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\S 1. Introduction and preliminaries.

Unbounded derivations have recently become one of the most important
branches of the theory of $C^{*}$-algebras. Several authors obtained general results
concerning the relation between closed $*$-derivations and strongly continuous
one-parameter groups of $*$-automorphisms (cf. [3], [4], [10]).

S. Sakai ([11, Proposition 1.17]) proved that a non-zero closed derivation $\delta$

in $C(T)$ ( $T$ : the unit circle) commuting with the rotation group $\{\theta_{t}\}_{t\in R}$ of $T$ is
a scalar multiple of the infinitesimal generator of $\{\theta_{t}\}_{t\in R}$ .

In this paper we present a similar result for closed $*$-derivations commuting
with the left translation group on arbitrary compact groups.

A linear map $\delta$ in a $C^{*}$-algebra $A$ is said to be a derivation if it satisfies
the following condition:

(i) the domain $D(\delta)$ of $\delta$ is a dense subalgebra of $A$ and $\delta(fg)=\delta(f)g+f\delta(g)$

$(f, g\in D(\delta))$ . A derivation $\delta$ is said to be a $*$-derivation if it satisfies:
(ii) $f\in D(\delta)\subset\Rightarrow f^{*}\in D(\delta)$ and $\delta(f^{*})=\delta(f)^{*}$ .
Throughout this paper, $G$ will denote a compact group. Let $C(G)$ be the

$C^{*}$-algebra of all complex-valued continuous functions on $G$ . Suppose that $\{g_{t}\}_{t\in R}$

is a continuous one-parameter subgroup of $G$ . We define $\{\tau_{t}\}_{t\in R}$ by the equa-
tion $\tau_{t}(f)(x)=f(xg_{t})$ $(f\in C(G), x\in G, t\in R)$ . Then $\{\tau_{t}\}_{t\in R}$ is a strongly con-
tinuous one-parameter group of $*$-automorphisms of $C(G)$ . Let $\delta$ be the infinite-
simal generator of $\{\tau_{t}\}_{t\in R}$ . Then it is well-known that $\delta$ is a closed $*$-deriva-
tion in $C(G)$ with domain $D(\delta)$ which is a dense $*$-subalgebra of $C(G)$ . Further
we define the left translation group $\{L_{u}\}_{u\in G}$ by the equation $L_{u}(f)(x)=f(u^{-1}x)$

$(f\in C(G), u, x\in G)$ . Then it is clear that $L_{u}\tau_{t}=\tau_{t}L_{u},$ $L_{u}(D(\delta))=D(\delta)$ and $ L_{u}\delta$

$=\delta L_{u}(u\in G, t\in R)$ .
Our goal in this paper is to prove that the converse is true, that is, we

have the following theorem.
THEOREM. Let $G$ be a compact group. Suppose that $\delta$ is a closed $*$-denva-

tion in $C(G)$ commuting with the lefl translation grouP $\{L_{u}\}_{u\in G}$ , that is, $L_{u}(D(\delta))$

$=D(\delta),$ $L_{u}\delta=\delta L_{u}(u\in G)$ . Then there exists a continuous one-parameter subgroup
$\{g_{t}\}_{t\in R}$ of $G$ such that $\delta$ is the infinitesimal generator of the strongly continuous
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one-parameter group of $*- automorphisms\{\tau_{t}\}_{i\in R}$ of $C(G)$ defined by $\tau_{t}(f)(x)=$

$f(xg_{t})(f\in C(G), x\in G, t\in R)$ .
In this theorem we have restricted our attention now to the left translation

group of $G$ . Naturally, we have the analogous result in case of the right trans-
lation group of $G$ .

Our method for proving the theorem is based on the Tannaka’s duality
theorem for arbitrary compact groups and the representative algebras which
generalize the algebra of all trigonometric polynomials on the unit circle.

The author has learned from Prof. S. Sakai that F. Goodman has recently
obtained results in a more general setting. We believe, however, that our method
as well as the result has its own interest for further discussion.

\S 2. Domains of the closed linear operators commuting with the
left translation group.

In this section we characterize the domain of a closed linear operator in
$C(G)$ commuting with the left translation group. In the proof of [11, Proposi-
tion 1.17] the subalgebra $R(T)$ of all trigonometric polynomials in $C(T)(T$ : the
unit circle) is very useful. At first we consider the subalgebra $R(G)$ in $C(G)$

which corresponds to $R(T)$ .
If $\{U, H\}$ is a continuous irreducible unitary representation, then $H$ is neces-

sarily finite-dimensional, and so $U$ is expressed as an element of $C(G)\otimes M_{n}(C)$

for some $n\in N$, where $M_{n}(C)$ is the $C^{*}$-algebra of all $n\times n$ complex matrices.
We will denote by $\hat{G}$ the dual object of $G$ , that is, the set of all equivalence
classes of irreducible unitary representations of $G$ . Further, for every $\lambda\in\hat{G}$ we
choose a representative element $\{U^{\lambda}, H^{\lambda}\}$ and put $N_{\lambda}=\{x(\in G)\mapsto(U^{\lambda}(x)\xi|\eta)$ :
$\xi,$ $\eta\in H^{\lambda}$ }. Then the set $N_{\lambda}$ is independent of the choice of the representative
element $\{U^{\lambda}, H^{\lambda}\}$ . Further the set $N_{\lambda}$ is a finite-dimensional linear subspace
of $C(G)$ stable under the left and right translations of $G$ . A function $f$ in $C(G)$

is called a representative function (or a trigonometric polynomial) on $G$ if it is
a finite linear combination of functions in

