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1. Statement of main results.

Throughout this paper, spaces and maps will be considered in the piecewise-
linear category, unless otherwise specified. The purpose of this paper is to
discuss some properties of a pair $(M, \alpha)$ , where $M$ is a closed, oriented
3-manifold, and $\alpha$ is an orientation-reversing involution on $M$ (that is, $\alpha^{2}=$

identity, and $\alpha_{*}[M]=-[M]$ for the fundamental class $[M]$ of $M$ ).

The following is perhaps known, but no reference could be found.
THEOREM I. Given a pair $(M, \alpha)$ , then the torsion subgroup $T_{1}(M;Z)$ of

the homology group $H_{1}(M;Z)$ is isomorphic to a direct double $A\oplus A$ or a direct
sum $A\oplus A\oplus Z_{2}$ for some $A$ .

For example, the lens space $L(p, q),$ $p>2$ , does not admit any orientation-
reversing involution, though the projective 3-space $P^{3}=L(2,1)$ admits a unique
orientation-reversing involution $\alpha$ , whose fixed point set Fix $(\alpha, P^{3})$ is the topol-
ogical sum $P^{0}+P^{2}$ of the projective O-space $P^{0}$ ($=one$ point) and the projective
2-space $P^{2}$ . (Cf. K. W. Kwun [15].)

By $\mathfrak{C}$ we denote the class of finitely generated abelian groups with torsion
parts of the form $A\oplus A$ or $A\oplus A\oplus Z_{2}$ .

DEFINITION 1.1. For any $G\in \mathfrak{C}$ , we define $\sigma(G)$ to be $0$ or 1, according to
whether the torsion subgroup of $G$ is a direct double or not. By using Theo-
rem I, we define $\sigma(M)=\sigma(H_{1}(M;Z))$ for any pair $(M, \alpha)$ .

The following shows enough that the homological classification of Theorem
I is complete, where a 3-manifold is irreducible if any imbedded 2-sphere bounds
a 3-ball in it.

THEOREM II. For any $G\in \mathfrak{C}$ there exists a Pair $(M, \alpha)$ with $H_{1}(M;Z)=G$

so that if $\sigma(G)=0$ , then $M$ is connected and irreducible, or if $\sigma(G)=1$ , then
$M=M_{1}\# P^{s}$ with $M_{1}$ connected and irreducible, and $\alpha$ preserves the factors.

Some $G$ with $\sigma(G)=1$ is probably still realizable by a pair $(M, \alpha)$ with $M$

connected and irreducible, but the following may be noted:
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REMARK TO THEOREM II. Suppose for a pair $(M, \alpha)M$ is connected and
$H_{1}(M;Z)/odd$ $torsion\approx Z_{2}$ . Then $M$ necessarily splits: $M=M_{1}\# P^{3}$ , and $\alpha$

preserves the factors.
This can be derived from the equivariant cohomology theory (cf. G. Bredon

[4], W. Y. Hsiang [9]), but we shall give a simple proof by using our Theo-
rem III.

According to Smith theory (cf. Proposition 6.1 and A. Borel [3], III \S 4),

each component of Fix $(\alpha, M)$ is a point or a closed surface (unless it is empty),

and the Euler characteristic $\chi(Fix(\alpha, M))\equiv 0(mod 2)$ , since $\chi(M)=0$ .
DEFINITION 1.2. $\sigma(\alpha, M)=rank_{Z_{2}}H_{1}(Fix(\alpha, M);Z_{2})(mod 2)$ .
Clearly, $\sigma(\alpha, M)$ is equal to the Stiefel-Whitney number $w_{1}^{2}(F)$ of the

2-dimensional part $F$ of Fix$(\alpha, M)$ . Using $\chi(Fix(\alpha, M))\equiv 0(mod 2)$ , we see also
that it is equal to the number $(mod 2)$ of the discrete points of Fix $(\alpha, M)$ .

From the following, we see that the number $\sigma(\alpha, M)$ does not depend on a
particular involution $\alpha$ on $M$.

THEOREM III. For any pajr $(M, \alpha)$ the following are equivalent:
(1) $\sigma(M)=0$ ,
(2) $\sigma(\alpha, M)=0$ ,
(3) There exists a compact (possibly, non-orientable) 4-manifold $W_{1}$ admitting

an involution $\beta_{1}$ such that $\partial W_{1}=M$ and $\beta_{1}|M=\alpha$ ,
(4) There exists a compact, oriented 4-manifold $W_{2}$ admitting an orientation-

reversing involution $\beta_{2}$ such that $\partial W_{2}=M$ and $\beta_{2}|M=\alpha$ .
Let $\Omega_{3}(Z_{2}^{-})$ be the 3-dimensional, equivariant, oriented bordism group of all

pairs $(M, \alpha)$ , where $M$ is a closed, oriented 3-manifold, and $\alpha$ is an orientation-
reversing involution on $M$.

The following is direct from Theorem III, since $\sigma(P^{3})=1$ .
COROLLARY 1.1. $\Omega_{3}(Z_{2}^{-})$ is isomorphic to $Z_{2}$ and generated by $(P^{3}, \alpha)$ where

$\alpha$ is any orientation-reversing involution on $P^{3}$ .
From an argument concerning Theorem III (cf. Theorems 5.1 and 6.1), we

see also the following:
THEOREM IV. For any pair $(M, \alpha)$ with $M$ a $Z_{2}$-homology 3-sphere, the

$\mu$-invariant, $\mu(M)=0$ .
This has been independently obtained by J. S. Birman [2], W. C. Hsiang and

P. Pao [8] and D. Galewski and R. Stern [6]. A great difference between
their methods ([2], [8], [6]) and our method is that their methods are effective
only in the involutional case, but our method is more general. For example,
from a direct use of our method, one will see in [14] that the $\mu$-invariant of a
$Z_{2}$-homology 3-sphere vanishes if it admits an orientation-reversing auto-homeo-
morphism of finite order.

The invariant $\sigma(M)$ of a given pair $(M, \alpha)$ can be stated in terms of the
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semi-characteristics of $M$. For an oriented closed $(2r+1)$-manifold $X$, the semi-
characteristic of $X$ with respect to a field $K$, denoted by $\sigma(X;K)$ is the sum
$\Sigma_{i=0}^{r}\dim_{K}H_{i}(X;K)(mod 2)$ . The invariant $\sigma(M)$ is clearly equal to the differ-
ence $\sigma(M;Z_{2})-\sigma(M;Q)$ .

Now we are ready to notice that there exist analogous structures between a
pair $(M, \alpha)$ and a closed oriented piecewise-linear 5-manifold $X^{5}$ . In the first
place, the second homology group $H_{2}(X^{5} ; Z)$ necessarily belongs to the class $\mathfrak{C}$

(cf. Remark 2.1 in \S 2). Defining $\sigma(X^{5})=\sigma(H_{2}(X^{5} ; Z))$ , we see easily that $\sigma(X^{5}\rangle$

is equal to the difference $\sigma(X;Z_{2})-\sigma(X^{5} ; Q)$ (cf. Lemma 6.1), and according to
Lusztig, Milnor and Peterson [16], this is equal to the Stiefel-Whitney number
$w_{2}w_{3}[X^{5}]$ . Thus, we see the following known proposition, analogous to our
Theorem III:

PROPOSITION 1.1. The following are equivalent:
(1) $\sigma(X^{5})=0$ ,
(2) $w_{2}w_{3}[X^{5}]=0$ ,
(3) $X^{5}$ is the boundary of a compact(possibly, non-orieniable) 6-manifold,
(4) $X^{5}$ is the boundary of a compact, oriented 6-manifold.
No proof is given (cf. D. Barden [1]).

Let $\gamma$ be the non-trivial covering transformation of the covering $S^{2}\rightarrow P^{2}$ ,

which is clearly orientation-reversing. Given a pair $(M, \alpha)$ , then we form an
orientation-preserving, free involution $\alpha\times\gamma$ on $M\times S^{2}$ by the identity

$\alpha\times\gamma(x, y)=(\alpha x, \gamma y)$

for $(x, y)\in M\times S^{2}$ . Then the orbit space $ X(M, \alpha)=M\times S^{2}/\alpha\times\gamma$ is a closed,
oriented 5-manifold.

THEOREM V. $\sigma(M)=\sigma(X(M, \alpha))$ for all pairs $(M, \alpha)$ and the assignment
$(M, \alpha)\rightarrow X(M, \alpha)$ induces a well-defined isomorphism from $\Omega_{3}(Z_{2}^{-})$ onto the 5-dimen-
sional oriented cobordism group $\Omega_{5}$ .

The author would like to thank J. S. Birman, W. Jaco and T. Matumoto for
assistance in preparing this paper.

2. Proof of Theorem I.

Theorem I is a special case of the following:
THEOREM 2.1. Let $X$ be a Poincar\’e duality space with fundamental class

[X] of dimension $2m+1$ with odd $m\geqq 1$ . SuPpose $X$ admits a map $f:X\rightarrow X$ with
$f_{*}[X]=-[X]$ and $f_{*}^{2}=ideniity$ on $T_{m}(X;Z)(=TorH_{m}(X;Z))$ . Then $H_{m}(X;Z)$

belongs to the class $\mathfrak{C}$ .
PROOF. Consider the non-singular linking pairing $L:T_{m}(X;Z)\times T_{m}(X;Z)$

$\rightarrow Q/Z$ defined by Poincar\’e duality. Since $m$ is odd, $L$ is symmetric. Define a
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new pairing
$L_{f}$ : $T_{m}(X;Z)\times T_{m}(X;Z)\rightarrow Q/Z$

by the identity
$L_{f}(x, y)=L(x, f_{*}(y))$

for $x,$ $y\in T_{m}(X;Z)$ . Since $f_{*}[X]=-[X],$ $f_{*}$ is an automorphism on $H_{*}(X;Z)$

by Poincar\’e duality and the formula $f_{*}(f^{*}(u)\cap[X])=u\cap f_{*}[X](u\in H^{*}(X;Z))$ ,
so that $L_{f}$ is non-singular. Since $L(f_{*}(x), f_{*}(y))=-L(x, y)$ and $f_{*}^{2}=identity$

on $T_{m}(X;Z)$ we see that $2L_{f}(x, x)=0$ for all $x\in T_{m}(X;Z)$ . Now the proof is
completed by the following lemma:

LEMMA 2.1. SuppOse a finite abelian group $T$ admits a non-singular pajnng
$L:T\times T\rightarrow Q/Z$ such that $2L(x, x)=0$ for all $x\in T$ . Then $T$ is of the form
$A\oplus A$ or $A\oplus A\oplus Z_{2}$ .

