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On a Volevi¢ system of singular partial
differential equations

By Hidetoshi TAHARA
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In this paper, we deal with a certain class of Volevi€ systems of linear
partial differential equations with some singularities and establish an existence
and uniqueness theorem for analytic solutions, that is, an analogue of the
Cauchy-Kowalewski theorem. Further, we also give a uniqueness theorem for
distribution solutions with some regularity. Our results are generalizations of
those in Baouendi-Goulaouic [1][27], where they discussed for higher-order single
equations. Analogous results are obtained in Elschner [3][4].

§1. Assumptions and results.

First, we state the existence and uniqueness theorem for analytic solutions.
Let 2 be a bounded open set in R*. For s>0, we set

.Qs=ak€)QB(a, s),

where B(a, s)={zeC"; |z—a|<s}. We denote by A,(2) the Banach space of
all functions holomorphic in £, and continuous on 2, with its norm |u|,=
sup{lu(z)|; ze;}. Now, let (¢, z)& RXC™ and let us consider an mXm system
of linear partial differential equations of the form

(S) t’Dyu+A(, z, t°D)u=f(t, 2)

in CY[0, T], A,(2)), where D,=d/dt, D,=0/0z, u="uy, -, un), f@ 2)=
Hfut, 2), -, fu(t, 2)) and A(t, z, t°D,)=(A, z, t°D,))1<s, jsm IS an m X m matrix
of differential operators. We assume the following three conditions: (1) =1
and p>o0—1, (2) the order of A;; =<n;—n;+1 for some (1, -, n,)=N™ and
A, z,t°D,) is expressed in the form

A, z, t°D,)= X2 +1a”’“(t’ 2)(t° D)

lalsni-nj

for some ay; 4(t, 2)€CY[0, T], A;,(2)), and (3) the eigenvalues a;(z) 1=<7=<m)
of A0, z, 0) satisfy Rea(z)=c on £, for some ¢>0. Then, we have the fol-
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lowing result which is an analogue of the Cauchy-Kowalewski theorem.

THEOREM 1. For any s (0<s<s,), there is a positive number ¢ (0<e<T)
which satisfies the following: for any f(t) (=f(, 2)C([0, T], A, (2)) there
exists a unique solution u(t)eC([0, €], A;()NCH(O, ], A,(2)) of (S) satisfying
t7ut (1)eC([0, €], AL)).

Secondly, we state the uniqueness theorem for distribution solutions. Assume
that £ contains the origin of R™ Let (!, x)€ RX R™ and let us consider the
mXm system

S)r t'Dau+AQ, x, t°D)u=0

in C%[0, T, 9'(%2)), where A(t, x, t*?D,) is the restriction of A(¢, z, t°D,) on
[0, TIx 2 and 9'(2) is the space of all distributions on 2. Then, combining
the dual version of for analytic functionals with arguments developed
in Treves and Baouendi-Goulaouic [1], we obtain the following result which
is an analogue of Holmgren’s uniqueness theorem.

THEOREM 2. Let u(t) (=u(t, x))eC%[0, T, 9'(2)NCY0, T], 9'(£2)) be a
solution of (S)g. Then, we have u(t, x)=0 in a neighbourhood of (0, 0) in [0, T]
X R™

Finally, we remark the case of higher-order single equations. Let

(tqD‘)mu+j+|aE.§maj’“<t’ z2)t*D,)*(t° D) u=f(t, z)

be a single equation of order m with =1, p>0—1 and a; (¢, 2)=C([0, T],
A;(82)). Then, by the usual method (for example, see Tahara [5], we can
rewrite the above equation into an mXm system of type (S) with (ny, -, nn)=
(1, ---, m). Therefore, we can obtain the same results as Theorems 1 and 2
above. The case ¢=1 is already proved in Baouendi-Goulaouic [1][2] and the
case p=o¢>1 in Elschner [3]. Elschner [4] treats the case ¢=1 and p>o—1,
but his function spaces are somewhat different from ours. In Tahara [6],
analogous equations are discussed in the space of differentiable functions under
some hyperbolicity.