$\bigcup_{\lambda\in\hat{G}}N_{\lambda}$
. We dePne $R(G)$ as the set

of all representative functions on G. $R(G)$ is called the representative algebra
of $G$ . We remark that $R(G)$ is a dense $*$-subalgebra of $C(G)$ . Further, if we
choose an orthonormal basis $\{e_{i}^{\lambda}\}_{i=1}^{d(\lambda)}$ of $H^{\lambda}$ and define the functions
$\{f_{ij}^{(\lambda)}\}_{\lambda\in\hat{G},1\leqq i,j\leqq d(\lambda)}$ by the equation $f_{ij}^{(\lambda)}=(U^{\lambda}(x)e_{j}^{\lambda}|e_{i}^{\lambda})(x\in G)$ , then we have

(2.1) $\int_{G}f\ell_{j}^{\lambda)}(t)\overline{f_{pq}^{(\mu)}(t})d\nu(t)=\{$

$\frac{1}{d(\lambda)}$ if $\lambda=\mu,$ $i=p$ and $j=q$ ,

$0$ otherwise ,

and $\{\prime d(\lambda)f_{ij}^{(\lambda)}\}_{\lambda\in\hat{G},i,j=1,2}\ldots.d(\lambda)$ is a complete orthonormal system in $L^{2}(G, \nu)$
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where $\nu$ is the normalized Haar measure on $G$ (cf. [7], [14], etc.).

PROPOSITION 2.1. Let $G$ be a compact group. SuPpose that $T$ is a closed
linear operatOr in $C(G)$ with dense domain $D(T)$ and that $T$ commutes with the
left translation group $\{L_{u}\}_{u\in G}$ , that is, $L_{u}(D(T))=D(T)$ and $L_{u}T=TL_{u}(u\in G)$ .
Then the domain $D(T)$ of $T$ contains the representatjve algebra $R(G)$ of $G$ .
Further, for every $\lambda\in C$ , the space $N_{\lambda}$ is stable under $T$ , more precisely, if $U=$

$\{f_{ij}\}_{i,j=1.2,\ldots,n}(\in C(G)\otimes M_{n}(C))$ is an irreducible unitary representatjOn of $G$ , then
there exists a matrix $\Lambda=\{\lambda_{ij}\}_{i.j=1,2\ldots.n}(\in M_{n}(C))$ such that

(2.2) $T(f_{ij})=\sum_{k=1}^{n}\lambda_{kj}f_{ik}$ $(i, j=1,2, \cdots , n)$ .

PROOF. To prove the proposition, it suffices to show that for every irre-
ducible unitary representation $U=\{f_{ij}\}_{i,j=1,2,\ldots,n}$ , the coordinate functions $f_{ij}$

belong to $D(T)$ and that there exists a matrix $\Lambda$ satisfying the relation (2.2).

Let $U=\{f_{ij}\}_{i,j=1,2,\ldots,n}$ be such a representation of $G$ . For every $f,$ $\phi\in C(G)$ , we
dePne the convolution $F(\phi:f)$ by the equation

(2.3) $F(\phi:f)=\int_{G}\phi(t)L_{t}(f)d\nu(t)$ .

The right-hand side of (2.3) is the Bochner integral of a continuous map of $G$

into the Banach space $C(G)$ . Hence we have $F(\phi:f)\in C(G)$ .
Now we consider in case $\phi=f_{ij}$ and $f=f_{pq}$ $(i, j, p, q=1,2, \cdots , n)$ . By the

orthogonality relation

(2.4) $\int_{G}f_{\alpha\beta}(t)f_{\gamma\tau}(t)d\nu(t)=\frac{1}{n}\delta_{\alpha\gamma}\delta_{\beta\tau}$ ( $\alpha,$ $\beta,$ $\gamma,$ $\tau=1,2,$ $\cdots$ , n)

and by the equation

(2.5) $L_{t}(f_{\alpha\beta})(s)=f_{\alpha\beta}(t^{-1}s)=\sum_{\gamma=1}^{n}f_{a\gamma}(t^{-1})f_{\gamma\beta}(s)$ $(\alpha, \beta=1,2, \cdots, n, s, t\in G)$ ,

we obtain the following relation

(2.6) $F(f_{ij} : f_{pq})=\delta_{jp}f_{iq}$ ( $i,$ $j,$ $p,$ $q=1,2,$ $\cdots$ , n)

Next, we consider $F(\phi:f)$ for $\phi=f_{ij}$ ( $i,$ $j=1,2,$ $\cdots$ , n) and for every $f$ in
$C(G)$ . We have

$L_{s}F(f_{ij} : f)=L_{s}(\int_{G}f_{ij}(t)L_{t}(f)d\nu(t))$

$=\int_{G}f_{ij}(t)L_{st}(f)d\nu(t)=\int_{G}f_{ij}(s^{-1}t)L_{t}(f)d\nu(t)$

$=\int_{G}\sum_{k=1}^{n}f_{ik}(s^{-1})f_{kj}(t)L_{t}(f)d\nu(t)$
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$=\sum_{k=1}^{n}f_{\ell k}(s^{-1})F(f_{kj} : f)$ , $(s\in G)$ ,

and so

$F(f_{ij} : f)=\sum_{k=1}^{n}F(f_{kj} : f)(e)f_{tk}$ $(i, j=1,2, \cdots n)$ .

