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The purpose of this paper is to give an affirmative answer for the follow-
ing conjecture of $Kunz^{*)}$ ;

Let $R$ be a regular local ring of characteristic $p>0$ and let $R^{\prime}$ be a regular
subring of $R$ such that $R^{\prime}$ contains $R^{p}$ and such that $R$ is a finite R’-module.
Does $R$ have a -basis over $R^{\prime p}$

First, we prove the conjecture for the case that $R$ is a finite $R^{p}$-module. In
this case, we have a technical lemma (see Lemma 4 in \S 2) which asserts that
$R$ has a p-basis over $R^{\prime}$ if and only if $R^{\prime}$ is regular and $R^{\prime}$ has a $P$ -basis over
$R^{p}$ , where $R$ and $R^{\prime}$ are the same as stated in the above conjecture. There-
fore, to prove the conjecture in this case, it is sufficient to show that $R^{\prime}$ has a
p-basis over $R^{p}$ .

On the other hand, S. Yuan [10] defined the inseparable Galois extension
as follows;

DEFINITION. Let $A$ be a ring of characteristic $p$ . An A-algebra $C$ is called
a Galois extension of $A$ provided

(i) $C$ is finitely generated projective as A-module,
(ii) $t^{p}\in A$ for all $t\in C$ ,
(iii) Given any prime ideal $q$ in $C$ , then $C_{q}$ admits a $P$-basis over $A_{A\cap q}$ .
With this definition, he proved the following;

If $A\subset B\subset C$ is a tower of rings such that $C$ is a Galois extension both over
$A$ and $B$ , then $B$ is a Galois extension over $A$ (cf. Theorem 11 of [10]).

However, the proof does not depend on the assumption that $C_{q}$ admits a p-
basis over $B_{B\cap q}$ . If $R$ is a regular local ring such that $R$ is a finite $R^{p}$-module
and if $R^{\prime}$ is an intermediate regular local ring between $R$ and $R^{p}$ , then $R$ is
a Galois extension of $R^{p}$ (cf. Corollary 3. 2 of [5]) and $R$ is a finite free $R^{\prime}-$

module (cf. Theorem 46 of [6]). Hence, Yuan’s proof can be used to prove the
assertion that $R^{\prime}$ has a $P$ -basis over $R^{p}$ . For convenience, we restate Yuan’s
proof with our notations in our proof (see \S 3).

The general case of the conjecture is reduced to the case that $R$ is a finite

$*)$ Professor H. Matsumura has kindly communicated to us that he had dropped the
assumption $R^{\prime}\supset R^{p}$ for the conjecture of Kunz described in \S 38 of [6] by mistake.
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$R^{p}$-module by the completion and the immersion to a power series ring over
an algebraically closed field (see \S 3).

The authors would like to express their hearty thanks to Professor H. Ma-
tsumura for his encouragement and helpful suggestions.

\S 1. Notations and preliminaries.

In this paper, $p$ is always a prime number and all rings are commutative
with identity. A ring is called a local ring if it is noetherian and has only one
maximal ideal. Let $S$ be a ring of characteristic $p$ and let $S^{p}$ denote the sub-
ring $\{x^{p}|x\in S\}$ . Let $S^{\prime}$ be a subring of $S$ . A subset $\Gamma\subset S$ is said to be p-
independent over $S^{\prime}$ , if the monomials $b_{1}^{e_{1}}\cdots b_{n}^{e_{n}}$ , where $b_{1},$ $\cdots$ , $b_{n}$ are distinct
elements of $\Gamma$ and $0\leqq e_{i}\leqq p-1$ , are linearly independent over $S^{p}[S^{\prime}]$ . $\Gamma$ is called
a $P$ -basis of $S$ over $S^{\prime}$ if it is $P$ -independent over $S^{\prime}$ and $S^{p}[S^{\prime}, \Gamma]=S$ .

