}\right)$. This completes the proof.

We shall show the following :
THEOREM 4.1. $\varepsilon(M)=0$ if and only if there exists a compact connected 4-manifold W with $\partial W=M$ such that
(1) the inclusion $M \subset W$ induces an isomorphism

$$
H_{1}(M ; Z) / \text { odd torsion } \approx H_{1}(W ; Z) / \text { odd torsion }(\approx Z)
$$

(2) the Z_{2}-intersection number, $x \cdot x=0$ for all $x \in H_{2}\left(W ; Z_{2}\right)$.

Proof. Suppose $\varepsilon(M)=0$. Then there is a symplectic basis a_{1}, \cdots, a_{g}, $b_{1}, \cdots, b_{g}\left(a_{i} \cdot a_{j}=b_{i} \cdot b_{j}=0\right.$ for all i, j, and $\left.a_{i} \cdot b_{j}=\delta_{i j}\right)$ of $H_{1}\left(F ; Z_{2}\right)$ such that $L\left(a_{i}, a_{i}\right)=0, i=1,2, \cdots, g$, where F is a closed, connected, orientable surface of genus g, transversal to a circle representing a generator of $H_{1}(M ; Z) /$ odd torsion $(\approx Z)$. We proceed to the proof by assuming the following lemma:

Lemma 4.3. A symplectic basis $a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}$ of $H_{1}\left(F ; Z_{2}\right)$ is represented by simple closed curves $a_{1}^{0}, \cdots, a_{g}^{0}, b_{1}^{0}, \cdots, b_{g}^{0}$ on F such that $a_{i}^{0} \cap a_{j}^{0}=$ $b_{i}^{0} \cap b_{j}^{0}=a_{i}^{0} \cap b_{j}^{0}=\emptyset, i \neq j$, and $a_{i}^{0} \cap b_{i}^{0}=o n e$ point.

In Lemma 4.3 let $a_{i}^{0} \times[0,1]$ be a small neighborhood of a_{i}^{0} in F. Further, thicken $a_{i}^{0} \times[0,1]$ by a collar of F in M. From the results $a_{i}^{0} \times[0,1] \times[0,1]$, we construct an adjunction space W_{1} as follows:

$$
W_{1}=M \times[0,1] \cup D_{1} \times[0,1] \times[0,1] \cup \cdots \cup D_{g} \times[0,1] \times[0,1]
$$

where D_{i} is a disk, and $\left(\partial D_{i}\right) \times[0,1] \times[0,1]$ is identified with $a_{i}^{0} \times[0,1] \times[0,1]$ $\times 1$ so that $(x, t, u) \equiv\left(h_{i}(x), t, u, 1\right)$ for a homeomorphism $h_{i}: \partial D_{i} \rightarrow a_{i}^{0}$. Since $L\left(a_{i}, a_{i}\right)=0, i=1,2, \cdots, g$, it follows that $x \cdot x=0$ for all $x \in H_{2}\left(W_{1} ; Z_{2}\right)$. Note that $\partial W_{1}-M \times 0$ is homeomorphic to $S^{1} \times S^{2} \# N$ or $S^{1} \times{ }_{\tau} S^{2} \# N$ for some closed connected orientable 3-manifold N according to whether M is orientable or nonorientable. ($S^{1} \times{ }_{\tau} S^{2}$ is the non-orientable handle, that is, the twisted S^{2} bundle over S^{1}.) By attaching $S^{1} \times B^{3}$ or $S^{1} \times{ }_{\tau} B^{3}$ ($=$ the twisted B^{3} bundle over S^{1}) to the factor $S^{1} \times S^{2}$ or $S^{1} \times{ }_{\tau} S^{2}$ of $\partial W_{1}-M \times 0$, we obtain a manifold W_{2} with $\partial W_{2}-M \times 0=N$. Note that the canonical homomorphism $H_{1}(M \times 0 ; Z) /$ odd torsion $\rightarrow H_{1}\left(W_{2} ; Z\right) /$ odd torsion is an isomorphism. In particular, the boundary
homomorphism $\partial: H_{2}\left(W_{2}, N ; Z_{2}\right) \rightarrow H_{1}\left(N ; Z_{2}\right)$ is onto. If $H_{1}\left(N ; Z_{2}\right) \neq 0$, let $x \in H_{1}\left(N ; Z_{2}\right)$ be a non-zero element represented by a simple closed curve S. Let c be a 2 -chain $(\bmod 2)$ in W_{2} with $\partial c=S$. Let S^{\prime} be a simple closed curve on a tubular neighborhood T of S in N, homotopic to S in T and bounding a 2 -chain $c^{\prime}(\bmod 2)$ in W so that c^{\prime} is Z_{2}-homologous to c in $W_{2} \bmod N$, and the Z_{2}-intersection number, $c \cdot c^{\prime}=0$. Let W_{2}^{\prime} be a 4 -manifold obtained from W_{2} by attaching a 2 -handle $D^{2} \times D^{2}$ along T with framing determined by S^{\prime}. Note that $H_{2}\left(W_{2}^{\prime} ; Z_{2}\right)$ has a basis $x_{1}, \cdots x_{g}, y$, where $\left\{x_{1}, \cdots, x_{g}\right\}$ is the image of a basis of $H_{2}\left(W_{2} ; Z_{2}\right)$ by the canonical map $H_{2}\left(W_{2} ; Z_{2}\right) \rightarrow H_{2}\left(W_{2}^{\prime} ; Z_{2}\right)$, and y is the homology class represented by $c \cup D^{2} \times 0$. ($D^{2} \times 0$ is a core of the 2 -handle $D^{2} \times D^{2}$.) From construction, we have $x_{i} \cdot x_{i}=y \cdot y=0, i=1,2, \cdots, g$. Let $\partial W_{2}^{\prime}-M \times 0=N^{\prime}$. Since $H_{1}\left(N-\operatorname{Int} T ; Z_{2}\right) \rightarrow H_{1}\left(N ; Z_{2}\right)$ is an isomorphism (cf. Lemma 4.4), we see that $\operatorname{dim}_{z_{2}} H_{1}\left(N^{\prime} ; Z_{2}\right)=\operatorname{dim}_{z_{2}} H_{1}\left(N ; Z_{2}\right)-1$. By induction on $\operatorname{dim}_{z_{2}} H_{1}\left(N ; Z_{2}\right)$, we may assume that $H_{1}\left(N ; Z_{2}\right)=0$. Then let V be a 1-connected 4 -manifold V with $\partial V=N$ such that $x \cdot x=0$ for all $x \in H_{2}\left(V ; Z_{2}\right)$ (cf. J. W. Milnor [17], S. J. Kaplan [10]). The manifold $W=W_{2} \cup V$, then, satisfies (1) and (2). Conversely, assume that M bounds a manifold W satisfying (1) and (2). Let $F \subset M$ be a closed, connected, orientable surface of genus g, transversal to a circle of a generator of $H_{1}(M ; Z) /$ odd torsion. By (1) F is the boundary of a compact 3-manifold $U \subset W$, transversal to a circle of a generator of $H_{1}(W ; Z) /$ odd torsion $\approx Z$. We proceed to the proof by assuming the following lemma:

Lemma 4.4. There exists a symplectic basis $a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}$ of $H_{1}\left(F ; Z_{2}\right)$ such that a_{1}, \cdots, a_{g} generate the kernel of the canonical homomorphism $i_{*}: H_{1}\left(F ; Z_{2}\right) \rightarrow H_{1}\left(U ; Z_{2}\right)$.