Denoting the scalar product in $L^{2}(G, v)$ by $(|)_{L2(G)}$ , we have

$F(f_{kj} : f)(e)=(f|f_{jk})_{L^{2}(G)}$ .
Thus we have the following equation for every $f\in C(G)$ ,

(2.7) $F(f_{ij} : f)=\sum_{k=1}^{n}(f|f_{jk})_{L^{2}(G)}f_{ik}$ $(i, j=1,2, \cdots n)$ .

For every $f\in D(T)$ , we define $\Vert|f\Vert|_{T}$ by the equation

$\Vert|f\Vert|_{T}=\sup_{t\in G}p\Vert\left(\begin{array}{ll}f(t) & T(f)(t)\\0 & f(t)\end{array}\right)\Vert$ .

As $T$ is closed, $D(T)$ is a complex Banach space with respect to the norm $\Vert|\Vert|_{T}$ .
Next we consider $F(\phi:f)$ for $f\in D(T)$ and $\phi\in C(G)$ . Since the map $t(\in G)->$

$\phi(t)L_{t}(f)(\in D(T))$ is continuous with respect to the norm $\Vert|\Vert|_{T}$ on $D(T),$ $F(\phi:f)$

belongs to $D(T)$ . Since the operator $T$ is a bounded linear operator of the
Banach space $(D(T), \Vert|\Vert|_{T})$ into the Banach space $(C(G), \Vert\Vert_{unif}.)$ , we have

$T(\int_{G}\phi(t)L_{t}(f)d\nu(t))=\int_{G}\phi(t)TL_{t}(f)d\nu(t)=\int_{G}\phi(t)L_{t}T(f)d\nu(t)$ .

Hence the following equation holds for every $f\in D(T)$ and for every $\phi\in C(G)$ ,

(2.8) $TF(\phi : f)=F(\phi:T(f))$ .
Specially, for every $f\in D(T)$ the function $F$ ( $f_{ij}$ : f) belongs to $D(T)$ and we
have the equation

(2.9) $TF(f_{ij} : f)=F(f_{ij} : T(f))$ $(i, j=1,2, \cdots , n)$ .

Next, using the above relation, we show that the functions $\{f_{tj}\}_{t,j=1.2,\ldots,n}$

belong to $D(T)$ . The orthogonality relations (2.4) imply that the functions
$\{f_{ij}\}_{i,j=1,2,\ldots,n}$ are linearly independent in $L^{2}(G, \nu)$ and so in $C(G)$ . Choose $\alpha$ as
an arbitrary number in $\{$ 1, 2, $\cdots$ , $n\}$ . We suppose that there exist linear com-
binations $\{g_{p}\}_{p=1,2,\ldots n}$ of functions $f_{\alpha 1},$ $f_{\alpha 2},$ $\cdots$ , $f_{\alpha n}$ such that

(2.10) $g_{p}=\sum_{q=1}^{n}c_{pq}f_{\alpha q}\in D(T)$ $(p=1,2, \cdots n)$

and that
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(2.11) det $((c_{pq})_{p,q=1.2\ldots..n})\neq 0$ .
Putting $C=(c_{pq})_{p,q=1,2,\ldots,n}$ and $C^{-1}=(b_{\beta\gamma})_{\beta,\gamma=1,2\ldots..n}$ , we have $\sum_{\gamma=1}^{n}b_{\beta\gamma}g_{\gamma}=f_{a\beta}(\beta=$

$1,2,$ $\cdots$ , $n$ ). Hence we obtain $(f_{aj})_{j=1,8\ldots..n}\subseteqq D(T)$ . Therefore to prove that
$(f_{ij})_{i,j=1.2\ldots.,n}\subseteqq D(T)$ , it suffices to prove that for every $\alpha\in(1,2, \cdots , n)$ , there
exist coefficients $(c_{pq})_{p,q=1,2,\ldots,n}$ satisfying (2.10) and (2.11). For $h_{1},$ $h_{2},$ $\cdots$ , $h_{n}$ in
$C(G)$ , we define $D(h_{1}, h_{2}, \cdots , h_{n})$ by the equation

$D(h_{1}, h_{2}, \cdots , h_{n})=\det(((h_{i}|f_{1j})_{L^{2}(G)})_{i,j=1,2,\ldots,n})$

$=\sum_{\sigma\in s_{n}}sgn\sigma(h_{1}|f_{1\sigma(1)})_{L2(G)}(h_{2}|f_{1\sigma(2)})_{L^{2}(G)}\cdots(h_{n}|f_{1\sigma(n)})_{L^{2}(G)}$ .