From now on throughout this paper, $R$ will denote (except in Lemma 1) a
local domain of characteristic $p,$ $\mathfrak{m}$ the maximal ideal of $R,$ $k$ the residue field
of $R$ and $K$ the quotient field of $R$ . We denote the Krull dimension of $R$ by
dim $R$ and we put dim $R=r$ . We set $\mathfrak{m}^{(p)}=\{m^{p}|m\in \mathfrak{m}\}$ . Since $\mathfrak{m}\cap R^{p}=\mathfrak{m}^{(p)}$ ,
the natural map $R^{p}/\mathfrak{m}^{(p)}\rightarrow R/\mathfrak{m}=k$ is injective and its image is equal to $(R/\mathfrak{m})^{p}$

$=k^{p}=\{\alpha^{p}|\alpha\in k\}$ . In view of the above injection, the residue field $R^{p}/\mathfrak{m}^{(p)}$ of
$R^{p}$ can be identified with the subfield $k^{p}$ of $k$ . $R^{\prime}$ will denote an intermediate
local ring between $R$ and $R^{p},$ $\mathfrak{m}^{\prime}$ the maximal ideal, $k^{\prime}$ the residue field and $K^{\prime}$

the quotient field. It is clear that $R$ dominates $R^{\prime}$ , that is, $m\cap R^{\prime}=m^{\prime}$ . Since
we may identify the residue field $k^{\prime}$ of $R^{\prime}$ with the corresponding subPeld of
$k$ , we assume that $k^{p}\subset k^{\prime}\subset k$ . For any subset $A$ of $R$ , we denote by $\overline{A}$ the
set of residue classes of the elements of $A$ modulo $\mathfrak{m}$ . When we say $\overline{A}$ is a
$P$ -basis” we tacitly assume that $A$ maps injectively to $\overline{A}$ .

\S 2. Purely inseparable extension of a local ring.

LEMMA 1. Let $R$ be a local ring of characteristic $p$ and let $R^{\prime}$ be an in-
termediate local ring between $R$ and $R^{p}$ . Assume that $R$ is a finite R’-module
and $R$ has a p-basis over $R^{\prime}$ . Then there exis $ts$ a p-basis $\Gamma$ of $R$ over $R^{\prime}$ which
is of the form $\Gamma=B\cup\{z_{1}, \cdots , z_{s}\}$ , where $B$ is a system of representatives of a
p-basis of the residue field $k$ of $R$ over $k^{\prime},$ $\{z_{1}, \cdots , z_{s}\}$ is a subset of a minimal
system of generators for $\mathfrak{m}$ and $s=rank_{k}\mathfrak{m}/\mathfrak{m}^{\prime}R+\mathfrak{m}^{2}$ .

PROOF. Let $\Lambda$ be a $p$-basis of $R$ over $R^{\prime}$ . Then we can choose a subset
$B$ of $\Lambda$ such that $\overline{B}$ is a $p$ -basis of $k$ over $k^{\prime}$ , where $\overline{B}$ is the set of residue
classes of the elements of $B$ modulo $\mathfrak{m}$ (cf. Exercises of \S 8, [1]). Then $R^{\prime}[B]$

is a local ring with maximal ideal $\mathfrak{m}_{B}=\mathfrak{m}^{\prime}R^{\prime}[B]$ by Lemma 2.2 of [5]. Set $G$

$=\Lambda-B$ . Then $G$ is a $p$ -basis of $R$ over $R^{\prime}[B]$ . Since $R=R^{\prime}[B]+\mathfrak{m}$, we may
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assume that $G\subset \mathfrak{m}$ . Therefore, we can choose a minimal system of generators
for $\mathfrak{m}$ from $\mathfrak{m}^{\prime}\cup G$ . Let $\{z_{1}, \cdots , z_{s}, x_{s+1}, \cdots , x_{r}\},$ $z_{i}\in G,$ $x_{j}\in \mathfrak{m}^{\prime}(i=1,$ $\cdots$ , $s,$ $j=$

$s+1,$ $\cdots$ , r) be an arbitrary minimal system of generators for $\mathfrak{m}$ chosen from
$\mathfrak{m}^{\prime}\cup G$ . Suppose that $\{z_{1}, \cdots , z_{s}\}\subsetneqq G$ . Then there is an element $w_{1}\in G$ such
that $w_{1}\neq z_{i}$ $(i=1, \cdots , s)$ . Since $w_{1}\in \mathfrak{m}$, we have

$w_{1}=\sum_{i=1}^{l}\alpha_{i}z_{i}+\sum_{j=s+1}^{r}\beta_{j}x_{j}$ $(\alpha_{i}, \beta_{j}\in R)$ .