Suppose $L\left(a_{1}, a_{1}\right)=1$. Let c_{1} be a representative of a_{1}. Let c_{1}^{\prime} be a slight translation of c_{1} in a positive normal direction in M. Since $L\left(a_{1}, a_{1}\right)=1, c_{1}$ bounds a 2-chain $c_{2}(\bmod 2)$ in M such that $c_{2} \cdot c_{1}^{\prime}=1 . \quad c_{1}$ is Z_{2}-null-homologous in U. So it bounds a 2 -chain $\tilde{c}_{2}(\bmod 2)$ in U. Let \bar{c}_{2} be a slight translation of the cycle $c_{2} \cup \tilde{c}_{2}$ into Int W by using a boundary collar of W. Since U admits a collar in W, we may consider that the cycle c_{1}^{\prime} is in the boundary of a slight translation U^{\prime} of U, and bounds a 2 -chain $\tilde{c}_{2}^{\prime}(\bmod 2)$ in U^{\prime}, Z_{2}-homologous to \tilde{c}_{2} in $W(\bmod M)$. Since $c_{2} \cdot c_{1}^{\prime}=1$, we see easily that $\bar{c}_{2} \cdot \tilde{c}_{2}^{\prime}=1$. Let c_{2}^{\prime} be a 2-chain $(\bmod 2)$ in M with $\partial c_{2}^{\prime}=c_{1}^{\prime}$. Then $\bar{c}_{2} \cdot\left(c_{2}^{\prime} \cup \tilde{c}_{2}^{\prime}\right)=1$, which contradicts (2), since $c_{2}^{\prime} \cup \tilde{c}_{2}^{\prime}$ is Z_{2}-homologous to \bar{c}_{2} in W by the canonical isomorphism $H_{2}\left(W ; Z_{2}\right) \approx H_{2}\left(W, M ; Z_{2}\right)$. Hence $L\left(a_{1}, a_{1}\right)=0$. Similarly, $L\left(a_{i}, a_{i}\right)=0, i=2$, \cdots, g. Therefore, $\varepsilon(M)=0$. This completes the proof except for the proofs of Lemmas 4.3 and 4.4 .

Proof of Lemma 4.3. Regard F as a connected sum $F_{1} \# \cdots \# F_{g}$ of g copies of a torus of genus 1. Then $a_{1} \in H_{1}\left(F ; Z_{2}\right)$ is written as a sum $c_{1}+c_{2}+$ $\cdots+c_{g}, \quad c_{i} \in H_{1}\left(F_{i} ; Z_{2}\right)$. Similarly, $b_{1} \in H_{1}\left(F ; Z_{2}\right)$ as a sum $d_{1}+d_{2}+\cdots+d_{g}$,
$d_{i} \in H_{1}\left(F_{i} ; Z_{2}\right)$. (Some c_{i} or d_{i} may be 0 .) Since $a_{1} \cdot b_{1}=1$, we can assume that for some odd $m \geqq 1, c_{1} \cdot d_{1}=\cdots=c_{m} \cdot d_{m}=1$ and $c_{m+1} \cdot d_{m+1}=\cdots=c_{g} \cdot d_{g}=0$. Then c_{i} and d_{i} are represented by simple closed curves c_{i}^{0} and d_{i}^{0} on F_{i} such that $c_{i}^{0} \cap d_{i}^{0}=$ one point (if $i \leqq m$) or \emptyset (if $i \geqq m+1$). When $m \geqq 3, c_{1}+c_{2}$ and $d_{1}+d_{2}$ can be represented by mutually disjoint, simple closed curves on $F_{1} \# F_{2}$. By induction on $m, c_{1}+\cdots+c_{m-1}$ and $d_{1}+\cdots+d_{m-1}$ are represented by mutually disjoint, simple closed curves c^{0} and d^{0} on $F_{1} \# \cdots \# F_{m-1}$. Then suitable connected sums $a_{1}^{0}=c^{0} \# c_{m}^{0} \# c_{m+1}^{0} \# \cdots \# c_{g}^{0}$ and $b_{1}^{0}=d^{0} \# d_{m}^{0} \# d_{m+1}^{0} \# \cdots \# d_{g}^{0}$ are simple closed curves on F representing a_{1} and b_{1} such that $a_{1}^{0} \cap b_{1}^{0}=$ one point. Taking a regular neighborhood of $a_{1}^{0} \cup b_{1}^{0}$, we obtain a new connected sum $F=F_{1}^{\prime} \# F^{\prime \prime}$ where a_{1}^{0}, b_{1}^{0} represent a basis for $H_{1}\left(F_{1}^{\prime} ; Z_{2}\right)$. Then $a_{2}, \cdots, a_{g}, b_{2}, \cdots, b_{g}$ form a symplectic basis for $H_{1}\left(F^{\prime \prime} ; Z_{2}\right)$. By induction, we complete the proof.

Proof of Lemma 4.4. Consider the following exact sequence

$$
H_{2}\left(U, F ; Z_{2}\right) \xrightarrow{\partial} H_{1}\left(F ; Z_{2}\right) \xrightarrow{i_{*}} H_{1}\left(U ; Z_{2}\right)
$$

From this, we see that $\operatorname{Im} \partial$ is a self-orthogonal complement with respect to the non-singular intersection pairing $H_{1}\left(F ; Z_{2}\right) \times H_{1}\left(F ; Z_{2}\right) \rightarrow Z_{2}\left(\right.$ since $\left.(\partial x) \cdot y=x \cdot i_{*}(y)\right)$. In particular, $2 \operatorname{dim}_{z_{2}} \operatorname{Im} \partial=\operatorname{dim}_{z_{2}} H_{1}\left(F ; Z_{2}\right)=2 g$. Let a_{1}, \cdots, a_{g} be a basis for Im ∂. Since $x \cdot x=0$ for $x \in H_{1}\left(F ; Z_{2}\right)$, we can find b_{1}, \cdots, b_{g} such that a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g} give a symplectic basis for $H_{1}\left(F ; Z_{2}\right)$. This completes the proof.