PROOF OF LEMMA 2.1. First, split $T$ into the primary components which
are mutually orthogonal with respect to $L$ . Let $T_{p}$ be the $P$ -primary compo-
nent of $T$ . It is known that $T_{p}$ admits an orthogonal splitting $T_{p}^{1}\oplus\cdots\oplus T_{p}^{s}$

with respect to $L$ where $T_{p}^{i}$ is a direct sum of copies of $Z_{p^{i}}$ . (See, for example,
[13], p. 50 for $p=2.$) For either $p=2$ and $i\geqq 2$ or an odd $P$ and $i\geqq 1$ , let
$T_{p}^{i}=T_{p}^{i}\otimes Z_{p}$ . Define a non-singular pairing

$\tilde{L}:\tilde{T}_{p}^{i}\times\tilde{T}_{p}^{i}\rightarrow Q/Z$

by the identity
$Z_{(x\otimes 1},$ $y\otimes 1$ ) $=p^{i-1}L(x, y)$

for $x,$ $y\in T_{p}^{i}$ . By translating $1/p$ of $Q/Z$ to 1 of $Z_{p},\tilde{L}$ is regarded as a non-
singular bilinear form over $Z_{p}$ . Since $2L(x, x)=0$ for $x\in T_{p}^{i}$ , we see that
$\tilde{L}(a, a)=0$ for $a\in\tilde{T}_{p}^{i}$ , that is, the form $\tilde{L}$ is symplectic. Thus, $\dim_{z_{p}}\tilde{T}_{p}^{i}$ is
even by taking a symplectic basis. This implies that $T$ is of the form $A\oplus A$

or $A\oplus A\oplus Z_{2}$ . This completes the proof of Lemma 2.1.
REMARK 2.1. Let $X$ be a Poincar\’e duality space of dimension $2m+1$ with

even $m$ . In this case, the non-singular linking pairing $L:T_{m}(X;Z)\times T_{m}(X;Z)$

$\rightarrow Q/Z$ is skew-symmetric, so that $2L(x, x)=0$ for $x\in T_{m}(X;Z)$ . By Lemma
2.1, $H_{m}(X;Z)$ belongs to the class $\mathfrak{C}$ (cf. W. Browder [5] and D. Barden [1],

p. 372).

3. Proof of Theorem II.

LEMMA 3.1. There exists a pair $(M, \alpha)$ such that $M$ is an irreducible
Z-homology 3-sphere with $\pi_{1}(M)$ infinite.

PROOF. Let $k_{i}\subset S^{3}$ , $i=1,2$ , be non-trivial knots, invariant under some
orientation-reversing involutions $\alpha_{i}$ such that Fix $(\alpha_{i}, S^{3})=S_{i}^{0}$ , O-spheres, and
$S_{1}^{0}\subset k_{1}$ and $ S_{2}^{0}\cap k_{2}=\emptyset$ . [For example, take as $k_{1}$ the composite knot $k\#-k^{*}$
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and, as $k_{2}$ , the composite knot $k\# k^{*}$ for a non-trivial knot $k$ , where $-k^{*}$ and
$k^{*}$ denote the reflected inverse and the reflection of $k$ , respectively.] Let $E_{i}$

be the manifold obtained from $S^{3}$ by removing an $\alpha_{i}$-invariant open tubular
neighborhood of $k_{i}$ in $S^{3}$ . We may assume $S_{2}^{0}\subset IntE_{2}$ . Then one can easily
paste the boundaries of $E_{i},$ $i=1,2$ , together so that the result $M$ is a Z-homology
3-sphere and admits an orientation-reversing involution defined by $\alpha_{i}|E_{i},$ $i=1,2$ .
Note that $E_{i}$ is irreducible (since $E_{i}\subset S^{3}$) and the homomorphism $\pi_{1}(\partial E_{i})\rightarrow\pi_{1}(E_{i})$

induced from inclusion is injective (since the knot $k_{i}$ is non-trivial). Then we
see that $M$ is irreducible and $\pi_{1}(M)$ is infinite. This completes the proof.

REMARK 3.1. Another construction of a similar homology 3-sphere has been
obtained earlier by W. Jaco and B. Myers. Their construction uses a non-
splittable, 2-component link $k_{1}\cup k_{2}\subset S^{3}$ such that there is an orientation-reversing
involution $\alpha$ of $S^{3}$ with $\alpha(k_{1})=k_{2}$ . (Such a link exists.) Take a tubular neigh-
borhood $T_{1}\cup T_{2}$ of this link $k_{1}\cup k_{2}$ so that $\alpha(T_{1})=T_{2}$ . Replace $T_{1}$ and $T_{2}$ by
two copies of a non-trivial knot exterior $E$ , so that the result $M$ is a Z-homology
3-sphere with an orientation-reversing involution extending $\alpha|S^{3}-T$ . $M$ is
irreducible, since the link is not splittable and $E$ is a non-trivial knot exterior.

Let $\alpha$ be an orientation-reversing involution on a homology 3-sphere $M$.
By Smith theory (cf. Proposition 6.1 and [3], III \S 4) Fix$(\alpha, M)=S^{0}$ or $S^{2}$ . So,
if $M$ is irreducible and not $S^{s}$ , then we must have Fix$(\alpha, M)=S^{0}$ . In this case,
let $M_{0}$ be the 3-manifold obtained from $M$ by removing two open 3-balls $B_{1},$ $B_{2}$

with $\alpha(B_{i})=B_{i}$ . The orbit space $ M^{\prime}=M_{0}/\alpha$ is a homology $P^{2}\times[0,1]$ . Since
$M$ is irreducible, it follows that $M^{\prime}$ is irreducible and any $P^{2}\subset IntM^{\prime}$ is bound-
ary-parallel (that is, the union of this $P^{2}$ and one component of $\partial M^{\prime}$ bounds a
manifold homeomorphic to $P^{2}\times[0,1]$ ). Thus, from Lemma 3.1 we see the
following:

COROLLARY 3.1. There exists an irreducible homology $P^{2}\times[0,1]$ , not homeo-
morphic to the product $P^{2}\times[0,1]$ , such that any $P^{2}$ in the interior is boundary-
parallel.

PROOF OF THEOREM II. First, suppose $G$ is a direct double $\oplus_{i=1}^{r}Z_{n_{i}}\oplus Z_{n_{i}}$

where $n_{i}$ may be $0$ . By Lemma 3.1 let $S$ be an irreducible Z-homology 3-sphere
with orientation-reversing involution $\alpha$ such that $\pi_{1}(S)$ is infinite. Let $k$ be a
knot in $S$ so that $ k\cap\alpha k=\emptyset$ and $[k]\neq 1$ in $\pi_{1}(S)$ . Let $k_{i},$ $i=1,$ $\cdots$ , $r$, be mutually
disjoint knots isotopic to $k$ in a small tubular neighborhood of $k$ in $S$ such that
$Link_{S}(k_{i}, k_{j})=0,$ $i\neq j$ . Let $k_{i}^{\prime}=\alpha k_{i}$ . The link $L=U_{i=1}^{r}k_{i}\cup\bigcup_{i=1}^{r}k_{i}^{\prime}$ is clearly
$\alpha$-invariant and any two components of $L$ have the linking number $0$ (in $S$).

[Note that $Link_{S}(k,$ $\alpha k)=0$ , since $Link_{S}(k,$ $\alpha k)=-Link_{S}(\alpha k,$ $\alpha^{2}k).$] Remove from
$S$ a small $\alpha$-invariant, open tubular neighborhood $T$ of $L$ in $S$ . Then we can
easily attach the boundaries of $2r$ copies of a non-trivial knot exterior to the
boundary $\partial E$ of $E=S-T$ so that the result $M$ has $H_{1}(M;Z)=G$ and admits
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an involution extending $\alpha|$ E. $M$ is irreducible, since the map $\pi_{1}(\partial E)\rightarrow\pi_{1}(E)$

induced by inclusion is injective. Next, to obtain a desired manifold for $G\oplus Z$

with $G$ a direct double as above, we assume by construction of $S$ (by Lemma
3.1) that there is a knot $\overline{k}(\subset IntE)\subset S$ with $[\overline{k}]\neq 1$ in $\pi_{1}(S),$ $Link_{S}(k,\overline{k})=0$ ,
$\alpha(\overline{k})=\overline{k}$ and Fix $(\alpha, S)\cap\overline{k}=\emptyset$ . Remove from $E$ an $\alpha$-invariant, open tubular
neighborhood of $\overline{k}$. The result $E^{\prime}$ contains Fix$(\alpha, S)(=S^{0})$ in the interior. Let
$E^{\prime\prime}$ be a knot exterior of $\overline{k}\subset S$ with $\alpha(E^{\prime\prime})=E^{\prime\prime}$ and Fix $(\alpha, S)\subset IntE^{\prime\prime}$ . Attach
$\partial E^{\prime\prime}$ to $\partial E^{\prime}$ so that the result $\overline{E}$ admits an involution defined by $\alpha|E^{\prime}$ and $\alpha|E^{\prime\prime}$ ,
and the inclusion $E^{\prime}\subset\overline{E}$ induces an isomorphism $H_{1}(E^{\prime} ; Z)\approx H_{1}(\overline{E};Z)$ . Apply
the above construction for $\partial\overline{E}=\partial E$ to obtain a desired manifold with $H_{1}=G\oplus Z$ .
In case $\sigma(G)=1$ , we let $G=G_{1}\oplus Z_{2}$ . By the above construction, we have a pair
$(M_{1}, \alpha_{1})$ such that $H_{1}(M_{1} ; Z)=G_{1}$ , and $M_{1}$ is connected and irreducible. From
construction, Fix $(\alpha_{1}, M_{1})$ contains a discrete point $x$ . Remove from $M_{1}$ an
$\alpha_{1}$-invariant, small 3-ball $B$ containing $x$ , and replace it by a twisted line bundle
of $P^{2}$ . The result is a connected sum $M_{1}\# P^{3}$ and $\alpha_{1}|M_{1}-B$ is extendable to
an involution on $M_{1}\# P^{3}$ preserving the factors. This completes the proof.