Since $G-\{z_{1}, \cdots , z_{s}\}$ is a $p$ -basis of $R$ over $R^{\prime}[B, z_{1}, \cdots , z_{s}]$ , we have that

$\alpha_{i}=\sum_{(e_{l)}}\alpha_{t(e_{l})}\Pi w_{l}^{e_{l}}$ $(\alpha_{i(e_{l})}\in R^{\prime}[B, z_{1}, \cdots z_{s}], w_{l}\in G-\{z_{1}, \cdots z_{s}\})$

and
$\beta_{j}=\sum_{(e_{l)}}\beta_{j(e_{l})}\Pi w_{\iota^{l}}^{e}$ $(\beta_{1^{(e_{l})}}\in R^{\prime}[B, z_{1}, \cdots z_{s}], w_{l}\in G-\{z_{1}, \cdots z_{s}\})$ .

From these three relations and $P$ -independence of $G-\{z_{1}, \cdots , z_{s}\}$ over
$R^{\prime}[B, z_{1}, \cdots , z_{s}]$ , we have an equality $1=\sum\alpha_{i(e_{l})}z_{i}+\sum\beta_{J^{(e_{l})}}x_{j}$ . This is a con-
tradiction. That is, $G=\{z_{1}, \cdots , z_{s}\}$ .

On the other hand, the sequence of k-module

$0\rightarrow \mathfrak{m}/\mathfrak{m}^{\prime}R+\mathfrak{m}^{2}\rightarrow\Omega_{R/R^{\prime}}\otimes k\rightarrow\Omega_{k/k^{r}}\rightarrow 0$

is exact (cf. Rangsatz of [3] and Lemma 3 of [8]). Since $R$ has a p-basis
consisting of $s+|B|$ elements, $\Omega_{R/R^{r}}$ is a free module of rank $s+|B|$ (cf. 38. A
of [6]). Similarly, $rank_{k}\Omega_{k/k^{\prime}}=|B|$ . Therefore we have

$rank_{k}\mathfrak{m}/\mathfrak{m}^{\prime}R+\mathfrak{m}^{2}=rank_{k}\Omega_{R/R^{r}}\otimes k-rank_{k}\Omega_{k/k^{\prime}}$

$=s$ .

LEMMA 2. Let $R$ be a regular local ring of characteristic $p$ with dim $R=r$

and let $R^{\prime}$ be an intermediate regular local ring between $R$ and $R^{p}$ . If there is
a system of representatives $C$ of a $p$-basis of $k^{\prime}$ over $k^{p}$ such that $[K^{\prime} : K^{p}(C)]$

$=p^{r-s}$ , where $s=rank_{k}\mathfrak{m}/\mathfrak{m}^{\prime}R+\mathfrak{m}^{2}$ , then $R^{\prime}$ has a p-basis over $R^{p}$ .
PROOF. By Lemma 2.4 and Lemma 2.5 of [5], $R^{p}[C]$ is a regular local ring

with maximal ideal $\mathfrak{m}_{c}=\mathfrak{m}^{(p)}R^{p}[C]$ . Put $s=rank_{k}\mathfrak{m}/\mathfrak{m}^{\prime}R+\mathfrak{m}^{2}$ . Then, there is a
minimal system of generators $\{z_{1}, \cdots , z_{s}, x_{S+1}, \cdots , x_{r}\}$ for $\mathfrak{m}$, where $z_{1},$

$\cdots$ , $ z_{s}\in$

$\mathfrak{m}$ and $x_{s+1},$ $\cdots$ , $x_{r}\in \mathfrak{m}^{\prime}$ . Suppose that we could choose $y_{1},$
$\cdots$ , $y_{l}(l<r-s)$ in such

a way that
(a) $y_{i}=x_{s+i}$ or $y_{i}=u_{i}x_{s+i}$ for $i=1,$ $\cdots$ , $l$, where $u_{i}$ is a unit in $R^{\prime}$ (and

therefore $\{y_{1}, \cdots , y_{l}\}$ is a subset of a minimal system of generators for m),
(b) $\{y_{1}, \cdots , y_{l}\}$ is $P$ -independent over $K^{P}(C)$ , and
(c) $R_{l}=R^{p}[C, y_{1}, \cdots , y_{l}]$ is a regular local ring with maximal ideal $\mathfrak{m}_{l}=$

$\mathfrak{n}\iota\cap R_{l}=\mathfrak{m}_{c}+(y_{1}, \cdots y_{l})R_{l}$ .
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Then we will prove that there exists an element $y_{l+1}\in R^{\prime}$ which satisPes the
following three properties;

(a) $\{y_{1}, \cdots , y_{l+1}\}$ is a subset of a minimal system of generators for $\mathfrak{m}$,
(b) $\{y_{1}, \cdots , y_{l+1}\}$ is p-independent over $K^{p}(C)$ ,
(c) $R_{l+1}=R^{p}[C, y_{1}, \cdots , y_{l+1}]$ is a regular local ring with maximal ideal