Remark 4.1. Let F be a closed, connected (possibly, non-orientable) surface. From an idea of the proof of Lemma 4.3, we can see that any element of $H_{1}\left(F ; Z_{2}\right)$ is represented by a simple closed curve on F. By the proof of Lemma 4.4, we see also that if F is the boundary of a compact 3 -manifold U, then the kernel of $i_{*}: H_{1}\left(F ; Z_{2}\right) \rightarrow H_{1}\left(U ; Z_{2}\right)$ has the half-dimension of $H_{1}\left(F ; Z_{2}\right)$.

Lemma 4.5. (1) If W is a finite cover of a compact 4-manifold W^{\prime} with $x \cdot x=0$ for all $x \in H_{2}\left(W^{\prime} ; Z_{2}\right)$, then we have $x \cdot x=0$ for all $x \in H_{2}\left(W ; Z_{2}\right)$.
(2) A compact 4-manifold W is spin $\left(w_{1}(W)=w_{2}(W)=0\right)$ if and only if W is orientable and $x \cdot x=0$ for all $x \in H_{2}\left(W ; Z_{2}\right)$.

Proof. By Wu formula,

$$
w_{2}\left(W^{\prime}\right)=w_{1}\left(W^{\prime}\right) \cup w_{1}\left(W^{\prime}\right)+v_{2}\left(W^{\prime}\right)
$$

where $v_{2}\left(W^{\prime}\right) \in H^{2}\left(W^{\prime} ; Z_{2}\right)$ is defined by the identity $x \cup v_{2}\left(W^{\prime}\right)=x \cup x$ for all $x \in H^{2}\left(W^{\prime}, \partial W^{\prime} ; Z_{2}\right)$. Since $x \cdot x=0$ for all $x \in H_{2}\left(W^{\prime} ; Z_{2}\right)$, we see that $x \cup x=0$ for all $x \in H^{2}\left(W^{\prime}, \partial W^{\prime} ; Z_{2}\right)$. Hence by Poincaré duality, $v_{2}\left(W^{\prime}\right)=0$. So $w_{2}\left(W^{\prime}\right)=$ $w_{1}\left(W^{\prime}\right) \cup w_{1}\left(W^{\prime}\right)$. Applying the covering projection $p: W \rightarrow W^{\prime}$ to this identity, we obtain that

$$
w_{2}(W)=p^{*}\left(w_{2}\left(W^{\prime}\right)\right)=p^{*}\left(w_{1}\left(W^{\prime}\right)\right) \cup p^{*}\left(w_{1}\left(W^{\prime}\right)\right)=w_{1}(W) \cup w_{1}(W)
$$

Hence by Wu formula, $v_{2}(W)=w_{1}(W) \cup w_{1}(W)+w_{2}(W)=0$. That is, $x \cup x=0$ for
all $x \in H^{2}\left(W, \partial W ; Z_{2}\right)$. This implies that $x \cdot x=0$ for all $x \in H_{2}\left(W ; Z_{2}\right)$, showing (1). (2) follows easily from Wu formula, since $w_{1}(W)=0$ if and only if W is orientable. This completes the proof.

Corollary 4.1. Assume that M admits a free involution α such that the orbit space M / α is a Z_{2}-homology handle. Then $\varepsilon(M)=0$ if and only if there exists a compact connected 4-manifold W with $\partial W=M$ such that
(1) W admits a free involution β extending α,
(2) the inclusion $M \subset W$ induces an isomorphism $H_{1}(M ; Z)$ / odd torsion $\approx H_{1}(W ; Z) /$ odd torsion,
(3) the Z_{2}-intersection number, $x \cdot x=0$ for all $x \in H_{2}\left(W ; Z_{2}\right)$.

Proof. Let $M_{1}=M / \alpha$. By Lemma $4.2 \varepsilon\left(M_{1}\right)=\varepsilon(M)$. By Theorem 4.1, $\varepsilon\left(M_{1}\right)=0$ if and only if M_{1} bounds a 4-manifold W_{1} satisfying (1) and (2) of Theorem 4.1. By (1) there is a double cover W of W_{1} extending the covering $M \rightarrow M_{1}$. By Wang exact sequence, $H_{1}(W ; Z) /$ odd torsion $\approx Z$ (cf. the proof of Lemma 4.2). It follows that the inclusion $M \subset W$ induces an isomorphism $H_{1}(M ; Z) /$ odd torsion $\approx H_{1}(W ; Z) /$ odd torsion. By Lemma 4.5 (1), we complete the proof.

Remark 4.2. In Theorem 4.1, if M is orientable, then W is spin. [In fact, by (1) $w_{1}(M)=0$ if and only if $w_{1}(W)=0$. Hence, if $w_{1}(M)=0$, then by Lemma 4.5 (2), (2) implies W is spin.] In Corollary 4.1, M is necessarily orientable and W is necessarily spin, and α is orientation-preserving if and only if β is orien-tation-preserving. [To see this, it suffices to check that M is orientable. In general, for a connected manifold X_{1} with $H^{1}\left(X_{1} ; Z_{2}\right) \approx Z_{2}$, any 2 -fold connected cover X of X_{1} is orientable. In fact, if $w_{1}\left(X_{1}\right) \neq 0, X$ is the cover of X_{1} associated with $w_{1}\left(X_{1}\right) \in H^{1}\left(X_{1} ; Z_{2}\right)\left(\approx Z_{2}\right)$, that is, the orientation cover of X_{1}.]

5. Proof of Theorem IV.

We shall show the following:
Theorem 5.1. Given a pair (M, α) where M is a Z_{2}-homology 3-sphere and α is an orientation-reversing involution on M, then there exists a compact, connected, oriented, spin 4 -manifold W with an orientation-reversing involution β such that $\partial W=M, \beta \mid M=\alpha$ and $H_{1}\left(W ; Z_{2}\right)=0$.

Proof of Theorem IV. $\mu(M)=\operatorname{sign}(W) / 16=0$ for W in Theorem 5.1 which clearly has $\operatorname{sign}(W)=0$.