4. The Arf invariant of a $Z_{2}$-homology handle and a cobordism theory.

A closed (possibly, non-orientable) 3-manifold $M$ is a $Z_{2}$-homology handle, if
$H_{*}(M;Z_{2})\approx H_{*}(S^{1}\times S^{2} ; Z_{2})$ and $H_{1}(M;Z)$ is inPnite. Note that $H_{1}(M;Z)$ is
always infinite, if $M$ is non-orientable. Throughout this section we denote by
$M$ a $Z_{2}$-homology handle. We shall dePne an invariant of an integer $(mod 2)$

for $M$, which is analogous to an invariant of Robertello [18] for classical knots.
Let $f:M\rightarrow S^{1}$ be a map such that $f_{*}:$ $H_{1}(M;Z)\rightarrow H_{1}(S^{1} ; Z)$ is onto. Using
$H_{1}(M;Q)=Q$ and $H_{1}(M;Z_{2})=Z_{2}$ , we can assume that for a point $p\in S^{1}$ ,
$f^{-1}(p)=F$ is a closed, connected, orientable surface (cf. [11], Lemma 2.5). Define
a $Z_{2}$-linking pairing $L:H_{1}(F;Z_{2})\times H_{1}(F;Z_{2})\rightarrow Z_{2}$ by the identity

$L(x, y)=Z_{2}$-linking $number_{M}(x^{\prime}, i_{*}(y^{\prime}))$

for $Z_{2}$-cycles $x^{\prime},$ $y^{\prime}$ in $F$ with $x=\{x^{\prime}\},$ $y=\{y^{\prime}\}$ , where $i_{*}(y^{\prime})$ denotes a cycle
in $M$ obtained from $y^{\prime}$ by translating in the positive normal direction (associated

with $f$ and $S^{1}$ ). [Note that the $Z_{2}$-linking number is well-defined, since $x^{\prime}$ and
$i_{*}(y^{\prime})$ are $Z_{2^{-}}nu11$-homologous in $M$ (cf. [12], 2.19).] Clearly,

$L(x, y)+L(y, x)=x\cdot y$

where $x\cdot y$ denotes the usual intersection number $(mod 2)$ on $F$. Define a map
$q:H_{1}(F;Z_{2})\rightarrow Z_{2}$ by the identity

$q(x)=L(x, x)$

for $x\in H_{1}(F;Z_{2})$ . It follows that
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$q(x+y)=q(x)+q(y)+x\cdot y$ .

So $q$ is a quadratic form $(mod 2)$ , and the Arf invariant of $q$ is defined.
DEFINITION 4.1. $\epsilon(M)$ is the Arf invariant of $q$ .
To show that $\epsilon(M)$ is an invariant of the topological type of $M$, we make

use of the $Z_{2}$-Alexander polynomial $A(t)(\in Z_{2}\langle t\rangle)$ of $M$ associated with an
epimorphism $\pi_{1}(M)\rightarrow\langle t\rangle,$ $\langle t\rangle$ being the infinite cyclic group with a fixed gener-
ator $t$ . This is defined to be any generator of the order ideal of the $Z_{2}\langle t\rangle-$

module $H_{1}(\tilde{M} ; Z_{2})$ , which is a finitely generated torsion $ Z_{2}\langle t\rangle$ -module, where $\tilde{M}$

is the inPnite cyclic cover of $M$ associated with an epimorphism $\pi_{1}(M)\rightarrow\langle t\rangle$ .
As an analogy of [11], $ A(t)\in Z_{2}\langle t\rangle$ has that $A(t)=t^{m}A(t^{-1})$ for some $m$ and
$A(1)=1$ . Therefore, $A(t)$ (uP to multiples of t) is an invariant of the topological
type of $M$. Using $A(1)=1$ , we see that $A(t)$ is of the form $a(t)(t^{4}+1)+t^{b}$ or
$a(t)(t^{4}+1)+t^{b}(t^{2}+t+1)$ . [These forms do not occur at the same time.]

LEMMA 4.1. $\epsilon(M)=0$ if $A(t)=a(t)(t^{4}+1)+t^{b}$, and

$\epsilon(M)=1$ if $A(t)=a(t)(t^{4}+1)+t^{b}(t^{2}+t+1)$ .

COROLLARY TO LEMMA 4.1. $\epsilon(M)$ is an invariant of the topological type

of $M$.
PROOF OF LEMMA 4.1. By choosing a symplectic basis for $H_{1}(F;Z_{2})$ , the

linking pairing $L:H_{1}(F;Z_{2})\times H_{1}(F;Z_{2})\rightarrow Z_{2}$ is represented by a matrix $V=$

$(v_{ij})(v_{ij}\in Z_{2})$ so that

$V+V^{\prime}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)\oplus\cdots\oplus\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ (block sum)

since $L(x, y)+L(y, x)=x\cdot y$ , where $V^{\prime}$ is the transpose of $V$ . Note that $A(t)$

$=\det(tV+V^{\prime})$ and $\epsilon(M)=\Sigma_{i=1}^{g}v_{2i2i}\cdot v_{2i- 12i-1}$ , where $g$ is the genus of $F$. Now
we can apply the same calculation as $R$ . Robertello [18], pp. 551-553 and obtain
our desired result.

LEMMA 4.2. If $M^{\prime}$ is a connected double cover of a $Z_{2}$-homology handle $M$,
then $M^{\prime}$ is also a $Z_{2}$-homology handle, and the $Z_{2}$-Alexander polynomial of $M^{\prime}$

is equal to the $Z_{2}$-Alexander polynomial of M. In particular, $\epsilon(M^{\prime})=\epsilon(M)$ .
PROOF. Let $\tilde{M}$ be an infinite cyclic cover of $M$ associated with an epimor-

phism $\pi_{1}(M)\rightarrow\langle t\rangle$ . Note that $M^{\prime}$ is identical with the orbit space $\tilde{M}/\langle t^{2}\rangle$ .
Consider the following part of Wang exact sequence

$t-1$
$H_{1}(\tilde{M} ; Z_{2})-H_{1}(\tilde{M} ; Z_{2})\rightarrow H_{1}(M;Z_{2})\rightarrow\dot{H}_{0}(\tilde{M};Z_{2})\rightarrow 0$ .

Similarly,
$t^{2}-1$

$H_{1}(\tilde{M};Z_{2})\rightarrow H_{1}(\tilde{M};Z_{2})\rightarrow H_{1}(M^{\prime} : Z_{2})\rightarrow H_{0}(\tilde{M};Z_{2})\rightarrow 0$ .
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Since $H_{1}(M;Z_{2})\approx H_{0}(\tilde{M} ; Z_{2})(=Z_{2}),$ $t-1:H_{1}(\tilde{M};Z_{2})\rightarrow H_{1}(\tilde{M};Z_{2})$ is onto. Hence
$(t-1)^{2}=t^{2}-1:H_{1}(\tilde{M};Z_{2})\rightarrow H_{1}(\tilde{M};Z_{2})$ is so, which implies that $ H_{1}(M^{\prime} ; Z_{2})\approx$

$H_{0}(\tilde{M};Z_{2})\approx Z_{2}$ . Using an epimorphism $\pi_{1}(M^{\prime})\rightarrow\langle t^{2}\rangle$ , we see that $M^{\prime}$ is a
$Z_{2}$-homology handle. Let $A(t),$ $A^{\prime}(t)$ be the $Z_{2}$-Alexander polynomials of $M,$ $M^{\prime}$ ,
respectively. Note that $A(t)$ is the characteristic polynomial of $ t:H_{1}(\tilde{M} ; Z_{2})\rightarrow$

$H_{1}(\tilde{M};Z_{2})$ and $A^{\prime}(t^{2})$ is the characteristic polynomial of $t^{2}$ : $H_{1}(\tilde{M};Z_{2})\rightarrow H_{1}(\tilde{M};Z_{2})$ .
So using the field $Z_{2}$ ,

$A^{\prime}(t^{2})=A(t)A(-t)=A(t)^{2}=A(t^{2})$

(cf. [12], Lemma 3.11), which implies $A^{\prime}(t)=A(t)$ . By Lemma 4.1, $\epsilon(M)=\epsilon(M^{\prime})$ .
This completes the proof.

We shall show the following:
THEOREM 4.1. $\epsilon(M)=0$ if and only if there exists a compact connected

4-manifold $W$ with $\partial W=M$ such that
(1) the inclusion $M\subset W$ induces an isomorphjsm

$H_{1}(M;Z)/oddtorsion\approx H_{1}(W;Z)/odd$ torsion $(\approx Z)$ ,

(2) the $Z_{2}$-intersection number, $x\cdot x=0$ for all $x\in H_{2}(W;Z_{2})$ .
PROOF. Suppose $\epsilon(M)=0$ . Then there is a symplectic basis $a_{1},$

$\cdots$ , $a_{g}$ ,
$b_{1},$ $\cdots$ , $b_{g}$ ( $a_{i}\cdot a_{j}=b_{i}\cdot b_{j}=0$ for all $i,$ $j$ , and $a_{i}\cdot b_{j}=\delta_{ij}$) of $H_{1}(F;Z_{2})$ such that
$L(a_{i}, a_{i})=0,$ $i=1,2,$ $\cdots$ , $g$ , where $F$ is a closed, connected, orientable surface of
genus $g$, transversal to a circle representing a generator of $H_{1}(M ; Z)/$

odd torsion $(\approx Z)$ . We proceed to the proof by assuming the following lemma:
LEMMA 4.3. A symplectic basis $a_{1},$ $\cdots$ , $a_{g},$

$b_{1},$ $\cdots$ , $b_{g}$ of $H_{1}(F;Z_{2})$ is repre-
sented by simple closed curves $a_{1}^{0},$ $\cdots$ , $a_{g}^{0},$ $b_{1}^{0},$ $\cdots$ , $b_{g}^{0}$ on $F$ such that $a_{i}^{0}\cap a_{j}^{0}=$