It is clear that the map $D$ is continuous and that $D(T)\times D(T)\times\cdots\times D(T)$ is
dense in $C(G)\times C(G)\times\cdots\times C(G)$ . Since $D(f_{11}, fi_{2}, \cdots , f_{1n})=(1/n)^{n}\neq 0$ , there
exist functions $\tilde{h}_{1},\tilde{h}_{2},$

$\cdots$ , $\tilde{h}_{n}$ in $D(T)$ such that $D(\tilde{h}_{1},\tilde{h}_{2}, \cdots , \tilde{h}_{n})\neq 0$ . Thus we
have

$F(f_{\alpha 1} : \tilde{h}_{p})=\sum_{q=1}^{n}(\tilde{h}_{p}|f_{1q})_{L^{2}(G)}f_{aq}\in D(T)$ $(p=1,2, \cdots n)$ .

Putting $c_{pq}=(\tilde{h}_{p}|f_{1q})_{L^{2}(G)}$ ( $p,$ $T^{-}-1,2,$ $\cdots$ , n) and $g_{p}=\sum_{q=1}^{n}c_{pq}f_{\alpha q}(p=1,2, \cdots , n)$ ,

we have $(g_{p})_{p=1,2,\ldots,n}\subseteqq D(T)$ and $\det((c_{pq})_{p,q=1,8\ldots.,n})\neq 0$ . Hence we obtain
$(f_{ij})_{i.f=1,8,\ldots,n}\subseteqq D(T)$ . Moreover we have for every $i,$ $j=1,2,$ $\cdots$ , $n$ ,

$T(f_{ij})=nTF(f_{i1} : f_{1j})=nF(f_{i1} : T(f_{1j}))=n\sum_{q=1}^{n}(T(f_{1j})|f_{1q})_{L^{2}(G)}f_{iq}$ .

Putting $\lambda_{qj}=(T(f_{1j})|f_{1q})_{L2(G)}(q, j=1,2, \cdots , n)$ , we obtain

$T(f_{ij})=\sum_{q=1}^{n}\lambda_{qj}f_{iq}$ $(i, j=1,2, \cdots n)$ .
This completes the proof.

DEFINITION 2.2. Let $E$ be a Banach space and let $T$ be a closed densely
dePned linear operator on $E$ with the domain $D(T)$ of $T$ . A linear subspace
$D_{0}$ of $D(T)$ is said to be a core for $T$ if $\{(x, Tx):x\in D_{0}\}$ is dense in the graph
$\{(x, Tx):x\in D(T)\}$ of $T$ .

We recall that if $T$ is a closed linear operator, then $T$ is completely deter-
mined by a core for $T$ .

Next we show that $R(G)$ is a core for every closed densely defined linear
operator in $C(G)$ commuting with the left translation group of $G$ . To prove
this we need the following lemma.

LEMMA 2.3. Let $G$ be a compaci group and let $D$ be a dense linear subspace

of $C(G)$ which is closed under the $*- operation$ . Then there exists a family of
functions $\{\phi_{\gamma}\}_{\gamma\in\Gamma}$ in $D$ subordinate to a directed set $\Gamma$ satisfying the following
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conditions:

(2.12) $\phi_{\gamma}\geqq 0$ $(\gamma\in\Gamma)$

(2.13) $\int_{G}\phi_{\gamma}(t)d\nu(t)=1$ $(\gamma\in\Gamma)$

(2.14) if $N(e)$ is an arbitrary open neighborhood of the identity

$e$ of $G$ , we have $\int_{G\backslash N(e)}\phi_{\gamma}(t)d\nu(t)\rightarrow 0$ .

PROOF. Let $\{N_{v}(e)\}_{v\in V}$ be a fundamental system of open neighborhood of $e$ .
Define an order on $V$ by the inclusion, that is, $v^{\prime}\leqq v$ if and only if $N_{v}(e)\subseteqq N_{v^{\prime}}(e)$ .
Then $V$ is a directed set. Put $\Gamma=V\times N$ and define an order on $\Gamma=V\times N$ by
recognizing $(v^{\prime}, n^{\prime})\leqq(v, n)$ equivalent to $N_{v}(e)\subseteqq N_{v^{\prime}}(e)$ and $n^{\prime}\leqq n$ . Then $\Gamma$ is also
a directed set. For every $v\in V$ there exists a function $\psi_{v}\in C(G)$ such that

(2.15) $\psi_{v}\geqq 0$

(2.16) $\int_{G}\psi_{v}(s)d\nu(s)=1$

\langle 2.17) $\psi_{v}(G\backslash N_{v}(e))=\{0\}$ .