$\mathfrak{m}_{l+1}=\mathfrak{m}\cap R_{l+1}=\mathfrak{m}_{c}+(y_{1}, \cdots y_{l+1})R_{l+1}$ .
Since $\overline{C}$ is a $P$ -basis of $k^{\prime}$ over $k^{p}$ , we have $R^{\prime}=R^{p}[C]+\mathfrak{m}^{\prime},$ $K^{\prime}=K^{p}(C, \mathfrak{m}^{\prime})$ and
$[K^{\prime} : K^{p}(C, y_{1}, \cdots , y_{l})]=p^{r-s-l}\geqq p$ . If $x_{s+l+1}\not\in K^{p}(C, y_{1}, \cdots , y_{l})$ , we put $y_{l+1}=$

$x_{s+l+1}$ . Otherwise, we choose an element $m^{\prime}\in \mathfrak{m}^{\prime}$ such that $m^{\prime}\not\in K^{p}(C, y_{1}, \cdots , y_{l})$ .
Let $u_{l+1}=1+m^{\prime}$ . Then $u_{l+1}$ is a unit of $R^{\prime}$ and $u_{l+1}\not\in K^{p}(C, y_{1}, \cdots , y_{l})$ . In this
case, we set $y_{l+1}=u_{l+1}x_{s+l+1}$ . In both cases, $y_{l+1}\in \mathfrak{m}^{\prime}$ and $y_{l+1}\not\in K^{p}(C,$ $y_{1}$ ,
... , $y_{l}$ ), that is, $y_{l+1}$ is $P$ -independent over $K^{p}(C, y_{1}, \cdots , y_{l})$ . We claim that
$R_{l+1}=R^{p}[C, y_{1}, \cdots , y_{l+1}]$ is a regular local ring with maximal ideal $\mathfrak{m}_{l+1}=$

$\mathfrak{m}\cap R_{l+1}=\mathfrak{m}_{C}+(y_{1}, \cdots , y_{l+1})R_{l+1}$ . It is obvious that $\mathfrak{m}_{l+1}=\mathfrak{m}_{C}+(y_{1}, \cdots , y_{l+1})R_{l+1}$ .
To prove that $R_{l+1}=R_{l}[y_{l+1}]$ is regular, it is sufficient to show $y_{l+1}^{p}\not\in \mathfrak{m}_{l}^{2}$ by

38.4 of [7]. Suppose that $y_{l+1}^{p}\in \mathfrak{m}_{l}^{2}$ . Since $\mathfrak{m}_{l}=\mathfrak{m}_{C}+(y_{1}, \cdots , y_{l})R_{l}$ ,

$\mathfrak{m}_{l}^{2}=(\mathfrak{m}^{(p)})^{2}R^{p}[C]+\mathfrak{m}^{(p)}(y_{1}, \cdots y_{l})R_{l}+(y_{1}, \cdots y_{l})^{2}R_{l}$ .
Then we have

$y?+1=\sum\alpha_{(n_{\iota})}^{p}\prod c_{c}^{n_{t}}+\sum\beta^{p_{(n_{f})(e_{j})}}y_{J^{j}}^{e}$

where $c\in C,$ $\alpha_{(n_{\ell})}\in \mathfrak{m}^{2},$ $\beta_{(n_{f})(e_{j})}\in \mathfrak{m},$ $\gamma_{(n_{f})(f_{j})}\in R,$ $\sum e_{j}\geqq 1$ and $\sum f_{j}\geqq 2$ . Regarding
the p-th powers of $c_{f}$ and $y_{j}$ as elements of $R^{p}$ , we have

$y\not\in_{+1}=\sum\Pi c_{c}^{m_{\iota}}+\sum\xi_{(m_{f})(g_{j})}^{p}\Pi c_{c}^{m_{f}}\Pi+\sum\zeta_{(m_{\ell})(h_{j})}^{p}\Pi c_{c}^{m_{f}}\Pi y_{J^{j}}^{h}$

where $c_{\iota}\in C,$
$\eta_{(m_{p}}$ )

$\in \mathfrak{m}^{2},$
$\xi_{(m_{\iota})(g_{j})}\in \mathfrak{m},$ $\zeta_{(m_{\ell})(h_{j})}\in R$ and $0\leqq m_{\iota},$