$b_{i}^{0}\cap b_{j}^{0}=a_{i}^{0}\cap b_{j}^{0}=\emptyset,$ $i\neq j$ , and $a_{i}^{0}\cap b_{i}^{0}=one$ point.
In Lemma 4.3 let $a_{i}^{0}\times[0,1]$ be a small neighborhood of $a_{i}^{0}$ in $F$. Further,

thicken $a_{i}^{0}\times[0,1]$ by a collar of $F$ in $M$. From the results $a_{i}^{0}\times[0,1]\times[0,1]$ ,

we construct an adjunction space $W_{1}$ as follows:

$W_{1}=M\times[0,1]\cup D_{1}\times[0,1]x[0,1]\cup\cdots\cup D_{g}\times[0,1]\times[0,1]$

where $D_{i}$ is a disk, and $(\partial D_{i})x[0,1]\times[0,1]$ is identified with $a_{i}^{0}X[0,1]\times[0,1]$

$\times 1$ so that $(x, t, u)\equiv(h_{i}(x), t, u, 1)$ for a homeomorphism $h_{i}$ : $\partial D_{i}\rightarrow a_{i}^{0}$ . Since
$L(a_{i}, a_{i})=0,$ $i=1,2,$ $\cdots$ , $g$ , it follows that $x\cdot x=0$ for all $x\in H_{2}(W_{1} ; Z_{2})$ . Note
that $\partial W_{1}-Mx0$ is homeomorphic to $S^{1}\times S^{2}\# N$ or $S^{1}x_{\tau}S^{2}\# N$ for some closed
connected orientable 3-manifold $N$ according to whether $M$ is orientable or non-
orientable. ( $S^{1}x_{\tau}S^{2}$ is the. non-orientable handle, that is, the twisted $S^{2}$ bundle
over $S^{1}.$) By attaching $S^{1}xB^{3}$ or $S^{1}\times_{\tau}B^{3}$ ($=the$ twisted $B^{a}$ bundle over $S^{1}$) to
the factor $S^{1}\times S^{2}$ or $S^{1}x_{\tau}S^{2}$ of $\partial W_{1}-M\times O$ , we obtain a manifold $W_{2}$ with
$\partial W_{2}-M\times 0=N$. Note that the canonical homomorphism $H_{1}(M\times 0;Z)/odd$ tor-
$sion-H_{1}(W_{2} ; Z)/odd$ torsion is an isomorphism. In particular, the boundary
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homomorphism $\partial:H_{2}(W_{2}, N;Z_{2})\rightarrow H_{1}(N;Z_{2})$ is onto. If $H_{1}(N;Z_{2})\neq 0$, let
$x\in H_{1}(N;Z_{2})$ be a non-zero element represented by a simple closed curve $S$ .
Let $c$ be a 2-chain (mod2) in $W_{2}$ with $\partial c=S$ . Let $S^{\prime}$ be a simple closed curve
on a tubular neighborhood $T$ of $S$ in $N$, homotopic to $S$ in $T$ and bounding a
2-chain $c^{\prime}$ (mod2) in $W$ so that $c^{\prime}$ is $Z_{2}$-homologous to $c$ in $W_{2}mod N$, and the
$Z_{2}$-intersection number, $c\cdot c^{\prime}=0$ . Let $W_{2}^{\prime}$ be a 4-manifold obtained from $W_{2}$ by
attaching a 2-handle $D^{2}xD^{2}$ along $T$ with framing determined by $S^{\prime}$ . Note
that $H_{2}(W_{2}^{\prime} ; Z_{2})$ has a basis $x_{1},$ $\cdots x_{g},$ $y$ , where $\{x_{1}, \cdots , x_{g}\}$ is the image of a
basis of $H_{2}(W_{2} ; Z_{2})$ by the canonical map $H_{2}(W_{2} ; Z_{2})\rightarrow H_{2}(W_{2}^{\prime} ; Z_{2})$ , and $y$ is the
homology class represented by $c\cup D^{2}\times 0$ . ( $D^{2}\times 0$ is a core of the 2-handle $D^{2}\times D^{2}.$ )

From construction, we have $x_{i}\cdot x_{i}=y\cdot y=0,$ $i=1,2,$ $\cdots$ , $g$ . Let $\partial W_{2}^{\prime}-M\times 0=N^{\prime}$ .
Since $H_{1}$ ($N$-Int $T;Z_{2}$) $\rightarrow H_{1}(N;Z_{2})$ is an isomorphism (cf. Lemma 4.4), we see
that $\dim_{Z_{2}}H_{1}(N^{\prime} ; Z_{2})=\dim_{Z_{2}}H_{1}(N;Z_{2})-1$ . By induction on $\dim_{Z_{2}}H_{1}(N;Z_{2})$ , we
may assume that $H_{1}(N;Z_{2})=0$ . Then let $V$ be a l-connected 4-manifold $V$ with
$\partial V=N$ such that $x\cdot x=0$ for all $x\in H_{2}(V;Z_{2})$ (cf. J. W. Milnor [17], S. J. Kaplan
[10]). The manifold $W=W_{2}\cup V$ , then, satisfies (1) and (2). Conversely, assume
that $M$ bounds a manifold $W$ satisfying (1) and (2). Let $F\subset M$ be a closed,
connected, orientable surface of genus $g$ , transversal to a circle of a generator
of $H_{1}(M;Z)/odd$ torsion. By (1) $F$ is the boundary of a compact 3-manifold
$U\subset W$, transversal to a circle of a generator of $H_{1}(W;Z)/oddtorsion\approx Z$ . We
proceed to the proof by assuming the following lemma:

LEMMA 4.4. There exists a symplectic basis $a_{1},$
$\cdots$ , $a_{g},$ $b_{1},$ $\cdots$ , $b_{g}$ of $H_{1}(F;Z_{2})$

such that $a_{1},$ $\cdots$ , $a_{g}$ generate the kernel of the canonical homomorphism
$i_{*}:$ $H_{1}(F;Z_{2})\rightarrow H_{1}(U;Z_{2})$ .

Suppose $L(a_{1}, a_{1})=1$ . Let $c_{1}$ be a representative of $a_{1}$ . Let c\’i be a slight
translation of $c_{1}$ in a positive normal direction in $M$. Since $L(a_{1}, a_{1})=1,$ $c_{1}$

bounds a 2-chain $c_{2}(mod 2)$ in $M$ such that $c_{2}\cdot c_{1}^{\prime}=1$ . $c_{1}$ is $Z_{2^{-}}nul1$-homologous
in $U$ . So it bounds a 2-chain $c_{2}\sim(mod 2)$ in $U$ . Let $\overline{c}_{2}$ be a slight translation of
the cycle $ c_{2}\cup c_{2}\sim$ into Int $W$ by using a boundary collar of $W$ . Since $U$ admits a
collar in $W$ , we may consider that the cycle c\’i is in the boundary of a slight
translation $U^{\prime}$ of $U$ , and bounds a 2-chain $\delta_{2}^{\prime}(mod 2)$ in $U^{\prime},$ $Z_{2}$-homologous to
$\tilde{c}_{2}$ in $W(mod M)$ . Since $c_{2}\cdot c_{1}^{\prime}=1$ , we see easily that $\overline{c}_{2}\cdot\tilde{c}_{2}^{\prime}=1$ . Let $c_{2}^{\prime}$ be a
2-chain $(mod 2)$ in $M$ with $\partial c_{2}^{\prime}=c_{1}^{\prime}$ . Then $\overline{c}_{2}\cdot(c_{2}^{\prime}\cup c_{2}^{\prime}\sim)=1$ , which contradicts (2),

since $ c_{2}^{\prime}\cup c_{2}^{\prime}\sim$ is $Z_{2}$-homologous to $\overline{c}_{2}$ in $W$ by the canonical isomorphism
$H_{2}(W;Z_{2})\approx H_{2}(W, M;Z_{2})$ . Hence $L(a_{1}, a_{1})=0$ . Similarly, $L(a_{i}, a_{i})=0,$ $i=2$ ,
... , $g$ . Therefore, $\epsilon(M)=0$ . This completes the proof except for the proofs of
Lemmas 4.3 and 4.4.

PROOF OF LEMMA 4.3. Regard $F$ as a connected sum $F_{1}\#\cdots\# F_{g}$ of $g$

copies of a torus of genus 1. Then $a_{1}\in H_{1}(F;Z_{2})$ is written as a sum $c_{1}+c_{2}+$

... $+c_{g},$ $c_{i}\in H_{1}(F_{i} ; Z_{2})$ . Similarly, $b_{1}\in H_{1}(F;Z_{2})$ as a sum $d_{1}+d_{2}+\cdots+d_{g}$ ,
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$d_{i}\in H_{1}(F_{i} ; Z_{2})$ . (Some $c_{i}$ or $d_{i}$ may be $0.$ ) Since $a_{1}\cdot b_{1}=1$ , we can assume that
for some odd $m\geqq 1,$ $c_{1}\cdot d_{1}=--$ $=c_{m}\cdot d_{m}=1$ and $c_{m+1}\cdot d_{m+1}=\cdots=c_{g}\cdot d_{g}=0$ . Then
$c_{t}$ and $d_{i}$ are represented by simple closed curves $c_{i}^{0}$ and $d_{i}^{0}$ on $F_{i}$ such that
$c_{i}^{0}\cap d_{\ell}^{0}=one$ point (if $i\leqq m$) or $\emptyset$ (if $i\geqq m+1$ ). When $m\geqq 3$ , $c_{1}+c_{2}$ and $d_{1}+d_{2}$

can be represented by mutually disjoint, simple closed curves on $F_{1}\# F_{2}$ . By
induction on $m$ , $c_{1}+\cdots+c_{m-1}$ and $d_{1}+\cdots+d_{m-1}$ are represented by mutually
disjoint, simple closed curves $c^{0}$ and $d^{0}$ on $F_{1}\#\cdots\# F_{m-1}$ . Then suitable con-
nected sums $a_{1}^{0}=c^{0}\# c_{m}^{0}\# c_{m+1}^{0}\#\cdots\# c_{g}^{0}$ and $b_{1}^{0}=d^{0}\# d_{m}^{0}\# d_{m+1}^{0}\#\cdots\# d_{g}^{0}$ are simple
closed curves on $F$ representing $a_{1}$ and $b_{1}$ such that $a_{1}^{0}\cap b_{1}^{0}=one$ point. Taking
a regular neighborhood of $a_{1}^{0}\cup b_{1}^{0}$ , we obtain a new connected sum $F=F_{1}^{\prime}\# F^{\prime}$

where $a_{1}^{0},$ $b_{1}^{0}$ represent a basis for $H_{1}(F_{1}^{\prime} ; Z_{2})$ . Then $a_{2},$ $\cdots$ , $a_{g},$
$b_{2},$ $\cdots$ , $b_{g}$ form

a symplectic basis for $H_{1}(F^{\prime} ; Z_{2})$ . By induction, we complete the proof.