In fact, by Urysohn’s lemma, we can get a function $\psi_{v}^{\prime}\in C(G)$ such that $0\leqq\psi_{v}^{\prime}$ ,

$\psi_{v}^{\prime}(e)=1$ and $\psi_{v}^{\prime}(G\backslash N_{v}(e))=\{0\}$ . Then we have $\int_{G}\psi_{v}^{\prime}(t)dv(t)>0$ . We obtain a

function $\psi_{v}$ satisfying conditions $(2.15)-(2.17)$ by multiplying $\psi_{v}^{\prime}$ by a suitable
positive real number. Since $D$ is a dense $*$-subspace of $C(G)$ , for every $v\in V$

and for every $\epsilon>0$ there exists a function $\phi_{v}^{\prime}$

, $.\in D$ such that $\overline{\phi}_{v,\text{\’{e}}}^{\prime}=\phi_{v}^{\prime}$

, , and that
$\Vert\phi_{v,\epsilon}^{\prime}-(\psi_{v}+\epsilon)\Vert_{unif}.<\epsilon/2$ . Then we have the following inequalities; $0\leqq\phi_{v}^{\prime}$

, ,,

$1-\epsilon/2<\int_{G}\phi_{v.\text{\’{e}}}^{\prime}(t)d\nu(t)<1+3\epsilon/2$ and $0\leqq\int_{G\backslash N_{v}(e)}\phi_{v,\epsilon}^{\prime}(t)d\nu(t)\leqq 3\epsilon/2$ . If we take $\epsilon$

as $0<\epsilon<1/3$ , and put

$\phi_{v\epsilon}=\frac{1}{\int_{G}\phi_{v.\epsilon}^{\prime}(s)d\nu(s)}\phi_{v,\epsilon}^{\prime}$

,

then we have the following properties:

(2.18) $\phi_{v,\epsilon}\in D$ ,

(2.19) $0\leqq\phi_{v,\epsilon}$ ,

(2.20) $\int_{G}\phi_{v,\epsilon}(t)dv(t)=1$ ,

(2.21) $\int_{G\backslash N_{v}(e)}\phi_{v,\text{\’{e}}}(t)dv(t)<2\epsilon$ .
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Setting $\phi_{(v.n)}=\phi_{v.1/n}$ , we obtain a family $\{\phi_{\gamma}\}_{\gamma\in\Gamma}$ satisfying conditions (2.12)-
(2.14). This completes the proof.

PROPOSITION 2.4. Let $G$ be a compaci group. SuPpose that $T$ is a closed
densely defined linear operatOr in $C(G)$ commuting with the left translation group
$\{L_{u}\}_{u\in G}$ of G. Then $R(G)$ is a core for $T$ .

PROOF. We use the notations as in the proof of Proposition 2.1. By equa-
tion (2.7), we have for every $\phi\in R(G)$ and for every $f\in C(G)$

(2.22) $F(\phi:f)\in R(G)$ .
Since $R(G)$ is a dense $*$-subalgebra of $C(G)$ , we can choose a net $\{\phi_{\gamma}\}_{\gamma\in\Gamma}$ in
$R(G)$ satisfying the conditions $(2.12)-(2.14)$ . Now we show that for every $ f\in$

$C(G)F$ ( $\phi_{\gamma}$ : f) converges to $f$ in the sense of the uniform norm on $C(G)$ . In
fact, for every $\gamma\in\Gamma$, we have

$\Vert F(\phi_{\gamma} : f)-f\Vert=\sup_{s\in G}|\int_{G}\phi_{\gamma}(t)L_{t}(f)(s)d\nu(t)-f(s)|$

$=\sup_{s\in G}|\int_{G}\phi_{\gamma}(t)\{f(t^{-1}s)-f(s)\}d\nu(t)|$ .

For every $\epsilon>0$ , there exists an open neighborhood $N(e)$ of the identity $e$ of $G$

such that $|f(t^{-1}s)-f(s)|<\epsilon(t\in N(e), s\in G)$ . Then we have

$\sup_{s\in G}|\int_{N(e)}\phi_{\gamma}(t)\{f(t^{-1}s)-f(s)\}d\nu(t)|<\epsilon\int_{N(e)}\phi_{\gamma}(t)d\nu(t)<\epsilon$ .

On the other hand, condition (2.14) implies

$\sup_{s\in G}|\int_{G\backslash N(e)}\phi_{\gamma}(t)\{f(t^{-1}s)-f(s)\}dv(t)|$

$\leqq 2\Vert f\Vert_{unif}.\int_{G\backslash N(e)}\phi_{\gamma}(t)d\nu(t)\rightarrow 0$ .

Thus we have for every $f\in C(G)$

(2.23) $\Vert F(\phi_{\gamma} : f)-f\Vert_{unif}$ . $\rightarrow 0$ .

By (2.8) and (2.23), for every $f\in D(T)$ we have

$\Vert TF(\phi_{\gamma} : f)-Tf\Vert_{unif}.=\Vert F(\phi_{\gamma} : Tf)-Tf\Vert_{unif}$ . $\rightarrow 0$ .
Consequently, by (2.22) we have the proposition. This completes the proof.

\S 3. Proof of Theorem.