Proof of Theorem 5.1. By Smith theory (cf. Proposition 6.1 and [3], III $\S 4), \operatorname{Fix}(\alpha, M)=S^{0}$ or S^{2}. If $\operatorname{Fix}(\alpha, M)=S^{2}$, then M splits: $M=M_{1} \# M_{2}$, and α interchanges the factors. (M, α) is equivalent to ($M_{1} \#-M_{1}, \alpha_{1}$) where α_{1} is a reflection of the factors. Then we obtain easily a desired pair (W, β) with $\partial W=M, \beta \mid M=\alpha$ and $\widetilde{H}_{*}\left(W ; Z_{2}\right)=0$. Now we assume $\operatorname{Fix}(\alpha, M)=S^{0}$. Let k be
a knot in M such that $\alpha(k)=k$ and $S^{0} \subset k$. [Such a knot k is easily obtained by considering the canonical projection $M \rightarrow M / \alpha$.] Let T be an α-invariant, tubular neighborhood of k in M. Let $E=M$-Int T. Since $\alpha \mid E$ acts freely on E, the orbit space $E^{\prime}=E / \alpha$ is a non-orientable manifold with ∂E^{\prime} a Klein bottle. We proceed to the proof by assuming the following lemma:

Lemma 5.1. $H_{1}\left(E^{\prime} ; Z\right) /$ odd torsion $\approx Z$.
By this lemma let F be a proper surface transversal to a circle of a generator of $H_{1}\left(E^{\prime} ; Z\right) /$ odd torsion $(\approx Z) . \quad F$ is properly imbedded in E so that $\alpha F \cap F=0$. Since $H_{1}\left(E^{\prime}, \partial E^{\prime} ; Z_{2}\right)=0$ by Remark 4.1, we can assume that ∂F has some odd components of circles all of which are isotopic in ∂E^{\prime} and hence in ∂E. Let a be an α-invariant meridian on T, which represents clearly a generator of $H_{1}\left(E ; Z_{2}\right)$. Let b be any component of ∂F, which generates the kernel of $H_{1}\left(\partial E ; Z_{2}\right) \rightarrow H_{1}\left(E ; Z_{2}\right)$ and satisfies $\alpha b \cap b=\emptyset$. We may have $a \cap b=$ one point. We construct a 4 -manifold $W_{1}=M \times[0,1] \cup D^{2} \times D^{2}$ by identifying $T \times 1$ with $\left(\partial D^{2}\right) \times D^{2}$ so that $a \times 1=\mathrm{pt} \times \partial D^{2}$ and $b \times 1=\left(\partial D^{2}\right) \times \mathrm{pt}$. Then α is extendable to an orientation-reversing involution β_{1} on W_{1} so that $\beta_{1} \mid M_{1}=\alpha_{1}$ is an orientation-reversing free involution on M_{1} where $M_{1}=\partial W_{1}-M \times 0$. From construction, $H_{1}\left(M_{1} ; Z_{2}\right)=H_{1}\left(M_{1} / \alpha_{1} ; Z_{2}\right)=Z_{2}$. Since M_{1} / α_{1} is non-orientable, $H_{1}\left(M_{1} / \alpha_{1} ; Z\right)$ is infinite. Hence M_{1} / α_{1} and M_{1} are Z_{2}-homology handles. In case $\varepsilon\left(M_{1}\right)=0$, then by Corollary 4.1 and Remark 4.2, M_{1} bounds a compact, connected, spin 4-manifold W_{2} admitting an orientation-reversing involution β_{2} extending α_{1} such that the canonical homomorphism $H_{1}\left(M_{1} ; Z_{2}\right) \rightarrow H_{1}\left(W_{2} ; Z_{2}\right)$ is an isomorphism. Let $W=W_{1} \cup W_{2}$. Note that the canonical homomorphism $H_{2}\left(W_{2} ; Z_{2}\right) \rightarrow H_{2}\left(W ; Z_{2}\right)$ is an isomorphism and $H_{1}\left(W ; Z_{2}\right)=0$. The pair (W, β), where β is defined by $\beta \mid W_{i}=\beta_{i}$, is a desired pair. In case $\varepsilon\left(M_{1}\right)=1$, we make a restart by using, instead of k, a new knot k^{\prime} constructed from k as follows: Let $x \in M$ be a fixed point of α, and B be an α-invariant, regular neighborhood

Figure
of x in M. We may consider that $B \cap k$ is an unknotted arc in B. Replace this arc by an arc of the figure eight knot, illustrated in the Figure, where B and $\alpha \mid B$ are regarded as a unit ball in R^{3} and the antipodal map sending $(x, y, z) \rightarrow(-x,-y,-z)$. Then the resulting knot k^{\prime} still satisfies $\alpha\left(k^{\prime}\right)=k^{\prime}$ and Fix $(\alpha, M)=S^{\circ} \subset k^{\prime}$.

Let M_{1}^{\prime} be a Z_{2}-homology handle resulting from k^{\prime}. Let $A(t), A^{\prime}(t)$ be the Z_{2}-Alexander polynomials of M_{1}, M_{1}^{\prime}, respectively. Since k^{\prime} is a knot sum of k and the figure eight knot, it follows that $A^{\prime}(t)=A(t) \cdot f\left(t^{r}\right)$, where $f(t)=t^{2}-3 t+1$ $=t^{2}+t+1$ is the Z_{2}-Alexander polynomial of the figure eight knot, and r is the number of the components of ∂F which is odd. [To see this, notice that $H_{1}\left(\tilde{M}_{1}^{\prime} ; Z_{2}\right)$ is $Z_{2}\langle t\rangle$-isomorphic to $H_{1}\left(\tilde{M}_{1} ; Z_{2}\right) \oplus Z_{2}\langle t\rangle /\left(f\left(t^{r}\right)\right)$.] Since $\varepsilon\left(M_{1}\right)=1$, by Lemma 4.1 $A(t)=a(t)\left(t^{4}+1\right)+t^{b}\left(t^{2}+t+1\right)$ for some $a(t)$ and b. Using that r is odd, $f\left(t^{r}\right)=c(t)\left(t^{4}+1\right)+t^{d}\left(t^{2}+t+1\right)$ for some $c(t)$ and d. Hence $A^{\prime}(t)=a^{\prime}(t)\left(t^{4}+1\right)+t^{e}$ for some $a^{\prime}(t)$ and e. By Lemma 4. 1 this implies that $\varepsilon\left(M_{1}^{\prime}\right)=0$. Now we reduced the case $\varepsilon\left(M_{1}\right)=1$ to the case $\varepsilon\left(M_{1}\right)=0$. This completes the proof of Theorem 5.1 except for the proof of Lemma 5.1.

Proof of Lemma 5.1. From the following commutative diagram with exact rows:

we obtain the following commutative diagram with exact rows:

Since $H_{1}\left(\partial E ; Z_{2}\right) \rightarrow H_{1}\left(E ; Z_{2}\right)$ is onto, $H_{1}\left(\partial E^{\prime} ; Z_{2}\right) \rightarrow H_{1}\left(E^{\prime} ; Z_{2}\right)$ is so. By Remark 4.1, $H_{1}\left(E^{\prime} ; Z_{2}\right)=Z_{2}$. The double $D\left(E^{\prime}\right)$ of E^{\prime} is closed and non-orientable, so that $H_{1}\left(D\left(E^{\prime}\right) ; Q\right) \neq 0$. By Mayer-Vietoris sequence we have $H_{1}\left(E^{\prime} ; Q\right) \neq 0$. Hence $H_{1}\left(E^{\prime} ; Z\right)$ /odd torsion $\approx Z$. This completes the proof.

6. Proof of Theorem III.

Definition 6.1. A pair (M, α) is spin bordant to a pair ($M^{\prime}, \alpha^{\prime}$), if $M+\left(-M^{\prime}\right)$ bounds a compact spin 4 -manifold with an orientation-reversing involution extending $\alpha+\alpha^{\prime}$. If $M^{\prime}=\emptyset$, then we say that (M, α) is a spin boundary.