PROOF OF LEMMA 4.4. Consider the following exact sequence
$\partial$

$j_{*}$

$H_{2}(U, F;Z_{2})\rightarrow H_{1}(F;Z_{2})\rightarrow H_{1}(U ; Z_{2})$ .
From this, we see that ${\rm Im}\partial$ is a self-orthogonal complement with respect to the
non-singular intersection pairing $H_{1}(F;Z_{2})\times H_{1}(F;Z_{2})\rightarrow Z_{2}$ (since $(\partial x)\cdot y=x\cdot i_{*}(y)$).

In particular, 2 $\dim_{Z_{2}}{\rm Im}\partial=\dim_{Z_{2}}H_{1}(F;Z_{z})=2g$ . Let $a_{1},$
$\cdots$ , $a_{g}$ be a basis for

${\rm Im}\partial$ . Since $x\cdot x=0$ for $x\in H_{1}(F;Z_{2})$ , we can find $b_{1},$ $\cdots$ , $b_{g}$ such that $a_{1},$ $\cdots$ , $a_{g}$ ,
$b_{1},$ $\cdots$ , $b_{g}$ give a symplectic basis for $H_{1}(F;Z_{2})$ . This completes the proof.

REMARK 4.1. Let $F$ be a closed, connected (possibly, non-orientable) surface.
From an idea of the proof of Lemma 4.3, we can see that any element of
$H_{1}(F;Z_{2})$ is represented by a simple closed curve on $F$. By the proof of Lemma
4.4, we see also that if $F$ is the boundary of a compact 3-manifold $U$ , then the
kernel of $i_{*}:$ $H_{1}(F;Z_{2})\rightarrow H_{1}(U;Z_{2})$ has the half-dimension of $H_{1}(F;Z_{2})$ .

LEMMA 4.5. (1) If $W$ is a finite cover of a compact 4-manifold $W^{\prime}$ with
$x\cdot x=0$ for all $x\in H_{2}(W^{\prime} ; Z_{2})$ , then we have $x\cdot x=0$ for all $x\in H_{2}(W;Z_{2})$ .

(2) A compact 4-manifold $W$ is spin $(w_{1}(W)=w_{2}(W)=0)$ if and only if $W$ is
orientable and $x\cdot x=0$ for all $x\in H_{2}(W;Z_{2})$ .

PROOF. By Wu formula,

$w_{2}(W^{\prime})=w_{1}(W^{\prime})\cup w_{1}(W^{\prime})+v_{2}(W^{\prime})$ ,

where $v_{2}(W^{\prime})\in H^{2}(W^{\prime} ; Z_{2})$ is defined by the identity $x\cup v_{2}(W^{\prime})=x\cup x$ for all
$x\in H^{2}(W^{\prime}, \partial W^{\prime} ; Z_{2})$ . Since $x\cdot x=0$ for all $x\in H_{2}(W^{\prime} ; Z_{2})$ , we see that $x\cup x=0$

for all $x\in H^{2}(W^{\prime}, \partial W^{\prime} ; Z_{2})$ . Hence by Poincar\’e duality, $v_{2}(W^{\prime})=0$ . So $w_{2}(W^{\prime})=$

$w_{1}(W^{\prime})\cup w_{1}(W^{\prime})$ . APplying the covering projection $P:W\rightarrow W^{\prime}$ to this identity,
we obtain that

$w_{2}(W)=p^{*}(w_{2}(W^{\prime}))=p^{*}(w_{1}(W^{\prime}))\cup p^{*}(w_{1}(W^{\prime}))=w_{1}(W)\cup w_{1}(W)$ .
Hence by Wu formula, $v_{2}(W)=w_{1}(W)\cup w_{1}(W)+w_{2}(W)=0$ . That is, $x\cup x=0$ for
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all $x\in H^{2}(W, \partial W;Z_{2})$ . This implies that $x\cdot x=0$ for all $x\in H_{2}(W;Z_{2})$ , showing
(1). (2) follows easily from Wu formula, since $w_{1}(W)=0$ if and only if $W$ is
orientable. This completes the proof.

COROLLARY 4.1. Assume that $M$ admits a free involution $\alpha$ such that the
orbit space $ M/\alpha$ is a $Z_{2}$-homology handle. Then $\epsilon(M)=0$ if and only if there
exists a comPact connected 4-manifold $W$ with $\partial W=M$ such that

(1) $W$ admits a free involution $\beta$ extending $\alpha$ ,
(2) the inclusion $M\subset W$ induces an isomorphism $H_{1}(M ; Z)/odd$ torsion

$\approx H_{1}(W;Z)/odd$ torsion,
(3) the $Z_{2}$-intersection number, $x\cdot x=0$ for all $x\in H_{2}(W;Z_{2})$ .
PROOF. Let $ M_{1}=M/\alpha$ . By Lemma 4.2 $\epsilon(M_{1})=\epsilon(M)$ . By Theorem 4.1,

$\epsilon(M_{1})=0$ if and only if $M_{1}$ bounds a 4-manifold $W_{1}$ satisfying (1) and (2) of
Theorem 4.1. By (1) there is a double cover $W$ of $W_{1}$ extending the covering
$M\rightarrow M_{1}$ . By Wang exact sequence, $H_{1}(W;Z)/oddtorsion\approx Z$ (cf. the proof of
Lemma 4.2). It follows that the inclusion $M\subset W$ induces an isomorphism
$H_{1}(M;Z)/oddtorsion\approx H_{1}(W;Z)/odd$ torsion. By Lemma 4.5 (1), we complete
the proof.

REMARK 4.2. In Theorem 4.1, if $M$ is orientable, then $W$ is spin. [In fact,
by (1) $w_{1}(M)=0$ if and only if $w_{1}(W)=0$ . Hence, if $w_{1}(M)=0$ , then by Lemma
4.5 (2), (2) implies $W$ is spin.] In Corollary 4.1, $M$ is necessarily orientable and
$W$ is necessarily spin, and $\alpha$ is orientation-preserving if and only if $\beta$ is orien-
tation-preserving. [To see this, it suffices to check that $M$ is orientable. In
general, for a $\vee onnected$ manifold $X_{1}$ with $H^{1}(X_{1} ; Z_{2})\approx Z_{2}$ , any 2-fold connected
cover $X$ of $X_{1}$ is orientable. In fact, if $w_{1}(X_{1})\neq 0,$ $X$ is the cover of $X_{1}$ associ-
ated with $w_{1}(X_{1})\in H^{1}(X_{1} ; Z_{2})(\approx Z_{2})$ , that is, the orientation cover of $X_{1}.$]

5. Proof of Theorem IV.

We shall show the following:
THEOREM 5.1. Given a pair $(M, \alpha)$ where $M$ is a $Z_{2}$-homology 3-sphere and

$\alpha$ is an orientation-reversing involution on $M$, then there exists a compact, con-
nected, oriented, spin 4-manifold $W$ with an orientation-reversing involution $\beta$

such that $\partial W=M,$ $\beta|M=\alpha$ and $H_{1}(W;Z_{2})=0$ .
PROOF OF THEOREM IV. $\mu(M)=sign(W)/16=0$ for $W$ in Theorem 5.1 which

clearly has sign$(W)=0$ .
PROOF OF THEOREM 5.1. By Smith theory (cf. Proposition 6.1 and [3], III

\S 4), Fix$(\alpha, M)=S^{0}$ or $S^{2}$ . If Fix$(\alpha, M)=S^{2}$ , then $M$ splits: $M=M_{1}\# M_{2}$ , and $\alpha$

interchanges the factors. $(M, \alpha)$ is equivalent to $(M_{1}\#-M_{1}, \alpha_{1})$ where $\alpha_{1}$ is a
reflection of the factors. Then we obtain easily a desired pair $(W, \beta)$ with
$\partial W=M,$ $\beta|M=\alpha$ and $\tilde{H}_{*}(W;Z_{2})=0$ . Now we assume Fix$(\alpha, M)=S^{0}$ . Let $k$ be
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a knot in $M$ such that $\alpha(k)=k$ and $S^{0}\subset k$ . [Such a knot $k$ is easily obtained by

considering the canonical projection $M\rightarrow M/\alpha.$] Let $T$ be an $\alpha$-invariant, tubular
neighborhood of $k$ in $M$. Let $E=M$–Int $T$ . Since $\alpha|E$ acts freely on $E$ , the
orbit space $ E^{\prime}=E/\alpha$ is a non-orientable manifold with $\partial E^{\prime}$ a Klein bottle. We
proceed to the proof by assuming the following lemma:

LEMMA 5.1. $H_{1}(E^{\prime} ; Z)/oddtorsion\approx Z$ .
By this lemma let $F$ be a proper surface transversal to a circle of a gener-

ator of $H_{1}(E^{\prime} ; Z)/odd$ torsion $(\approx Z)$ . $F$ is properly imbedded in $E$ so that
$\alpha F\cap F=0$ . Since $H_{1}(E^{\prime}, \partial E^{\prime} ; Z_{2})=0$ by Remark 4.1, we can assume that $\partial F$

has some odd components of circles all of which are isotopic in $\partial E^{\prime}$ and hence
in $\partial E$ . Let $a$ be an $\alpha$-invariant meridian on $T$ , which represents clearly a
generator of $H_{1}(E;Z_{2})$ . Let $b$ be any component of $\partial F$, which generates the
kernel of $H_{1}(\partial E;Z_{2})\rightarrow H_{1}(E;Z_{2})$ and satisfies $\alpha b\cap b=\emptyset$ . We may have $a\cap b=$

one point. We construct a 4-manifold $W_{1}=Mx[0,1]\cup D^{2}\times D^{2}$ by identifying
$T\times 1$ with $(\partial D^{2})\times D^{2}$ so that $aXl=pt\times\partial D^{2}$ and $b\times 1=(\partial D^{2})\times pt$ . Then $\alpha$ is
extendable to an orientation-reversing involution $\beta_{1}$ on $W_{1}$ so that $\beta_{1}|M_{1}=\alpha_{1}$ is
an orientation-reversing free involution on $M_{1}$ where $M_{1}=\partial W_{1}-M\times O$ . From
construction, $H_{1}(M_{1} ; Z_{2})=H_{1}(M_{1}/\alpha_{1} ; Z_{2})=Z_{2}$ . Since $M_{1}/\alpha_{1}$ is non-orientable,
$H_{1}(M_{1}/\alpha_{1} ; Z)$ is infinite. Hence $M_{1}/\alpha_{1}$ and $M_{1}$ are $Z_{2}$-homology handles. In
case $\epsilon(M_{1})=0$, then by Corollary 4.1 and Remark 4.2, $M_{1}$ bounds a compact,
connected, spin 4-manifold $W_{2}$ admitting an orientation-reversing involution $\beta_{2}$

extending $\alpha_{1}$ such that the canonical homomorphism $H_{1}(M_{1} ; Z_{2})\rightarrow H_{1}(W_{2} ; Z_{2})$ is
an isomorphism. Let $W=W_{1}\cup W_{2}$ . Note that the canonical homomorphism
$H_{2}(W_{2} ; Z_{2})\rightarrow H_{2}(W;Z_{2})$ is an isomorphism and $H_{1}(W;Z_{2})=0$ . The pair $(W, \beta)$ ,
where $\beta$ is defined by $\beta|W_{i}=\beta_{i}$ , is a desired pair. In case $\epsilon(M_{1})=1$ , we make
a restart by using, instead of $k$ , a new knot $k^{\prime}$ constructed from $k$ as follows:
Let $x\in M$ be a Pxed point of $\alpha$ , and $B$ be an $\alpha$-invariant, regular neighborhood

$\rightarrow$

Figure
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of $x$ in $M$. We may consider that $B\cap k$ is an unknotted arc in $B$ . Replace
this arc by an arc of the figure eight knot, illustrated in the Figure, where $B$

and $\alpha|B$ are regarded as a unit ball in $R^{3}$ and the antipodal map sending
$(x, y, z)\rightarrow(-x, -y, -z)$ . Then the resulting knot $k^{\prime}$ still satisfies $\alpha(k^{\prime})=k^{\prime}$

and Fix $(\alpha, M)=S^{0}\subset k^{\prime}$ .
Let $M_{1}^{\prime}$ be a $Z_{2}$-homology handle resulting from $k^{\prime}$ . Let $A(t),$ $A^{\prime}(t)$ be the

$Z_{2}$-Alexander polynomials of $M_{1},$ $M_{1}^{\prime}$ , respectively. Since $k^{\prime}$ is a knot sum of
$k$ and the figure eight knot, it follows that $A^{\prime}(t)=A(t)\cdot f(t^{r})$ , where $f(t)=t^{2}-3t+1$

$=t^{2}+t+1$ is the $Z_{2}$-Alexander polynomial of the figure eight knot, and $r$ is the
number of the components of $\partial F$ which is odd. [To see this, notice that
$H_{1}(\tilde{M}_{1}^{\prime} ; Z_{2})$ is $ Z_{2}\langle t\rangle$ -isomorphic to $H_{1}(\tilde{M}_{1} ; Z_{2})\oplus Z_{2}\langle t\rangle/(f(t^{\tau})).$] Since $\epsilon(M_{1})=1$ , by
Lemma 4.1 $A(t)=a(t)(t^{4}+1)+t^{b}(t^{2}+t+1)$ for some $a(t)$ and $b$ . Using that $r$ is
odd, $f(t^{r})=c(t)(t^{4}+1)+t^{d}(t^{2}+t+1)$ for some $c(t)$ and $d$ . Hence $A^{\prime}(t)=a^{\prime}(t)(t^{4}+1)+t^{e}$

for some $a^{\prime}(t)$ and $e$ . By Lemma 4.1 this implies that $\epsilon(M_{1}^{\prime})=0$ . Now we
reduced the case $\epsilon(M_{1})=1$ to the case $\epsilon(M_{1})=0$ . This completes the proof of
Theorem 5.1 except for the proof of Lemma 5.1.

PROOF OF LEMMA 5.1. From the following commutative diagram with exact
rows:

$\pi_{1}(E)\rightarrow\pi_{1}(E^{\prime})\rightarrow Z_{2}\rightarrow 1$

$\uparrow$ $\uparrow$ $\Vert$

$\pi_{1}(\partial E)\rightarrow\pi_{1}(\partial E^{\prime})\rightarrow Z_{2}\rightarrow 1$ ,

we obtain the following commutative diagram with exact rows:

$H_{1}(E ; Z_{2})\rightarrow H_{1}(E^{\prime} ; Z_{2})\rightarrow Z_{2}\rightarrow 0$

$\uparrow$ $\uparrow$
$\Vert$

$H_{1}(\partial E ; Z_{2})\rightarrow H_{1}(\partial E^{\prime} ; Z_{2})\rightarrow Z_{2}\rightarrow 0$ .

Since $H_{1}(\partial E;Z_{2})\rightarrow H_{1}(E;Z_{2})$ is onto, $H_{1}(\partial E^{\prime} ; Z_{2})\rightarrow H_{1}(E^{\prime} ; Z_{2})$ is so. By Remark
4.1, $H_{1}(E^{\prime} ; Z_{2})=Z_{2}$ . The double $D(E^{\prime})$ of $E^{\prime}$ is closed and non-orientable, so
that $H_{1}(D(E^{\prime});Q)\neq 0$ . By Mayer-Vietoris sequence we have $H_{1}(E^{\prime} ; Q)\neq 0$ . Hence
$H_{1}(E^{\prime} ; Z)/oddtorsion\approx Z$ . This completes the proof.

6. Proof of Theorem III.

DEFINITION 6.1. A pair $(M, \alpha)$ is spin bordant to a pair $(M^{\prime}, \alpha^{\prime})$ , if
$M+(-M^{\prime})$ bounds a compact spin 4-manifold with an orientation-reversing
involution extending $\alpha+\alpha^{\prime}$ . If $ M^{\prime}=\emptyset$ , then we say that $(M, \alpha)$ is a spin boundary.

THEOREM 6.1. Assume that $\sigma(\alpha, M)=0$ . Then there exists a sequence of
pajrs $(M, \alpha)=(M_{0}, \alpha_{0}),$ $(M_{1}, \alpha_{1}),$ $\cdots$ , $(M_{r}, \alpha_{r})$ such that for each $i,$ $0\leqq i\leqq r-1$ ,
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$(M_{i}, \alpha_{i})$ is spin bordant to $(M_{i+1}, \alpha_{i+1})$ , and $(M_{\gamma}, \alpha_{r})$ is a spin boundary.
PROOF. (1) Any pair $(M, \alpha)$ is spin bordant to a pair $(M^{\prime}, \alpha^{\prime})$ where $M^{\prime}$

is connected. The proof of (1) is not difficult. [If $M$ contains two components
$M^{(0)},$ $M^{(1)}$ such that $\alpha(M^{(0)})=M^{(1)}$ , then choose 3-balls $B^{(i)}\subset M^{(i)}$ so that
$\alpha(B^{(0)})=B^{(1)}$ and construct a 4-manifold $W=M\times[0,1]\cup D^{3}\times[0,1]$ by identify-
ing $B^{(i)}\times 1$ with $D^{3}\times i,$ $i=0,1$ . For any two components $M^{(0)},$ $M^{(1)}$ with
$\alpha(M^{(i)})=M^{(i)}$ , choose 3-balls $B^{(i)}\subset M^{(i)}$ such that $\alpha(B^{(i)})\cap B^{(i)}=\emptyset$ , and then
construct a 4-manifold $W=Mx[0,1]\cup D^{3}\times[0,1]_{1}\cup D^{3}\times[0,1]_{2}$ identifying $B^{(i)}\times 1$

with $D^{3}\times i_{1}$ , and $\alpha(B^{(i)})x1$ with $D^{3}\times i_{2},$ $i=0,1.$]
(2) Given a pair $(M, \alpha)$ where $M$ is connected and $\sigma(\alpha, M)=0$ , then $(M, \alpha)$

is sPin bordant to a pair $(M^{\prime}, \alpha^{\prime})$ such that $M^{\prime}$ is connected and Fix $(\alpha^{\prime}, M^{\prime})$ is
$\emptyset$ or a closed connected surface. The proof is not difficult. [Since $\sigma(\alpha, M)=0$ ,

the number of discrete points of Fix $(\alpha, M)$ is even. For any two discrete
points $x^{(0)}$ , $x^{(1)}$ of Fix $(\alpha, M)$ , choose 3-balls $B^{(i)}\subset M$ which are $\alpha$-invariant
neighborhoods of $x^{(i)}$ , and then form a 4-manifold $W=Mx[0,1]\cup D^{3}\times[0,1]$

identifying $B^{(i)}x1$ with $D^{3}\times i,$ $i=0,1$ . For any two surfaces $F^{(0)},$ $F^{(1)}$ in
Fix $(\alpha, M)$ , choose proper ball pairs $B^{2(i)}\subset B^{3(i)}$ such that $B^{2(i)}\subset F^{(i)},$ $B^{3(i)}\subset M$

and $\alpha(B^{3(i)})=B^{3(i)}$ , and then construct a 4-manifold $W=Mx[0,1]\cup D^{3}\times[0,1]$

identifying $B^{3(i)}\times 1$ with $D^{3}\times i,$ $i=0,1.$]

(3) Given a pair $(M, \alpha)$ where $M$ is connected and Fix $(\alpha, M)$ is a closed
connected surface, then there is a sequence of pairs $(M, \alpha)=(M_{0}, \alpha_{0}),$ $(M_{1}, \alpha_{1})$ ,

, (M., $\alpha_{r}$) such that $(M_{i}, \alpha_{i})$ is sPin bordant to $(M_{i+1}, \alpha_{t+1})$ , and $(M_{r}, \alpha_{r})$ satisfies
either that $M_{r}$ is connected and Fix $(\alpha_{r}, M_{r})=\emptyset$ or that $M_{r}$ has just two components
$M_{r}^{(1)},$ $M_{r}^{(2)}$ and $\alpha(M_{r}^{(1)})=M_{r}^{(2)}$ . To prove (3), let $F=Fix(\alpha, M)$ , and first assume
$F\neq S^{2},$ $P^{2}\# P^{2}$ . Note that the orbit space $M/\alpha=M_{F}$ is a compact connected
manifold with boundary $F$. By Remark 4.1 and the following canonical com-
mutative triangle