In this final section we comolete the proof of the theorem by using Tan-
naka’s duality theorem.
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At first we consider the following general fact. Let $\Omega$ be a compact Haus-
dorff space and let $\delta$ be a $*$-derivation in $C(\Omega)$ whose domain $D(\delta)$ contains 1.
For every natural number $n$ , we define $\delta_{n}$ by

$\delta_{n}n1n2$

$\delta(f_{11})$ $\delta(f_{12})\cdots\delta(f_{1n})$

for $f_{ij}\in D(\delta)(i, j=1,2, \cdots, n)$ . Then $D(\delta_{n})$ is a dense $*$-subalgebra of $C(\Omega)$

$\otimes M_{n}(C)$ . If $\delta$ is closed, then $\delta_{n}$ is also closed. The family $\{\delta_{n}\}_{n\in N}$ has the
following fundamental properties:

(3.1) if $A\in M_{n}(C)$ , then $1_{\Omega}\otimes A\in D(\delta_{n})$ and $\delta(1_{\Omega}\otimes A)=0$ ; and if $A\in GL(n:C)$

and $F=(f_{ij})_{i,j=1,2\ldots.,n}\in D(\delta_{n})$ , then $(1_{\Omega}\otimes A)^{-1}F(1_{\Omega}\otimes A)\in D(\delta_{n})$ and
$\delta_{n}((1_{\Omega}\otimes A)^{-1}F(1_{\Omega}\otimes A)=(1_{\Omega}\otimes A)^{-1}\delta_{n}(F)(1_{\Omega}\otimes A)$ ;

(3.2) if $k\in N$ and $F_{1}\in D(\delta_{n_{1}}),$ $F_{2}\in D(\delta_{n_{2}}),$ $\cdots$ , $F_{k}\in D(\delta_{n_{k}})$ , then
$F_{1}\oplus F_{2}\oplus\cdots\oplus F_{k}\in D(\delta_{n_{1}+n_{2}+\cdots+n_{k}})$ and $\delta_{n_{1}+n_{2}+\cdots+n_{k}}(F_{1}\oplus F_{2}\oplus\cdots\oplus F_{k})$

$=\delta_{n_{1}}(F_{1})\oplus\delta_{n_{2}}(F_{2})\oplus\cdots\oplus\delta_{n_{k}}(F_{k})$ ;

(3.3) if $F=(f_{ij})_{i,j=l,2,\ldots,n}\in D(\delta_{n})$ . then $F=(\overline{f_{ij}})_{i,j=1,2,\cdots n}\in D(\delta_{n})$ and $\delta_{n}(F)=\overline{\delta_{n}(F)}$ ;

(3.4) if $n,$ $m\in N$ and $F\in D(\delta_{n}),$ $\Phi\in D(\delta_{m})$ , then $F\otimes\Phi\in D(\delta_{nm})$ and
$\delta_{nm}(F\otimes\Phi)=\delta_{n}(F)\otimes\Phi+F\otimes\delta_{m}(\Phi)$ .

Now we return to the proof of the theorem. Let $G$ be a compact group.
Suppose that $\delta:D(\delta)-\rightarrow C(G)$ is a closed $*$-derivation commuting with the left
translation group $\{L_{u}\}_{z\iota\in G}$ , that is, $L_{u}(D(\delta))=D(\delta)$ and $L_{u}\delta=\delta L_{u}(u\in G)$ . To
prove the theorem, by Propositions 2.1 and 2.4, it suffices to show that there
exists a continuous one-parameter subgroup $\{g_{t}\}_{t\in R}$ of $G$ having the following
properties: if we set $\tau_{t}(f)(x)=f(xg_{t})(f\in C(G), x\in G, t\in R)$ , and if we define $\tilde{\delta}$

as the infinitesimal generator of the strongly continuous one-parameter group
$\{\tau_{t}\}_{t\in R}$ of $*$-automorphisms of $C(G)$ , we have $\delta(f)=\tilde{\delta}(f)$ for every $f\in R(G)$ .

We denote by $\overline{G}$ the set of all continuous matricial representations of $G$ .
For $D\in\overline{G}$ , we denote by $d(D)$ the degree of $D$ . If $U\in\overline{G}$ is an irreducible uni-
tary representation with $d(U)=n$ , then by Proposition 2.1, $U$ belongs to $D(\delta_{n})$

and there exists a matrix $\Lambda(U)\in M_{n}(C)$ such that $\delta_{n}(U)=U\Lambda(U)$ . Further, if
$V\in\overline{G}$ is a unitary representation with $d(V)=n$ , then $V$ is decomposed into a
direct sum of irreducible unitary representations $U_{1},$ $U_{2},$ $\cdots$ , $U_{k}$ of $G$ , that is,
$V(x)=U_{1}(x)\oplus U_{2}(x)\oplus\cdots\oplus U_{k}(x)$ $(x\in G)$ (cf. [7], [14], etc.). Then we have
$V\in D(\delta_{n})$ and
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$\delta_{n}(V)=\delta_{d(U_{1})}(U_{1})\oplus\delta_{a(U_{2})}(U_{2})\oplus\cdots\oplus\delta_{d(U_{k})}(U_{k})$