§2. Basic estimates for a Volevi¢ system.

Before the proofs of Theorems 1 and 2, we prepare some estimates for re-
solvent operators of the system of ordinary differential equations

t"Diu+AQG, z, Ou=f(t, z) (2.1)

in CY[0, ¢], A,(Q)), where u, f(t, z) and A(t, z, 0) are the same as in §1. Note
that the (7, /) component of A(Z, z, 0) vanishes identically, if n;—n;-1<0. This
fact will play an essential role in our discussion. The existence of resolvent
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operators of (2.1) is guaranteed by the following lemma.

LEMMA 1. Assume that ¢ (>0) is sufficiently small. Then, for any s
0<s=so) and for any f(t) (=f(, 2))=C%[0, ], A(L)) there exists a unique solu-
tion u(t)eC([0, €], A;(2)NCH(O, ], AL2) of (2.1) satisfying t°u;(t)=C([0, €],
AL2)).

ProOOF. Notice the following facts: (i) for any ¢, s and g(t, z)=C°([0, ],
A(2)) there exists a unique solution v(t)eC[0, ], A(D)INC(0, &, A(82)) of
the equation t°D,v+A(0, z, O)v=g(t, z) satisfying v, (t)eCY[0, ], Ay(£)), and
(ii) the unique solution »(z, z) (=v(¢)) in (i) is given by

o, z):gje"“"’z"mg(gbg(t, 5), 2)ds, 2.2)

where ¢,(¢, s) is the function defined by

te™*, when o=1,

¢a(t, s)= 1 1/(a-D
z‘( (o——l)st"“—l—l) , when ¢>1.

Using these facts, we can solve (2.1) by the method of successive approxima-
tions. For given f(t)=C([0, ¢], As(2)), we define u®> =C*([0, ], A,(2NNCH(O, €],
A(D)) by the solution of

t"Du®+ A0, z, Ou®=(A0, z, )—A(t, z, 0)u®P+f 2.3)

inductively on p=0, where u"?=0. Put v® =34 —y4 =D  Since sup{|e 4> 2] ;
ze,} SMe /¢ holds for some M>0 (by (3) in §1), we obtain the estimate

nvm@nschﬂ(i)p“a(t)p (2.4)
c
for any p=0, where C=sup{|f(r, 2)|; 0=r=e, z&2,} and 0(t)=sup{| A0, z,0)
—A(z, 2z, 0)]; 0=7=t, ze L, }. If we choose ¢ (>0) such that d(e)<c/2M, it
follows from [2.4) that the series 3 ,v® is convergent in C°([0, ¢], A,(£2)) and
therefore the sequence {u‘?} converges to a function u in C°[0, ¢], A,(Q)).
Applying to and making p—oo, we can see that u is a desired solu-
tion in C%[0, ], A(NNCXH(, ], Ay(£2)). Thus, the existence of solutions is
obtained. The uniqueness may be proved in the same way. Q.E.D.
By [Lemma I, we can define the resolvent matrix R of (2.1) by u=R[f],
where f€C([0, ], A(2)) and u is the unique solution of (2.1) given in Lemma
1. In other words, R is an mXm matrix of operators in C°([0, ], A,(2)) which
satisfies the following : (i) R[ f1=C°([0, ¢], A;(2)NCY(0, €1, A«(2)) and t°(R[ f]),
eC[0, €], AJ(2) for f=CY[0, e1, ALD), (i) ¢°D.+A(, z, MRLfI=f for fe
CY[0, €], As(£)), and (iii) R[¢°D,+ A(t, z, Mul=u, if uweCA[0, ], AN
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CY(0, ], A(2)) satisfies t°u, =C([0, ¢], A,(2). We denote by R the (i, ;)
component of R,
We now introduce the following notation

Jf[g](t)=S:e’“’“g(qﬁa(t, s)ds,
where ¢ is the constant in (3) of §1. Note that the formula

HTGAO= T o5 e g (Bott, s 25)

holds for any k=1. This is verified by the change of variables and the fact
Bo($o(l, 1), S)=(t, 5155).