$g_{j},$ $h_{j}\leqq p-1$ . Since
$\sum e_{j}\geqq 1$ and $\sum f_{j}\geqq 2$ , we have $\xi_{(0)(0)}\in m^{2}$ and $\zeta_{(0)(0)}\in\sum_{i=1}^{l}y_{i}R$ . Because of P-

independence of $\{C, y_{1}, \cdots , y_{l}\}$ over $K^{p}$ , it follows that

$y_{l+1}=\eta_{(0)}+\xi_{(0)(0)}+\zeta_{(0)(0)}$ .
Set $\zeta_{(0)(0)}=\sum_{i=1}^{l}d_{i}y_{i}$ , where $d_{i}\in R$ . Then we have $y_{l+1}-\sum_{i=1}^{\prime}d_{i}y_{i}\in \mathfrak{m}^{2}$ . This is a

contradiction because $\{y_{1}, \cdots , y_{l+1}\}$ is a subset of a minimal system of genera-
tors for $\mathfrak{m}$ .

Thus we have proved that there exist $y_{1},$
$\cdots$ , $y_{r-s}\in R^{\prime}$ which satisfy the

following three properties;
(a) $\{y_{1}, \cdots , y_{r-s}\}$ is a part of a minimal system of generators for $\mathfrak{m}$,
(b) $\{y_{1}, \cdots , y_{r- s}\}$ is $P$ -independent over $K^{p}(C)$ (that is, the field of quotients

of $R_{r-s}=R^{p}[C, y_{1}, \cdots , y_{r-s}]$ is $K^{\prime}$ ),

(c) $R_{r-s}=R^{p}[C, y_{1}, \cdots , y_{r-s}]$ is a regular local ring with maximal ideal
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$\mathfrak{m}_{r-s}=\mathfrak{m}_{c}+(y_{1}, \cdots y_{r-S})R_{r-s}$ .
Since $R_{r-S}$ is normal and $R^{\prime}$ is integral over $R_{r-s}$ , we have $R^{\prime}=R_{r-s}$ . It

follows that $\{C, y_{1}, \cdots y_{r- s}\}$ is a $p$ -basis of $R^{\prime}$ over $R^{p}$ .
LEMMA 3. Let $R$ be a local ring of characteristic $p$ such that $R$ is a finite

$R^{p}$-module and let $R^{\prime}$ be an intermediate local ring between $R$ and $R^{p}$ . Then, $R^{\prime}$

is a finite $R^{p}$-module and hence $R^{\prime}$ is a finite $R^{\prime p}$-module.
PROOF. Since $R^{p}$ is a noetherian ring and $R$ a finite $R^{p}$-module, the sub-

module $R^{\prime}$ of $R$ is a finite $R^{p}$-module.
LEMMA 4. Let $R$ be a regular local ring of characteristic $p$ such that $R$ is

a finite $R^{p}$-module. Let $R^{\prime}$ be an intermediate local ring between $R$ and $R^{p}$ .
Then the following conditions are equivalent:

(i) $R$ has a p-basis over $R^{\prime}$ .
(ii) $R^{\prime}$ is regular and $[K:K^{\prime}]=p^{l+s}$ , where $[k:k^{\prime}]=p^{l}$ and $s=rank_{k}\mathfrak{m}/\mathfrak{m}^{\prime}R$

$+\mathfrak{m}^{2}$ .
(iii) $R^{\prime}$ is regular and $R^{\prime}$ has a p-basis over $R^{p}$ .
PROOF. $(i)\Rightarrow(ii)$ . By Theorem 51 of [6], $R^{\prime}$ is regular. $[K:K^{\prime}]=p^{l+s}$

follows from Lemma 1. $(ii)\Rightarrow(iii)$ . We have only to show that $R^{\prime}$ has a P-
basis over $R^{p}$ . Let $B$ be a subset of $R$ such that $\overline{B}$ is a $p$ -basis of $k$ over $k^{\prime}$

and let $C$ be a subset of $R^{\prime}$ such that $\overline{C}$ is a $p$ -basis of $k^{\prime}$ over $k^{p}$ . Since
$|B|=l$, we have $[K:K^{\prime}(B)]=p^{s}$ . On the other hand, it holds that [$K$ :
$K^{p}]=p^{|B\cup C|+r}$ by Theorem 3.1 of [5]. Then we have $[K^{\prime} : K^{p}(C)]=p^{r-s}$ . Thus
$R^{\prime}$ has a $P$ -basis over $R^{p}$ by Lemma 2. $(iii)\Rightarrow(i)$ . $R^{\prime}$ is a finite $R^{\prime p}$-module
by Lemma 3. We have already proved $(i)\Rightarrow(iii)$ . Replacing $R^{p},$ $R^{\prime}$ and $R$ by
$R^{\prime p},$ $R^{p}$ and $R^{\prime}$ respectively, it follows from the implication $(i)\Rightarrow(iii)$ that $R^{p}$

has a $P$ -basis over $R^{\prime p}$ . Then obviously $R$ has a $p$-basis over $R^{\prime}$ . This
completes the proof.