Theorem 6.1. Assume that $\sigma(\alpha, M)=0$. Then there exists a sequence of pairs $(M, \alpha)=\left(M_{0}, \alpha_{0}\right),\left(M_{1}, \alpha_{1}\right), \cdots,\left(M_{r}, \alpha_{r}\right)$ such that for each $i, 0 \leqq i \leqq r-1$,
(M_{i}, α_{i}) is spin bordant to $\left(M_{i+1}, \alpha_{i+1}\right)$, and $\left(M_{r}, \alpha_{r}\right)$ is a spin boundary.
Proof. (1) Any pair (M, α) is spin bordant to a pair ($M^{\prime}, \alpha^{\prime}$) where M^{\prime} is connected. The proof of (1) is not difficult. [If M contains two components $M^{(0)}, M^{(1)}$ such that $\alpha\left(M^{(0)}\right)=M^{(1)}$, then choose 3 -balls $B^{(i)} \subset M^{(i)}$ so that $\alpha\left(B^{(0)}\right)=B^{(1)}$ and construct a 4-manifold $W=M \times[0,1] \cup D^{3} \times[0,1]$ by identifying $B^{(i)} \times 1$ with $D^{3} \times i, i=0,1$. For any two components $M^{(0)}, M^{(1)}$ with $\alpha\left(M^{(i)}\right)=M^{(i)}$, choose 3 -balls $B^{(i)} \subset M^{(i)}$ such that $\alpha\left(B^{(i)}\right) \cap B^{(i)}=0$, and then construct a 4-manifold $W=M \times[0,1] \cup D^{3} \times[0,1]_{1} \cup D^{3} \times[0,1]_{2}$ identifying $B^{(i)} \times 1$ with $D^{3} \times i_{1}$, and $\alpha\left(B^{(i)}\right) \times 1$ with $D^{3} \times i_{2}, i=0,1$.]
(2) Given a pair (M, α) where M is connected and $\sigma(\alpha, M)=0$, then (M, α) is spin bordant to a pair $\left(M^{\prime}, \alpha^{\prime}\right)$ 'such that M^{\prime} is connected and $\operatorname{Fix}\left(\alpha^{\prime}, M^{\prime}\right)$ is \emptyset or a closed connected surface. The proof is not difficult. [Since $\sigma(\alpha, M)=0$, the number of discrete points of $\operatorname{Fix}(\alpha, M)$ is even. For any two discrete points $x^{(0)}, x^{(1)}$ of $\operatorname{Fix}(\alpha, M)$, choose 3-balls $B^{(i)} \subset M$ which are α-invariant neighborhoods of $x^{(i)}$, and then form a 4-manifold $W=M \times[0,1] \cup D^{3} \times[0,1]$ identifying $B^{(i)} \times 1$ with $D^{3} \times i, i=0,1$. For any two surfaces $F^{(0)}, F^{(1)}$ in Fix (α, M), choose proper ball pairs $B^{2(i)} \subset B^{3(i)}$ such that $B^{2(i)} \subset F^{(i)}, B^{3(i)} \subset M$ and $\alpha\left(B^{3(i)}\right)=B^{3(i)}$, and then construct a 4 -manifold $W=M \times[0,1] \cup D^{3} \times[0,1]$ identifying $B^{3(i)} \times 1$ with $D^{3} \times i, i=0,1$.]
(3) Given a pair (M, α) where M is connected and $\operatorname{Fix}(\alpha, M)$ is a closed connected surface, then there is a sequence of pairs $(M, \alpha)=\left(M_{0}, \alpha_{0}\right),\left(M_{1}, \alpha_{1}\right)$, $\cdots,\left(M_{r}, \alpha_{r}\right)$ such that $\left(M_{i}, \alpha_{i}\right)$ is spin bordant to $\left(M_{i+1}, \alpha_{i+1}\right)$, and (M_{r}, α_{r}) satisfies either that M_{r} is connected and $\operatorname{Fix}\left(\alpha_{r}, M_{r}\right)=\emptyset$ or that M_{r} has just two components $M_{r}^{(1)}, M_{r}^{(2)}$ and $\alpha\left(M_{r}^{(1)}\right)=M_{r}^{(2)}$. To prove (3), let $F=\operatorname{Fix}(\alpha, M)$, and first assume $F \neq S^{2}, P^{2} \# P^{2}$. Note that the orbit space $M / \alpha=M_{F}$ is a compact connected manifold with boundary F. By Remark 4.1 and the following canonical commutative triangle