$H_{1}(F;Z_{2})\rightarrow H_{1}(M;Z_{2})$

we find a two-sided simple closed curve $S$ on $F$ which represents a non-zero
element in $H_{1}(M_{F} ; Z_{2})$ and hence in $H_{1}(M;Z_{2})$ . Let $T$ be an $\alpha$-invariant,
tubular neighborhood of $S$ in $M$, so that $T\cap F$ is a proper annulus in $T$ . Con-
struct a 4-manifold $W=M\times[0,1]\cup D^{2}\times D^{2}$ identifying $Tx1$ (with framing
determined by the annulus $T\cap F$ ) with $(\partial D^{2})xD^{2}$ . Since $H_{1}(T;Z_{2})\rightarrow H_{1}(M;Z_{2})$

is injective, $H_{2}(Mx0;Z_{2})\rightarrow H_{2}(W;Z_{2})$ is onto, which implies that $W$ is spin.
From construction, $\alpha$ is extendable to an involution $\beta$ on $W$ such that $M_{1}=$
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$\partial W-M\times O$ is connected and Fix $(\beta|M_{1}, M_{1})$ is connected with Euler characteristic
$\chi(F)+2$ . Since $\chi(F)$ is even, we may assume by induction that $F=S^{2}$ or $P^{2}\# P^{2}$ .
In case $F=S^{2}$ , construct a 4-manifold $W=M\times[0,1]\cup D^{3}\times[0,1]$ , where $(\partial D^{3})$

$x[0,1]$ is identified with an $\alpha$-invariant neighborhood of Fxl in $M\times 1$ . Then
$W$ gives a spin bordism from $(M, \alpha)$ to a pair $(M^{\prime}, \alpha^{\prime})$ satisfying either that
$M^{\prime}$ is connected and Fix $(\alpha^{\prime}, M^{\prime})=\emptyset$ or that $M^{\prime}$ has just two components $M^{\prime(1)}$ ,
$M^{\prime(2)}$ and $\alpha^{\prime}(M^{\prime(1)})=M^{\prime(2)}$ . Now assume $F=P^{2}\# P^{2}$ . Let $S$ be a circle defining
the connected sum $P^{2}\# P^{2}$ . Let $T$ be an $\alpha$ -invariant, tubular neighborhood of
$S$ in $M$, so that $F\cap T$ is a proper annulus in $T$ . Construct a 4-manifold
$W=M\times[0,1]\cup D^{2}\times D^{2}$ identifying $T\times O$ (with framing specified by a proper
annulus $F\cap T$ ) with $(\partial D^{2})\times D^{2}$ . $M^{\prime}=\partial W-Mx0$ is connected, and $\alpha$ is extend-
able to an involution $\beta$ on $W$ such that Fix $(\alpha^{\prime}, M^{\prime})(\alpha^{\prime}=\beta|M^{\prime})$ consists of two
copies of $P^{2}$ . By considering an $\alpha^{\prime}$ -invariant, regular neighborhood of Fix $(\alpha^{\prime}, M^{\prime})$ ,

we see that $M^{\prime}=M^{\prime\prime}\# P^{3}\# P^{3}$ for some $M^{\prime\prime}$ , and $\alpha^{\prime}$ preserves the factors. $W$

is spin since $H_{2}(\partial W;Z_{2})\rightarrow H_{2}(W;Z_{2})$ is onto. Thus, $(M, \alpha)$ is spin bordant to
$(M‘‘ \# P^{3}\# P^{3}, \alpha^{\prime})$ . The latter is easily spin bordant to a pair $(M^{\prime\prime\prime}, \alpha^{\prime\prime\prime})$ with
$M^{\prime\prime\prime}$ connected and Fix $(\alpha^{\prime\prime\prime}, M^{\prime\prime\prime})=\emptyset$ by considering the product ( $P^{3}$ –Int $\Delta^{3}$ ) $x[0,1]$

with a standard involution whose fixed point set is $P^{2}\times[0,1]$ . This shows (3).

(4) $SuPPose$ , for a pair $(M, \alpha),$ $M$ has just two components $M^{(1)},$ $M^{(2)}$ , and
$\alpha(M^{(1)})=M^{(2)}$ . Then $(M, \alpha)$ is a spin boundary. The proof is easy. [Note that
$(M, \alpha)$ is equivalent to a pair $(M^{(1)}+(-M^{(1)}), \alpha_{0})$ where $\alpha_{0}|M^{(1)}\rightarrow-M^{(1)}$ is
defined by the identity on the underlying set.]

(5) Suppose for a pair $(M, \alpha),$ $M$ is connected and Fix $(\alpha, M)=\emptyset$ . Then there
is a finite sequence of pajrs $(M, \alpha)=(M_{0}, \alpha_{0}),$ $(M_{1}, \alpha_{1}),$ $\cdots$ , $(M_{r}, \alpha_{r})$ such that
$(M_{i}, \alpha_{i})$ is spjn bordant to $(M_{i+1}, \alpha_{i+1})$ , and $M_{r}$ is a $Z_{2}$-homology 3-sphere. To
see this, consider the orbit space $ M^{\prime}=M/\alpha$ , which is non-orientable. Clearly,
$H_{1}(M^{\prime} ; Z_{2})\neq 0$ . If $\dim_{Z_{2}}H_{1}(M^{\prime} ; Z_{2})\geqq 2$ , then choose a simple closed curve $S$

which represents a non-zero element of $H_{1}(M^{\prime} ; Z_{2})$ and whose tubular neigh-
borhood $T$ is a solid torus. [Use the map $w_{1}$ : $H_{1}(M^{\prime} ; Z_{2})\rightarrow Z_{2}$ giving the first
Stiefel-Whitney class.] Construct a 4-manifold $W^{\prime}=M^{\prime}\times[0,1]\cup D^{2}\times D^{2}$ identify-
ing $T$ (with any framing) with $(\partial D^{2})xD^{2}$ . Since $H_{1}(T;Z_{2})\rightarrow H_{1}(M^{\prime} ; Z_{2})$ is
injective, $H_{2}(\partial W^{\prime} ; Z_{2})\rightarrow H_{2}(W^{\prime} ; Z_{2})$ is onto, so that $x\cdot x=0$ for $x\in H_{2}(W^{\prime} ; Z_{2})$ .
Let $M_{1}^{\prime}=\partial W^{\prime}-M^{\prime}xO$ . We have $\dim_{Z_{2}}H_{1}(M_{1}^{\prime} ; Z_{2})=\dim_{Z_{2}}H_{1}(M^{\prime} ; Z_{2})-1$ , since
$H_{1}(M^{\prime}-T;Z_{2})\rightarrow H_{1}(M^{\prime} ; Z_{2})$ is an isomorphism. By Lemma 4.5(1), the orienta-
tion cover $W$ of $W^{\prime}$ gives a spin bordism from $(M, \alpha)$ to a pair $(M_{1}, \alpha_{1})$ with
Fix $(\alpha_{1}, M_{1})=\emptyset$ and $\dim_{Z_{2}}H_{1}(M/\alpha;Z_{2})-1=\dim_{z_{2}}H_{1}(M_{1}/\alpha_{1} ; Z_{2})$ . By induction,

there is a sequence $(M, \alpha)=(M_{0}, \alpha_{0}),$ $\cdots$ , $(M_{s}, \alpha_{s})$ such that $(M_{i}, \alpha_{i})$ is spin
bordant to $(M_{i+1}, \alpha_{i+1})$ with $\alpha_{i+1}$ a free involution, and $H_{1}(M_{s}/\alpha_{s} ; Z_{2})=Z_{2}\cdot M_{s}/\alpha_{s}$

is a $Z_{2}$-homology handle, since it is non-orientable. By Lemma 4.2 $M_{s}$ is a
$Z_{2}$-homology handle. Let $T$ be an $\alpha_{s}$ -invariant, solid torus in $M_{s}$ whose core
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represents a generator of $H_{1}(M_{s}, Z_{2})$ . Let $\beta$ be a standard, orientation-reversing
involution on $D^{2}\times D^{2}$ such that $\beta((\partial D^{2})xD^{2})=(\partial D^{2})\times D^{2}$ and $\beta|(\partial D^{2})\times D^{2}$ is free
and $\beta|D^{2}\times(\partial D^{2})$ has the fixed point set $S^{0}$ . Construct $W=M_{s}x[0,1]\cup D^{2}xD^{2}$

by identifying $(Tx1, \alpha_{s})$ with $((\partial D^{2})xD^{2}, \beta|(\partial D^{2})\times D^{2})$ . $W$ gives a spin bordism
from $(M_{s}, \alpha_{s})$ to a pair $(M_{s+1}, \alpha_{s+1})$ with $H_{1}(M_{s+1} ; Z_{2})=0$ . This shows (5).

To conclude the proof of Theorem 6.1, it suffices to prove that $(M, \alpha)$ with
$M$ a $Z_{2}$-homology 3-sphere is a spin boundary. But this was proved in Theo-
rem 5.1. This completes the proof of Theorem 6.1.

Let $X$ be a Poincar\’e duality space with fundamental class [X] of dimension
$4m-1(m\geqq 1)$ . Assume $X$ admits a map $f:X\rightarrow X$ with $f_{*}[X]=-[X]$ and
$f_{*}^{2}=identity$ on $T_{2m-1}(X;Z)$ . By Theorem 2.1 $H_{2m-1}(X;Z)$ belongs to the class
$\mathfrak{C}$ . Let $\sigma(X)=\sigma(H_{2m- 1}(X;Z))$ .