\S 3. Proof of the conjecture.

THEOREM. Let $R$ be a regular local ring of characteristic $p>0$ and let $R^{\prime}$

be a regular subring of $R$ such that $R$ contains $R^{p}$ and such that $R$ is a finite
R’-module. Then $R$ has a p-basis over $R^{\prime}$ .

PROOF FOR THE CASE WHERE $R$ IS A FINITE $R^{p}$ -MODULE. In this case, it
is sufficient to show that $R^{\prime}$ has a $P$-basis over $R^{p}$ by Lemma 4. The assertion
that $R^{\prime}$ has a $P$-basis over $R^{p}$ follows from the same argument that S. Yuan
used in the proof of Theorem 11 of [10]. We restate it below for convenience.

For simplicity of notations, we put $R^{\prime}=R^{\prime}/\mathfrak{m}^{(p)}R^{\prime}$ and $R=R/m^{(p)}R$ . In view
of Theorem 46 of [6], $R$ is a finite free R’-module, so that $R$ is a finite free
R’-module. Let $b_{1},$ $\cdots$ $b_{n}$ be a basis for the free $R^{\prime}$ -module. Let $\partial$ be a $k^{p}-$

derivation on $R$ . For any $x\in R^{\prime},$ $\partial x$ may be expressed in the form $(\partial_{1}x)b_{1}+\cdots$
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$+(\partial_{n}x)b_{n}$ with $\partial_{i}x\in R^{\prime}$ . It is easily seen that the map $x-*\partial_{i}x$ is a $k^{p}$-deriva-
tion on $R^{\prime}$ for each $i$ . Now, since $R$ has a p-basis over $R^{p}$ (cf. Corollary 3.2
of [5]), $R$ is a Galois extension over $R^{p}$ . Then we have $Hom_{R^{p}}(R, R)=R[D]$

by Theorem 9 of [10], where $D=Der_{R^{p}}(R)$ . Hence, we have Hom $kp(\tilde{R},\tilde{R})=$

$R[D]$ , where $\tilde{D}=D/\mathfrak{m}^{(p)}D$ . So no nontrivial ideal in fl is stable under $\tilde{D}$ . Let
$I$ be a nonzero proper ideal in $\tilde{R}^{\prime}$ . Then there is a $k^{p}$-derivation $\partial$ on fl such
that $\partial(IR)$ is not contained in $IR$ . This means $\partial_{i}I$ cannot be contained in $I$

for some $i$ . Thus $\tilde{R}^{\prime}$ is a differentiably simple ring. And so by Corollary 2.8
of [9], $R^{\prime}$ has a $P$-basis over $k^{p}$ . Let $A$ be a set of representatives in $R^{\prime}$ of a
p-basis of $\tilde{R}^{\prime}$ over $k^{p}$ . Then $R^{\prime}=R^{p}[A]$ by the lemma of Nakayama. Since
$R^{\prime}$ is a free $R^{p}$-module, every minimal basis of $R^{\prime}$ is linearly independent over
$R^{p}$ . Hence $A$ is a p-basis of $R^{\prime}$ over $R^{p}$ (cf. [2], Chap. II, \S 3, Corollaire 1 of
Proposition 5). This completes the proof.

PROOF FOR THE GENERAL CASE. We first prove the following lemma.
LEMMA 5. Let $R$ be a regular local ring of characteristic $p$ and let $R^{\prime}$ be

an intermediate local ring between $R$ and $R^{p}$ such that $R$ is a finite R’-module.
If $R^{\prime}$ is regular, then $\mathfrak{m}^{\prime}=\mathfrak{m}^{(p)}R^{\prime}$ or $\mathfrak{m}^{\prime}\not\subset \mathfrak{m}^{2}$ .