we find a two-sided simple closed curve S on F which represents a non-zero element in $H_{1}\left(M_{F} ; Z_{2}\right)$ and hence in $H_{1}\left(M ; Z_{2}\right)$. Let T be an α-invariant, tubular neighborhood of S in M, so that $T \cap F$ is a proper annulus in T. Construct a 4 -manifold $W=M \times[0,1] \cup D^{2} \times D^{2}$ identifying $T \times 1$ (with framing determined by the annulus $T \cap F)$ with $\left(\partial D^{2}\right) \times D^{2}$. Since $H_{1}\left(T ; Z_{2}\right) \rightarrow H_{1}\left(M ; Z_{2}\right)$ is injective, $H_{2}\left(M \times 0 ; Z_{2}\right) \rightarrow H_{2}\left(W ; Z_{2}\right)$ is onto, which implies that W is spin. From construction, α is extendable to an involution β on W such that $M_{1}=$
$\partial W-M \times 0$ is connected and $\operatorname{Fix}\left(\beta \mid M_{1}, M_{1}\right)$ is connected with Euler characteristic $\chi(F)+2$. Since $\chi(F)$ is even, we may assume by induction that $F=S^{2}$ or $P^{2} \# P^{2}$. In case $F=S^{2}$, construct a 4 -manifold $W=M \times[0,1] \cup D^{3} \times[0,1]$, where (∂D^{3}) $\times[0,1]$ is identified with an α-invariant neighborhood of $F \times 1$ in $M \times 1$. Then W gives a spin bordism from (M, α) to a pair ($M^{\prime}, \alpha^{\prime}$) satisfying either that M^{\prime} is connected and $\operatorname{Fix}\left(\alpha^{\prime}, M^{\prime}\right)=\emptyset$ or that M^{\prime} has just two components $M^{\prime(1)}$, $M^{\prime(2)}$ and $\alpha^{\prime}\left(M^{\prime(1)}\right)=M^{\prime(2)}$. Now assume $F=P^{2} \# P^{2}$. Let S be a circle defining the connected sum $P^{2} \# P^{2}$. Let T be an α-invariant, tubular neighborhood of S in M, so that $F \cap T$ is a proper annulus in T. Construct a 4-manifold $W=M \times[0,1] \cup D^{2} \times D^{2}$ identifying $T \times 0$ (with framing specified by a proper annulus $F \cap T$) with $\left(\partial D^{2}\right) \times D^{2} . \quad M^{\prime}=\partial W-M \times 0$ is connected, and α is extendable to an involution β on W such that $\operatorname{Fix}\left(\alpha^{\prime}, M^{\prime}\right)\left(\alpha^{\prime}=\beta \mid M^{\prime}\right)$ consists of two copies of P^{2}. By considering an α^{\prime}-invariant, regular neighborhood of Fix $\left(\alpha^{\prime}, M^{\prime}\right)$, we see that $M^{\prime}=M^{\prime \prime} \# P^{3} \# P^{3}$ for some $M^{\prime \prime}$, and α^{\prime} preserves the factors. W is spin since $H_{2}\left(\partial W ; Z_{2}\right) \rightarrow H_{2}\left(W ; Z_{2}\right)$ is onto. Thus, (M, α) is spin bordant to $\left(M^{\prime \prime} \# P^{3} \# P^{3}, \alpha^{\prime}\right)$. The latter is easily spin bordant to a pair ($M^{\prime \prime \prime}, \alpha^{\prime \prime \prime}$) with $M^{\prime \prime \prime}$ connected and Fix $\left(\alpha^{\prime \prime \prime}, M^{\prime \prime \prime}\right)=\emptyset$ by considering the product $\left(P^{3}-\operatorname{Int} \Delta^{3}\right) \times[0,1]$ with a standard involution whose fixed point set is $P^{2} \times[0,1]$. This shows (3).
(4) Suppose, for a pair $(M, \alpha), M$ has just two components $M^{(1)}, M^{(2)}$, and $\alpha\left(M^{(1)}\right)=M^{(2)}$. Then (M, α) is a spin boundary. The proof is easy. [Note that (M, α) is equivalent to a pair $\left(M^{(1)}+\left(-M^{(1)}\right), \alpha_{0}\right)$ where $\alpha_{0} \mid M^{(1)} \rightarrow-M^{(1)}$ is defined by the identity on the underlying set.]
(5) Suppose for a pair $(M, \alpha), M$ is connected and $\operatorname{Fix}(\alpha, M)=\emptyset$. Then there is a finite sequence of pairs $(M, \alpha)=\left(M_{0}, \alpha_{0}\right),\left(M_{1}, \alpha_{1}\right), \cdots,\left(M_{r}, \alpha_{r}\right)$ such that $\left(M_{i}, \alpha_{i}\right)$ is spin bordant to (M_{i+1}, α_{i+1}), and M_{r} is a Z_{2}-homology 3 -sphere. To see this, consider the orbit space $M^{\prime}=M / \alpha$, which is non-orientable. Clearly, $H_{1}\left(M^{\prime} ; Z_{2}\right) \neq 0$. If $\operatorname{dim}_{z_{2}} H_{1}\left(M^{\prime} ; Z_{2}\right) \geqq 2$, then choose a simple closed curve S which represents a non-zero element of $H_{1}\left(M^{\prime} ; Z_{2}\right)$ and whose tubular neighborhood T is a solid torus. [Use the map $w_{1}: H_{1}\left(M^{\prime} ; Z_{2}\right) \rightarrow Z_{2}$ giving the first Stiefel-Whitney class.] Construct a 4 -manifold $W^{\prime}=M^{\prime} \times[0,1] \cup D^{2} \times D^{2}$ identifying T (with any framing) with $\left(\partial D^{2}\right) \times D^{2}$. Since $H_{1}\left(T ; Z_{2}\right) \rightarrow H_{1}\left(M^{\prime} ; Z_{2}\right)$ is injective, $H_{2}\left(\partial W^{\prime} ; Z_{2}\right) \rightarrow H_{2}\left(W^{\prime} ; Z_{2}\right)$ is onto, so that $x \cdot x=0$ for $x \in H_{2}\left(W^{\prime} ; Z_{2}\right)$. Let $M_{1}^{\prime}=\partial W^{\prime}-M^{\prime} \times 0$. We have $\operatorname{dim}_{Z_{2}} H_{1}\left(M_{1}^{\prime} ; Z_{2}\right)=\operatorname{dim}_{Z_{2}} H_{1}\left(M^{\prime} ; Z_{2}\right)-1$, since $H_{1}\left(M^{\prime}-T ; Z_{2}\right) \rightarrow H_{1}\left(M^{\prime} ; Z_{2}\right)$ is an isomorphism. By Lemma 4.5(1), the orientation cover W of W^{\prime} gives a spin bordism from (M, α) to a pair (M_{1}, α_{1}) with $\operatorname{Fix}\left(\alpha_{1}, M_{1}\right)=0$ and $\operatorname{dim}_{z_{2}} H_{1}\left(M / \alpha ; Z_{2}\right)-1=\operatorname{dim}_{z_{2}} H_{1}\left(M_{1} / \alpha_{1} ; Z_{2}\right)$. By induction, there is a sequence $(M, \alpha)=\left(M_{0}, \alpha_{0}\right), \cdots,\left(M_{s}, \alpha_{s}\right)$ such that $\left(M_{i}, \alpha_{i}\right)$ is spin bordant to $\left(M_{i+1}, \alpha_{i+1}\right)$ with α_{i+1} a free involution, and $H_{1}\left(M_{s} / \alpha_{s} ; Z_{2}\right)=Z_{2} \cdot M_{s} / \alpha_{s}$ is a Z_{2}-homology handle, since it is non-orientable. By Lemma $4.2 M_{s}$ is a Z_{2}-homology handle. Let T be an α_{s}-invariant, solid torus in M_{s} whose core
represents a generator of $H_{1}\left(M_{s}, Z_{2}\right)$. Let β be a standard, orientation-reversing involution on $D^{2} \times D^{2}$ such that $\beta\left(\left(\partial D^{2}\right) \times D^{2}\right)=\left(\partial D^{2}\right) \times D^{2}$ and $\beta \mid\left(\partial D^{2}\right) \times D^{2}$ is free and $\beta \mid D^{2} \times\left(\partial D^{2}\right)$ has the fixed point set S^{0}. Construct $W=M_{s} \times[0,1] \cup D^{2} \times D^{2}$ by identifying $\left(T \times 1, \alpha_{s}\right)$ with $\left(\left(\partial D^{2}\right) \times D^{2}, \beta \mid\left(\partial D^{2}\right) \times D^{2}\right)$. W gives a spin bordism from (M_{s}, α_{s}) to a pair (M_{s+1}, α_{s+1}) with $H_{1}\left(M_{s+1} ; Z_{2}\right)=0$. This shows (5).

To conclude the proof of Theorem 6.1, it suffices to prove that (M, α) with M a Z_{2}-homology 3 -sphere is a spin boundary. But this was proved in Theorem 5.1. This completes the proof of Theorem 6.1.