$=(U_{1}\oplus U_{2}\oplus\cdots\oplus U_{k})(\Lambda(U_{1})\oplus\Lambda(U_{2})\oplus\cdots\oplus\Lambda(U_{k}))$

$=V(\Lambda(U_{1})\oplus\Lambda(U_{2})\oplus\cdots\oplus\Lambda(U_{k}))$ .
Thus, by putting $\Lambda(V)=\Lambda(U_{1})\oplus\Lambda(U_{2})\oplus\cdots\oplus\Lambda(U_{k})$ , we have $\delta_{n}(V)=V\Lambda(V)$ .
Moreover, if $D$ is an arbitrary element in $\overline{G}$ with $d(D)=n$ , then there exists a
matrix $P\in GL(n:C)$ and a unitary representation $V\in\overline{G}$ such that $D(x)=P^{-1}V(x)P$

$(x\in G)$ (cf. [8], etc.). Then we have $D\in D(\delta_{n})$ and $\delta_{n}(D)=P^{-1}\delta_{n}(V)P=P^{-1}V\Lambda(V)P$

$=(P^{-1}VP)(P^{-1}\Lambda(V)P)=D(P^{-1}\Lambda(V)P)$ . Hence by putting $\Lambda(D)=P^{-1}\Lambda(V)P$, we

have $\delta_{n}(D)=D\Lambda(D)$ . It is clear that the map $\Lambda$ : $D(\in\overline{G})-*\Lambda(D)(\in\bigcup_{n=1}^{\infty}M_{n}(C))$ is

uniquely determined by the equation $\delta_{n}(D)=D\Lambda(D)(D\in\overline{G})$ .
Next we show that for every $t\in R$ , the map $D(\in\overline{G})\rightarrow\exp(t\Lambda(D))$

$(\in\bigcup_{n=1}^{\infty}GL(n;C))$ has the following properties;

(3.5) if $D\in\overline{G}$ with $d(D)=n$ and $P\in GL(n:C)$ , then
exp $(t\Lambda(P^{-1}DP))=P^{-1}$ exp $(t\Lambda(D))P$ ;

(3.6) if $k\in N$ and $D_{1},$ $D_{2},$ $\cdots$ , $D_{k}\in\overline{G}$ , then exp $(t\Lambda(D_{1}\oplus D_{2}\oplus\cdots\oplus D_{k}))$

$=\exp(t\Lambda(D_{1}))\oplus\exp(r\Lambda(D_{2}))\oplus\cdots\oplus\exp(t\Lambda(D_{k}))$ ;

(3.7) if $D\in\overline{G}$ , then exp $(t\Lambda(\overline{D}))=\overline{\exp(t\Lambda(D))}$ ;

(3.8) if $D_{1},$ $D_{2}\in\overline{G}$ , then exp $(t\Lambda(D_{1}\otimes D_{2}))=\exp(t\Lambda(D_{1}))\otimes\exp(t\Lambda(D_{2}))$ .

In fact, the properties $(3.1)-(3.4)$ of the family of $*$-derivations $\{\delta_{n}\}_{n\in N}$ ensure
that the map $D(\in\overline{G})-\Lambda(D)(\in\bigcup_{n=1}^{\infty}M_{n}(C))$ has the following properties;

(3.9) if $D\in\overline{G}$ with $d(D)=n$ and $P\in GL(n:C)$ , then $\Lambda(P^{-1}DP)=P^{-1}\Lambda(D)P$ ;

(3.10) if $k\in N$ and $D_{1},$ $D_{2},$ $\cdots$ , $D_{k}\in\overline{G}$ , then $\Lambda(D_{1}\oplus D_{2}\oplus\cdots\oplus D_{k})$

$=\Lambda(D_{1})\oplus\Lambda(D_{2})\oplus\cdots\oplus A(D_{k})$ ;

(3.11) if $D\in\overline{G}$ , then $\Lambda(\overline{D})=\overline{\Lambda(D)}$ ;

(3.12) if $D_{i}\in\overline{G}$ with $d(D_{i})=n_{i}(i=1,2)$ , then $\Lambda(D_{1}\otimes D_{2})$

$=\Lambda(D_{1})\otimes I_{n_{2}}+I_{n_{1}}\otimes\Lambda(D_{2})$ .
On the other hand, the above properties $(3.9)-(3.12)$ of the map $\Lambda$ ensure

the properties $(3.5)-(3.8)$ of the map $ D(\in\overline{G})\rightarrow$exp $(t\Lambda(D))(\in n=1UGL(n\infty, C))$ . By

Tannaka’s duality theorem ([15]) for every $t\in R$ , there uniquely exists an ele-
ment $g_{t}$ of $G$ such that

(3.13) exp $(t\Lambda(D))=D(g_{t})$ for every $D\in\overline{G}$ .
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For every $\lambda\in\hat{G}$ , we choose a representative element $\{U^{\lambda}, H^{\lambda}\}$ . Setting $H=$