PROOF. First we assume that $R$ is a finite $R^{p}$-module. If $R^{\prime}$ is regular,
then $R$ has a p-basis over $R^{\prime}$ by the above proof. By Lemma 1, there exists a
$P$-basis of $R$ over $R^{\prime}$ which is of the form $\Gamma=B\cup\{z_{1}, \cdots z_{s}\}$ , where $B$ is a
system of representatives of a p-basis of residue field $k$ of $R$ over $k^{\prime},$ $\{z_{1}, \cdots, z_{s}\}$

is a subset of a minimal system of generators for $\mathfrak{m}$ and $s=rank_{k}\mathfrak{m}/\mathfrak{m}^{\prime}R+\mathfrak{m}^{2}$ .
If $s<r$ , there is a minimal system of generators for $\mathfrak{m},$ $\{z_{1}, \cdots, z_{s}, x_{s+1}, \cdots , x_{r}\}$ ,

where $x_{j}\in \mathfrak{m}^{\prime}$ $(]^{=s+1}, , r)$ . Then $\mathfrak{m}^{\prime}c[\mathfrak{m}^{2}$ . If $s=r$ , log $p[K^{\prime} : K^{p}]=\log_{p}[k^{\prime} : k^{p}]$ ,
because we have log$p[K:K^{p}]=|C|+|B|+r$ by Theorem 3.1 of [5], where $C$

is a system of representatives of a p-basis of $k^{\prime}$ over $k^{p}$ . By Lemma 2.4 and
Lemma 2.5 of [5], $R^{p}[C]$ is regular. Then, $R^{p}[C]=R^{\prime}$ . Therefore we have
$\mathfrak{m}^{\prime}=\mathfrak{m}^{(p)}R^{\prime}$ by Lemma 2.2 of [5].

In the general case, let $B$ be a subset of $R$ such that $\overline{B}$ is a $P$-basis of $k$

over $k^{\prime}$ . Since $R^{\prime}[B]$ is regular by Lemma 2.4 and Lemma 2.5 of [5], we may
assume that $k=k^{\prime}$ . Since the completion $R$ is faithfully flat over $R$ and $\hat{R}^{\prime}$ is
faithfully flat over $R^{\prime}$ , in order to prove that $\mathfrak{m}^{\prime}=\mathfrak{m}^{(p)}R^{\prime}$ or $\mathfrak{m}^{\prime}\not\subset \mathfrak{m}^{2}$ , we may
assume that $R$ and $R^{\prime}$ are complete. That is, we assume that $R=k[[Z_{1},$ $\cdots$

$Z_{r}]]$ and $R^{\prime}=k[[Y_{1}, \cdots , Y_{r}]]$ where $\{Z_{1}, \cdots Z_{r}\}$ and $\{Y_{1}, \cdots Y_{r}\}$ are varia-
bles over $k$ respectively and $Z^{p_{\ell}}\in R^{\prime}$ for $i=1,$ $\cdots,$ $r$ . Let $\overline{k}$ be the algebraic
closure of $k$ . Then we have

$\overline{k}[[Z_{1}, \cdots , Z_{r}]]/(Z_{1}, \cdots Z_{r})^{\nu}=\overline{k}\otimes_{k}(k[[Z_{1}, \cdots Z_{r}]]/(Z_{1}, \cdots Z_{\gamma})^{\nu})$ .
It follows from Local criteria of flatness that $\overline{k}[[Z_{1}, \cdots Z_{r}]]$ is faithfully flat
over $k[[Z_{1}, \cdots Z_{r}]]$ . Therefore, we may assume that $R=\overline{k}[[Z_{1}, \cdots, Z_{r}]]$ and
$R^{\prime}=\overline{k}[[Y_{1}, \cdots, Y_{r}]]$ . In this case, we have that $\mathfrak{m}^{\prime}=\mathfrak{m}^{(p)}R$ or $\mathfrak{m}^{\prime}\not\subset \mathfrak{m}^{2}$ by the
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finite case.
PROOF OF THE THEOREM. We prove the theorem by induction on dimR $=r$ .