Let X be a Poincaré duality space with fundamental class $[X]$ of dimension $4 m-1(m \geqq 1)$. Assume X admits a map $f: X \rightarrow X$ with $f_{*}[X]=-[X]$ and $f_{*}^{2}=$ identity on $T_{2 m-1}(X ; Z)$. By Theorem 2. $1 H_{2 m-1}(X ; Z)$ belongs to the class (6. Let $\sigma(X)=\sigma\left(H_{2 m-1}(X ; Z)\right)$.

Theorem 6.2. Suppose there is a Poincaré duality space Y of dimension $4 m$ with boundary X such that
(1) Y admits a map $g: Y \rightarrow Y$ extending f with $g_{*}^{2}=$ identity on $H_{2 m}(Y ; Q)$,
(2) the Z_{2}-intersection number, $y \cdot y=0$ for all $y \in H_{2 m}\left(Y ; Z_{2}\right)$. Then we have $\sigma(X)=0$.

Let q be an integer >0. Let (A, B) be a topological pair such that $H_{i}(A, B ; Z)$ is finitely generated for $i \leqq q$. For any field K, define $\sigma^{(q)}(A, B ; K)$ to be the sum $\sum_{i=0}^{q} \operatorname{dim}_{K} H_{i}(A, B ; K)(\bmod 2)$.

The following is proved easily by using the universal coefficient theorem:
Lemma 6.1. $\quad \sigma^{(q)}\left(A, B ; Z_{p}\right)-\sigma^{(q)}(A, B ; Q) \equiv \operatorname{dim}_{Z_{p}} T_{q}(A, B ; Z) \otimes Z_{p}(\bmod 2)$ for all prime $p \geqq 2 . \quad\left(T_{*}(A, B ; Z)=\operatorname{Tor} H_{*}(A, B ; Z)\right.$.)

Proof of Theorem 6.2. By dropping the components of Y not intersecting X into the discard, we can assume $H_{0}(Y, X ; Z)=0$. Then the boundary operator $\partial: H_{4 m}(Y, X ; Z) \rightarrow H_{4 m-1}(X ; Z)$ is injective and, by definition, sends the fundamental class $[Y]$ of Y to $[X]$. Hence $g_{*}[Y]=-[Y]$ since $f_{*}[X]=-[X]$. Let $S_{g}: H_{2 m}(Y ; Q) \times H_{2 m}(Y ; Q) \rightarrow Q$ be the pairing defined by

$$
S_{g}(x, y)=x \cdot g_{*} y
$$

for $x, y \in H_{2 m}(Y ; Q)$, where \cdot denotes the Q-intersection pairing, defined by using Q-Poincaré duality. Since $g_{*}[Y]=-[Y]$ and $g_{*}^{2}=$ identity on $H_{2 m}(Y ; Q)$, we see that $S_{g}(x, y)=-S_{g}(y, x)$, so that $S_{g}(y, y)=0$ for all y. For a field K, let $j_{*}^{K}: H_{2 m}(Y, K) \rightarrow H_{2 m}(Y, X ; K)$ be the canonical homomorphism. Noting that g_{*} is an automorphism on $H_{2 m}(Y ; Q)$, we obtain a non-singular, symplectic bilinear Q-form $\operatorname{Im} j_{*} \times \operatorname{Im}{ }_{*}^{Q Q} \rightarrow Q$ induced by S_{g}. It follows that

$$
\operatorname{Im} j_{*} \equiv \equiv 0(\bmod 2) .
$$

By Z_{2}-Poincaré duality and (2), we obtain a non-singular symplectic bilinear Z_{2}-form $\operatorname{Im} j_{*}^{Z_{2}} \times \operatorname{Im}{ }_{\underset{*}{Z_{2}} \rightarrow Z_{2}}$ induced by the Z_{2}-intersection pairing of Y. Hence

$$
\operatorname{Im} j_{*}^{Z_{2}} \equiv 0(\bmod 2) .
$$

From the exact sequence of the pair (Y, X), we see that

$$
\operatorname{dim}_{K} \operatorname{Im} j_{*}^{K} \equiv \sigma^{(2 m)}(Y, X ; K)+\sigma^{(2 m-1)}(X ; K)+\sigma^{(2 m-1)}(Y ; K)(\bmod 2)
$$

for any field K. Then by using Lemma 6.1,

$$
\begin{aligned}
0 & \equiv \operatorname{dim}_{Z_{2}} \operatorname{Im} j_{*}^{Z_{2}}-\operatorname{dim}_{Q} \operatorname{Im} j_{*}^{Q}(\bmod 2) \\
& \equiv \operatorname{dim}_{Z_{2}} T_{2 m}(Y, X ; Z) \otimes Z_{2}+\sigma(X)+\operatorname{dim}_{Z_{2}} T_{2 m-1}(Y ; Z) \otimes Z_{2}(\bmod 2) \\
& \equiv \sigma(X)(\bmod 2),
\end{aligned}
$$

since $T_{2 m}(Y, X ; Z)$ and $T_{2 m-1}(Y ; Z)$ are isomorphic by Poincaré duality. This completes the proof.

Definition 6.2. A finite polyhedron X is a Z_{2}-homology n-manifold if

$$
H_{*}\left(X, X-x ; Z_{2}\right) \approx H_{*}\left(R^{n}, R^{n}-0 ; Z_{2}\right),
$$

or equivalently (by excision)

$$
H_{*}\left(\operatorname{Link}(x) ; Z_{2}\right) \approx H_{*}\left(S^{n-1} ; Z_{2}\right)
$$

for any $x \in X$ and any triangulation of X with x as a vertex.
The following is known (cf. A. Borel [3], p.76, p.79).
Proposition 6.1. If X is a closed piecewise-linear n-manifold, and α is a piecewise-linear involution on X, then each non-empty component C of $\operatorname{Fix}(\alpha, X)$ is a Z_{2}-homology manifold. Further, if X is oriented, then C is a Z_{2}-homology m-manifold with $n-m$ even or odd, according to whether α is orientation-preserving or -reversing. [Note that $\operatorname{Fix}(\alpha, X)$ is a subpolyhedron of X.]