$\bigoplus_{\lambda\in\hat{G}}H^{\lambda}$ and $J(x)=\bigoplus_{\lambda\in\hat{G}}U^{\lambda}(x)(x\in G)$ . $J$ is continuous for the weak operator

topology on the operator algebra $B(H)$ . For every $x\in G$ such that $x\neq e$ , there
exists an element $\lambda\in\hat{G}$ such that $ U^{\lambda}(x)\neq I_{H}\lambda$ (cf. [7] etc.). Thus $J$ is a faithful
representation. For every $\lambda\in\hat{G}$ , by Proposition 2.1, there exists a linear operator
$\Lambda(U^{\lambda})\in B(H^{\lambda})$ such that $\delta_{d(U)}\lambda(U^{\lambda})=U^{\lambda}\Lambda(U^{\lambda})$ . Since $\Lambda(U^{\lambda})^{*}+\Lambda(U^{\lambda})=$

$\delta_{d(U)}\lambda(U^{\lambda*}U^{\lambda})=\delta_{d(U)}\lambda(1_{d(U)}\lambda)=0,$ $\Lambda(U^{\lambda})$ is skew-hermitian. On the other hand,

by (3.13) we have exp $(t\Lambda(U^{\lambda}))=U^{\lambda}(g_{t})$ for every $\lambda\in G$ and for every $t\in R$ . We
define a linear subspace $D_{0}$ of Hby $D_{0}=\{\xi=\bigoplus_{\lambda\in L}\xi_{\lambda}$ : $\xi_{\lambda}\in H^{\lambda}(\lambda\in L),$ $L$ is a finite

subset of $\hat{G}$ }. Further, we define a one-parameter family of linear operators of
$D_{0}$ into $D_{0}$ by $O_{t}(\xi)=\iota y_{t}(\bigoplus_{\lambda\in L}\xi_{\lambda})=\bigoplus_{\lambda\in L}$ exp $(t\Lambda(U^{\lambda}))\xi_{\lambda}$ for every $\xi=\bigoplus_{\lambda\in L}\xi_{\lambda}\in D_{0}$ .

Then we have the following relations $0_{0}=id_{D_{0}}$ , $U_{s+t}=C_{s}C_{t}$ $(s, t\in R)$ and
$(O_{t}\xi|U_{t\eta)_{H}=(\xi}|\eta)_{H}(\xi, \eta\in D_{0}, t\in R)$ . Thus there exists a one-parameter group
$\{U_{t}\}_{t\in R}$ of unitary operators on $H$ such that $ U_{t}\xi=0_{t}\xi$ for every $\xi\in D_{0}$ and for
every $t\in R$ . Moreover $\{U_{t}\}_{t\in R}$ is continuous for the weak operator topology.
On the other hand, $H_{\lambda}$ is stable under $\{U_{t}\}_{t\in R}$ and the restriction $U_{t1H_{\lambda}}$ is equal
to $U^{\lambda}(g_{t})(\lambda\in C, t\in R)$ , and this implies that $J(g_{t})=U_{t}(t\in R)$ . Since $\{U_{t}\}_{t\in R}$ is
a one-parameter group and $J$ is faithful, $\{g_{t}\}_{t\in R}$ is a one-parameter subgroup
of $G$ . Further since $G$ is compact, $G$ is homeomorphic to the image $J(G)$ of $J$.
Therefore the weak continuity of $\{U_{t}\}_{t\in R}$ implies the continuity of $\{g_{t}\}_{t\in R}$ .

Now we define $\{\tau_{t}\}_{\iota\in R}$ by the equation $\tau_{t}(f)(x)=f(xg_{t})(f\in C(G), x\in G, t\in R)$ .
It is clear that $\{\tau_{t}\}_{t\in R}$ is a strongly continuous one-parameter group of $*$-auto-
morphisms of $C(G)$ commuting with $\{L_{u}\}_{u\in G}$ . Then the infinitesimal generator
$\tilde{\delta}$ of $\{\tau_{t}\}_{t\in R}$ commutes with $\{L_{u}\}_{u\in G}$ . By Proposition 2.1, $R(G)$ is contained in
$D(\delta)\cap D(\tilde{\delta})$ . For every $\lambda\in\hat{G}$ , we have

$5_{a(U^{\lambda})}(U^{\lambda})(x)=\lim_{t\rightarrow 0}\frac{1}{t}\{U^{\lambda}(xg_{t})-U^{\lambda}(x)\}$

$=U^{\lambda}(x)\lim_{t\rightarrow 0}\frac{1}{t}\{U^{\lambda}(g_{t})-I_{H^{\lambda}}\}$

$=U^{\lambda}(x)\Lambda(U^{\lambda})=\delta_{d(U^{\lambda})}(U^{\lambda})(x)$ $(x\in G)$ .
Therefore we obtain $\delta(f)=\tilde{\delta}(f)$ for every $f\in R(G)$ . Hence by Proposition 2.4,
we have $\delta=\tilde{\delta}$ . This completes the proof.
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Added in Proof.

After having finished this paper, independently, the author received from
Prof. F. M. Goodman his recent preprint, “Translation invariant closed $*$-deriva-
tions”, in which we found the results cited in the introduction. The author is
grateful to Prof. S. Sakai for pointing him about Goodman’s results and to Prof.
F. M. Goodman for sending him the preprint.
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