THEOREM 6.2. Suppose there is a Poincar\’e duality space $Y$ of dimension $4m$

with boundary $X$ such that
(1) $Y$ admits a map $g:Y\rightarrow Y$ extending $f$ with $g_{*}^{2}=identity$ on $H_{2m}(Y;Q)$ ,
(2) the $Z_{2}$-intersection number, $y\cdot y=0$ for all $y\in H_{2m}(Y;Z_{2})$ . Then we have

$\sigma(X)=0$ .
Let $q$ be an integer $>0$ . Let $(A, B)$ be a topological pair such that

$H_{i}(A, B;Z)$ is finitely generated for $i\leqq q$ . For any field $K$, dePne $\sigma^{(q)}(A, B;K)$

to be the sum $\Sigma_{i=0}^{q}\dim_{K}H_{i}(A, B;K)(mod 2)$ .
The following is proved easily by using the universal coefficient theorem:
LEMMA 6.1. $\sigma^{(q)}(A, B;Z_{p})-\sigma^{(q)}(A, B;Q)\equiv\dim_{z_{p}}T_{q}(A, B;Z)\otimes Z_{p}(mod 2)$

for all prime $p\geqq 2$ . $(T_{*}(A, B;Z)=TorH_{*}(A, B;Z).)$

PROOF OF THEOREM 6.2. By dropping the components of $Y$ not intersecting
$X$ into the discard, we can assume $H_{0}(Y, X;Z)=0$ . Then the boundary operator
$\partial:H_{4m}(Y, X;Z)\rightarrow H_{4m-1}(X;Z)$ is injective and, by definition, sends the funda-
mental class $[Y]$ of $Y$ to [X]. Hence $g_{*}[Y]=-[Y]$ since $f_{*}[X]=-[X]$ . Let
$S_{g}$ : $H_{2m}(Y;Q)\times H_{2m}(Y;Q)\rightarrow Q$ be the pairing defined by

$S_{g}(x, y)=x\cdot g_{*}y$

for $x,$ $y\in H_{2m}(Y;Q)$ , where denotes the Q-intersection pairing, defined by
using Q-Poincar\’e duality. Since $g_{*}[Y]=-[Y]$ and $g_{*}^{2}=identity$ on $H_{2m}(Y;Q)$ ,

we see that $S_{g}(x, y)=-S_{g}(y, x)$ , so that $S_{g}(y, y)=0$ for all $y$ . For a field $K$,

let $j_{*}^{K}$ : $H_{2m}(Y, K)\rightarrow H_{2m}(Y, X;K)$ be the canonical homomorphism. Noting that
$g*$ is an automorphism on $H_{2m}(Y;Q)$ , we obtain a non-singular, symplectic
bilinear Q-form ${\rm Im} j_{*}^{Q}\times{\rm Im} j_{*}^{Q}\rightarrow Q$ induced by $S_{g}$ . It follows that

${\rm Im}$ j\S \equiv 0 $(mod 2)$ .

By $Z_{2}$-Poincar\’e duality and (2), we obtain a non-singular symplectic bilinear
$Z_{2}$-form ${\rm Im} j_{*}^{Z_{2}}x{\rm Im} j_{*}^{z_{2}}\rightarrow Z_{2}$ induced by the $Z_{2}$-intersection pairing of $Y$ . Hence
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${\rm Im} j_{*}^{Z_{2}}\equiv 0(mod 2)$ .
From the exact sequence of the pair $(Y, X)$ , we see that

$\dim_{K}{\rm Im} j_{*}^{K}\equiv\sigma^{(2m)}(Y, X;K)+\sigma^{(2m-1)}(X;K)+\sigma^{(2m-1)}(Y;K)(mod 2)$

for any field $K$. Then by using Lemma 6.1,

$0\equiv\dim_{z_{2}}{\rm Im} j_{*}^{Z_{2}}-\dim_{Q}{\rm Im} j_{*}^{Q}(mod 2)$

$\equiv\dim_{Z_{2}}T_{2m}(Y, X;Z)\otimes Z_{2}+\sigma(X)+\dim_{z_{2}}T_{2m- 1}(Y;Z)\otimes Z_{2}(mod 2)$

$\equiv\sigma(X)(mod 2)$ ,

since $T_{2m}(Y, X;Z)$ and $T_{2m-1}(Y;Z)$ are isomorphic by Poincar\’e duality. This
completes the proof.

DEFINITION 6.2. A finite polyhedron $X$ is a $Z_{2}$-homology n-manifold if

$H_{*}(X, X-x ; Z_{2})\approx H_{*}(R^{n}, R^{n}-0;Z_{2})$ ,

or equivalently (by excision)

$H_{*}(Link(x);Z_{2})\approx H_{*}(S^{n-1};Z_{2})$

for any $x\in X$ and any triangulation of $X$ with $x$ as a vertex.
The following is known (cf. A. Borel [3], p. 76, p. 79).

PROPOSITION 6.1. If $X$ is a closed piecewise-linear n-manifold, and $\alpha$ is a
piecewise-linear involution on $X$, then each non-empty compOnent $C$ of Fix$(\alpha, X)$

is a $Z_{2}$-homology manifold. Further, if $X$ is oriented, then $C$ is a $Z_{2}$-homology

m-manifold with $n-m$ even or odd, according to whether $\alpha$ is onentation-presemjng
or -reversing. [Note that Fix $(\alpha,$ $X)$ is a subpolyhedron of $X.$]

PROOF OF THEOREM III. By Theorem 6.1, (2) $\Rightarrow(4)$ . (4) $\Rightarrow(3)$ is obvious. To
prove (3) $\Rightarrow(2)$ , let $W_{1}$ be a compact 4-manifold with an involution $\beta_{1}$ such that
$\partial W_{1}=M$ and $\beta_{1}|Mx[0,1]=\alpha\times identity$ for a boundary collar $M\times[0,1]$ in $W_{1}$ .
The double $D(W_{1})$ of $W_{1}$ admits an involution $\overline{\beta}_{1}$ defined by $\beta_{1}$ . By Proposition
6.1, each component of Fix $(\overline{\beta}_{1}, D(W_{1}))$ is a $Z_{2}$-homology manifold. This implies
that the set of discrete points of Fix$(\alpha, M)$ is the boundary of a compact
l-manifold. Hence $\sigma(\alpha, M)=0$ and (3) $\Rightarrow(2)$ . (2) $\Rightarrow(1)$ follows from Theorems 6.1
and 6.2. To prove that (1) $\Rightarrow(2)$ , assume $\sigma(\alpha, M)=1$ . Then $\sigma(\alpha+\alpha_{0}, M+P^{3})=0$

for $(P^{3}, \alpha_{0})$ , since Fix $(\alpha_{0}, P^{3})=P^{0}+P^{2}$ . By Theorems 6.1 and 6.2, $\sigma(M+P^{3})=0$ ,
and $\sigma(M)=a(P^{3})=1$ , proving (1) $\Rightarrow(2)$ . This completes the proof.

7. Proof of the Remark to Theorem II.

Since $H_{1}(M;Z)/oddtorsion\approx Z_{2},$ $Sq^{1}$ : $H^{1}(MjZ_{2})\approx H^{2}(M;Z_{2})$ . The cohomo-
logy algebra $H^{*}(M;Z_{2})$ is isomorphic to $Z_{2}[a]/a^{4}$ , since $Sq^{1}(x)=x\cup x$ for
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$x\in H^{1}(M;Z_{2})$ . By Thom-Gysin sequence, the connected double cover $M^{\prime}$ of $M$

is a $Z_{2}$-homology 3-sphere. Since $\sigma(M)=1,$ $Fix(\alpha, M)$ contains a closed connected
surface $F$ with $\chi(F)$ odd by Theorem III. Let $p:M^{\prime}\rightarrow M$ be the projection. Let
$F^{\prime}$ be a component of $p^{-1}(F)$ . By the unique-lifting property of a covering, $\alpha$

lifts to an involution $\alpha^{\prime}$ on $M^{\prime}$ such that $\alpha^{\prime}|F^{\prime}=identity$ . Since Fix $(\alpha^{\prime}, M^{\prime})=S^{0}$

or $S^{2}$ by Smith theory, we have $F^{\prime}=S^{2}$ , so that $F=P^{2}$ (and $F^{\prime}=p^{-1}(F)=S^{2}$ ).

Let $N$ be an $\alpha$-invariant, regular neighborhood of $P^{2}$ in $M$. Since $\partial N=S^{2}$ , the
union ($M$–Int $N$ ) $\cup N$ gives a connected sum $M^{\prime\prime}\# P^{3}$ for a $Z_{2}$-homology 3-sphere
$M^{\prime\prime}$ . Clearly, $\alpha$ preserves the factors. This completes the proof.

8. Proof of Theorem V.

It suffices to check that $\sigma(P^{3})=\sigma(X)$ where $X=X(P^{3}, \alpha)$ (cf. Theorem III,
Corollary 1.1 and Proposition 1.1). Let Fix $(\alpha, P^{3})=P^{0}+P^{z}$. Let $P^{3}=N\cup B^{3}$ ,

where $N$ is an $\alpha$-invariant, regular neighborhood of $P^{2}$ in $P^{3}$ , and $B^{3}$ is an
$\alpha$-invariant 3-ball containing $P^{0}$ . Then $X=X(P^{3}, \alpha)=X_{1}\cup X_{2}$ where $X_{1}=$

$NxS^{2}/\alpha\times\gamma\simeq P^{2}\times P^{2}$ and $X_{2}=B^{3}\times S^{2}/\alpha\times\gamma\simeq P^{2}$ and $\partial X_{1}=\partial X_{2}=S^{2}\times S^{2}/\alpha\times\gamma=$

$ S^{2}xS^{2}/\gamma\times\gamma$ . From the following commutative diagram with exact rows:

1 $\rightarrow\pi_{1}(NxS^{2})\rightarrow\pi_{1}(X_{1})\rightarrow Z_{2}\rightarrow 1$

$\downarrow\approx$ $\downarrow$ $\Vert$

$1\rightarrow\pi_{1}(P^{3}\times S^{2})\rightarrow\pi_{1}(X)\rightarrow Z_{2}\rightarrow 1$ ,

we see that $\pi_{1}(X_{1})\approx\pi_{1}(X)\approx Z_{2}+Z_{2}$ . By Mayer-Vietoris sequence, $ H_{2}(X_{1} ; Z)\rightarrow$

$H_{2}(X;Z)$ is onto, so that $H_{2}(X;Z)=0$ or $Z_{2}$ . But $H_{2}(X;Z)\rightarrow H_{2}(\pi_{1}(X);Z)$

$(=Z_{2})$ is always onto by H. Hopf [7]. Thus, $H_{2}(X;Z)=Z_{2}$ and $\sigma(X)=1=\sigma(P^{3})$ .
This completes the proof.
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