Proof of Theorem III. By Theorem 6.1, (2) \Rightarrow (4). (4) \Rightarrow (3) is obvious. To prove (3) $\Rightarrow(2)$, let W_{1} be a compact 4 -manifold with an involution β_{1} such that $\partial W_{1}=M$ and $\beta_{1} \mid M \times[0,1]=\alpha \times$ identity for a boundary collar $M \times[0,1]$ in W_{1}. The double $D\left(W_{1}\right)$ of W_{1} admits an involution $\bar{\beta}_{1}$ defined by β_{1}. By Proposition 6.1, each component of $\operatorname{Fix}\left(\bar{\beta}_{1}, D\left(W_{1}\right)\right)$ is a Z_{2}-homology manifold. This implies that the set of discrete points of $\operatorname{Fix}(\alpha, M)$ is the boundary of a compact 1 -manifold. Hence $\sigma(\alpha, M)=0$ and $(3) \Rightarrow(2)$. (2) $\Rightarrow(1)$ follows from Theorems 6.1 and 6.2. To prove that $(1) \Rightarrow(2)$, assume $\sigma(\alpha, M)=1$. Then $\sigma\left(\alpha+\alpha_{0}, M+P^{3}\right)=0$ for $\left(P^{3}, \alpha_{0}\right)$, since Fix $\left(\alpha_{0}, P^{3}\right)=P^{0}+P^{2}$. By Theorems 6.1 and 6.2, $\sigma\left(M+P^{3}\right)=0$, and $\sigma(M)=\sigma\left(P^{3}\right)=1$, proving (1) $\Rightarrow(2)$. This completes the proof.

7. Proof of the Remark to Theorem II.

Since $H_{1}(M ; Z) /$ odd torsion $\approx Z_{2}, S q^{1}: H^{1}\left(M ; Z_{2}\right) \approx H^{2}\left(M ; Z_{2}\right)$. The cohomology algebra $H^{*}\left(M ; Z_{2}\right)$ is isomorphic to $Z_{2}[a] / a^{4}$, since $S q^{1}(x)=x \cup x$ for
$x \in H^{1}\left(M ; Z_{2}\right)$. By Thom-Gysin sequence, the connected double cover M^{\prime} of M is a Z_{2}-homology 3 -sphere. Since $\sigma(M)=1, \operatorname{Fix}(\alpha, M)$ contains a closed connected surface F with $\chi(F)$ odd by Theorem III. Let $p: M^{\prime} \rightarrow M$ be the projection. Let F^{\prime} be a component of $p^{-1}(F)$. By the unique-lifting property of a covering, α lifts to an involution α^{\prime} on M^{\prime} such that $\alpha^{\prime} \mid F^{\prime}=$ identity. Since $\operatorname{Fix}\left(\alpha^{\prime}, M^{\prime}\right)=S^{0}$ or S^{2} by Smith theory, we have $F^{\prime}=S^{2}$, so that $F=P^{2}$ (and $F^{\prime}=p^{-1}(F)=S^{2}$). Let N be an α-invariant, regular neighborhood of P^{2} in M. Since $\partial N=S^{2}$, the union (M-Int N) $\cup N$ gives a connected sum $M^{\prime \prime} \# P^{3}$ for a Z_{2}-homology 3 -sphere $M^{\prime \prime}$. Clearly, α preserves the factors. This completes the proof.

8. Proof of Theorem V.

It suffices to check that $\sigma\left(P^{3}\right)=\sigma(X)$ where $X=X\left(P^{3}, \alpha\right)$ (cf. Theorem III, Corollary 1.1 and Proposition 1.1). Let $\operatorname{Fix}\left(\alpha, P^{3}\right)=P^{0}+P^{z}$. Let $P^{3}=N \cup B^{3}$, where N is an α-invariant, regular neighborhood of P^{2} in P^{3}, and B^{3} is an α-invariant 3 -ball containing P^{0}. Then $X=X\left(P^{3}, \alpha\right)=X_{1} \cup X_{2}$ where $X_{1}=$ $N \times S^{2} / \alpha \times \gamma \simeq P^{2} \times P^{2}$ and $X_{2}=B^{3} \times S^{2} / \alpha \times \gamma \simeq P^{2}$ and $\partial X_{1}=\partial X_{2}=S^{2} \times S^{2} / \alpha \times \gamma=$ $S^{2} \times S^{2} / \gamma \times \gamma$. From the following commutative diagram with exact rows:

we see that $\pi_{1}\left(X_{1}\right) \approx \pi_{1}(X) \approx Z_{2}+Z_{2}$. By Mayer-Vietoris sequence, $H_{2}\left(X_{1} ; Z\right) \rightarrow$ $H_{2}(X ; Z)$ is onto, so that $H_{2}(X ; Z)=0$ or Z_{2}. But $H_{2}(X ; Z) \rightarrow H_{2}\left(\pi_{1}(X) ; Z\right)$ $\left(=Z_{2}\right)$ is always onto by H. Hopf [7], Thus, $H_{2}(X ; Z)=Z_{2}$ and $\sigma(X)=1=\sigma\left(P^{3}\right)$. This completes the proof.

References

[1] D. Barden, Simply connected 5-manifolds, Ann. of Math., 82 (1965), 365-385.
[2] J. S. Birman, Orientation-reversing involutions on 3 -manifolds (unpublished, 1978).
[3] A. Borel et al., Seminar on Transformation Groups, Ann. of Math. Studies 46, Princeton University Press.
[4] G. Bredon, The cohomology ring structure of a fixed set, Ann. of Math., 80 (1964), 524-537.
[5] W. Browder, Remark on the Poincaré duality theorem, Proc. Amer. Math. Soc., 13 (1962), 927-930.
[6] D. Galewski and R. Stern, Orientation-reversing involutions on homology 3-spheres, Math. Proc. Cambridge Philos. Soc., 85 (1979), 449-451.
[7] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helvet., 14 (1941-1942), 257-309.
[8] W.C. Hsiang and P. Pao, The homology 3-spheres with involutions, Proc. Amer.

Math. Soc., 75 (1979), 308-310.
[9] W. Y. Hsiang, Cohomology Theory of Topological Transformation Groups, SpringerVerlag, 1975.
[10] S. J. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc., 254 (1979), 237-263.
[11] A. Kawauchi, Three dimensional homology handles and circles, Osaka J. Math., 12 (1975), 565-581.
[12] A. Kawauchi, \tilde{H}-cobordism, I; The groups among three dimensional homology handles, Osaka J. Math., 13 (1976), 567-590.
[13] A. Kawauchi, On n-manifolds whose punctured manifolds are imbeddable $\mathrm{in}_{2}^{-}(n+1)$ spheres and spherical manifolds, Hiroshima Math. J., 9 (1979), 47-57.
[14] A. Kawauchi, Vanishing of the Rochlin invariants of some Z_{2}-homology 3 -spheres, Proc. Amer. Math. Soc., 79 (1980), 303-307.
[15] K. W. Kwun, Scarcity of orientation-reversing $P L$ involutions of lens spaces, Michigan Math. J., 17 (1970), 355-358.
[16] G. Lusztig, J. Milnor and F.P. Peterson, Semi-characteristics and cobordism, Topology, 8 (1969), 357-359.
[17] J. W. Milnor, Spin structures on manifolds, L'Enseignement Math., 9 (1963), ,198203.
[18] R. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math., 18(1965), 543-555.

Akio Kawauchi
Department of Mathematics
Faculty of Science Osaka City University Osaka 459
Japan

[^0]: * Supported in part by NSF grant MCS 77-18723 (02).