When $r=0$ the assertion is trivial. Assume $r>0$ . We have either $\mathfrak{m}^{\prime}=\mathfrak{m}^{(p)}R^{\prime}$

or $\mathfrak{m}^{\prime}(\zeta \mathfrak{m}^{2}$ by the preceding lemma.
First, suppose that $\mathfrak{m}^{\prime}=\mathfrak{m}^{(p)}R^{\prime}$ . Let $B$ be a subset of $R$ such that $\overline{B}$ is a

$P$-basis of $k$ over $k^{\prime}$ . Since $R^{\prime}[B]$ is regular by Lemma 2.4 and Lemma 2.5 of
[5], we may assume that $k=k^{\prime}$ . Let $\{z_{1}, \cdots , z_{r}\}$ be a regular system of para-
meters of $R$ and let $\hat{R}$ and $\hat{R}^{\prime}$ be the m-adic and m’-adic completion of $R$ and
$R^{\prime}$ respectively. Since $R$ is finite over $R^{\prime}$ , we have $R=R\otimes_{R^{\prime}}\hat{R}^{\prime}$ . Hence we
have $R=k[[Z_{1}, \cdots , Z_{r}]]$ and $\hat{R}^{\prime}=k[[Z_{1}^{p}, \cdots , Z_{r}^{p}]]$ , where $Z_{1},$ $\cdots$ , $Z_{r}$ are inde-
terminates. Therefore, $z_{1},$

$\cdots$ , $z_{r}$ are p-independent over $R^{\prime}$ . If $R^{\prime}[z_{1}, \cdots , z_{r}]$

is regular, we have $R=R^{\prime}[z_{1}, \cdots , z_{r}]$ , because $[K:K^{\prime}]=p^{r}$ . In fact, the maxi-
mal ideal of $R^{\prime}[z_{1}, \cdots , z_{r}]$ is generated by $r$ elements $z_{1},$

$\cdots$ , $z_{r}$ and the Krull
dimension of $R^{\prime}[z_{1}, \cdots , z_{r}]$ is $r$ , hence $R^{\prime}[z_{1}, \cdots , z_{\gamma}]$ is regular.

Next, suppose that $\mathfrak{m}^{\prime}$ a $\mathfrak{m}^{2}$ . We assume that it holds for the case of Krull
dimension $r-1$ . Since $\mathfrak{m}^{\prime}(\iota \mathfrak{m}^{2}$ , we may choose an element $y_{1}$ of $\mathfrak{m}^{\prime}$ such that
$y_{1}\not\in \mathfrak{m}^{2}$ . Then $R/y_{1}R$ and $R^{\prime}/y_{1}R^{\prime}$ are regular local rings of Krull dimension
$r-1$ . Since $R$ is faithfully flat over $R^{\prime},$ $y_{1}R\cap R^{\prime}=y_{1}R^{\prime}$ and so $R/y_{1}R\supset R^{\prime}/y_{1}R^{\prime}$ .
Therefore by the induction hypothesis $R/y_{1}R$ has a $P$-basis, say $\overline{P}$ , over $R^{\prime}/y_{1}R^{\prime}$ .
If $P$ is a set of representatives of $\overline{P}$ in $R$ , then the same argument as at the
end of the proof for the finite case shows that $P$ is a $p$-basis of $R$ over $R^{\prime}$ .

COROLLARY 1. Let $R$ be a regular local ring of characteristic $P$ such that
$R$ is a finite $R^{p}$-module and let $R^{\prime}$ be an intermediate local ring between $R$ and
$R^{p}$ . Then $R^{\prime}$ is regular if and only if $R^{\prime}$ is generated over $R^{p}$ by a subset of
a p-basis of $R$ over $R^{p}$ .

PROOF. If $R^{\prime}$ is regular, there exists a p-basis of $R$ over $R^{\prime}$ by Theorem.
Then by Lemma 4, there exists a $P$-basis of $R^{\prime}$ over $R^{p}$ . The union of these
two p-basis is a p-basis of $R$ over $R^{p}$ . Thus $R^{\prime}$ is generated over $R^{p}$ by a
subset of a $P$-basis of $R$ over $R^{p}$ .

Conversely, if $R^{\prime}$ is generated over $R^{p}$ by a subset of a $P$-basis of $R$ over
$R^{p}$ , then $R$ has a p-basis over $R^{\prime}$ . Therefore, $R^{\prime}$ is regular by Theorem 51
of [6].

Similarly, we have
COROLLARY 2. Let $k$ be a field of characteristic $p$ , let $R=k[[X_{1}, \cdots , X_{n}]]$

and let $R^{\prime}$ be an intermediate local ring between $R$ and $k[[X_{1}^{p}, \cdots , X_{n}^{p}]]$ . Then
$R^{\prime}$ is regular if and only if, after a suitable change of variables in $R,$ $R^{\prime}$ is of
the form $R^{\prime}=k[[X_{1}, \cdots , X_{s}, X_{S+1}^{p}, \cdots , X_{n}^{p}]]$ .
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