Under these notations, we obtain the following a priori estimate which is
the main result of this section.

LEMMA 2. Assume that ¢ (>0) is sufficiently small. Then, there is a posi-
tive constant C such that the estimate

| R¥Cg1I =Careilligll I 26
holds for any t (0=t=¢), s (0<s=s,) and any scalar function g(t)=C*[0, ], A(2)),
where py=max (n;—n;+1, 1), ||-ls is the supremum norm on Qg and ||g||s(t)=

sup{llg(@)|s; O=r=1}.
COROLLARY. If g(©)eCY[0, e, A(2)) satisfies |g®)l;=<tt for some L>
pio—1), we have

o L-l(o~-1)
2)"” l t @.7)

IRICIOL=C() ™ o o —io D

for any integer [ such that 0<I<py;.
PROOF OF LEMMA 2. For simplicity, we denote by K=(K%),; j<m the
operator defined by

KLFI, 2= et nmf(@att, 5), 2)ds

and by er—(;lij)lsi,jsm the operator defined by ﬁ[f](t, z) = (AQ, z, 0)—
A(t, z, 0)f(t, z). Then, by the construction of approximate solutions in
we can express the resolvent matrix R by

R=3R,,
=0
R.=K and R,=KAR,, for(=1.

Therefore, to obtain it is sufficient to show that the estimates
IRFLgIDI s =CM o) aPiilllglls () (2.8)
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(!=0) hold for some C>0 and M>0, where R}’ is the (7, j) component of R,
and 0(t) is the same as in [2.4). First, we will show the case /=0. Note that
A0, z, 0) satisfies the following conditions: (i) sup{|e 4=t ; ze2,} <
Mie=®/t for some M,>0, and (ii) if p;;=2, the (7, ;) component of A(0, z, 0)*
vanishes identically for any % such that 0=k=p;;—2. (i) is clear by (3) in §1
and (ii) is verified as follows. Suppose that p;;=2 and that the (¢, ;) component
of A(0, z, 0)* does not vanish identically for some £ such that 0<k=<p;;—2. If
k=0, we have /=7 and hence p;;=1. But this contradicts p;;=2. If k=1, we
have n;—n;+1=0. Hence we obtain p;;=<2, because n;—n;+1=2—(n;—n;+1)
<2. But this contradicts k(=1)=p;;—2. If k=2, there exist j,, -+, js-1E
{1, 2, ---, m} such that the (j,-,, j,) component of A(0, z, 0) does not vanish
identically for 1=v=*k, where j,=7 and j,=;. This implies n;,_,—n; +1=0 for
1=y=k. Hence we obtain p;;=k-+1, because n;—n;+1=(k+1)—(n;;—n;+1)—
o —(nj,.,—n;,+1)=k+1. But this contradicts #=p;;—2. In any case, deny-
ing (ii) leads us to a contradiction. Thus, (ii) is also verified. From (i) and (ii),
it follows that the (7, 7) component e;;(z, ) of ¢ 4¢®*"! gsatisfies the following
conditions: (iii) sup {| ez, )] ; z€2:} =0("¢/*%) as t— +oo, and (iv)
sup{leis(z, 1)]; z€ 2} =0@Pii"") as t—+0. Consequently, we obtain sup{|e;;(z, )| ;
z2€ 0.} SM,tPii~te=@/®t for some M;>0. Therefore, we have

1L 01= [ eutz, Da(@at, 5), s

<M, sptem e glicote, $)ds

= M(pi—1) L aPuil| gl 1@, (2.9)
where |-|=]-Ils and [|-|I=l|-l,. Here we used If we choose C=

max {My(p;;—1)!; 1=4, j<m}, (2.9) immediately leads us to Thus, is
proved for /=0. Now, we will show for the general case by induction on
[. Suppose that is valid for /=k. Then, for any 7, j;(=7(1)), j.(=7(2)) and
7 we have

K14, 5, R LI, <Cariiol) A, ;, RiFLg]llIE)
<Co(t)griio|| R g1l
<CO(t)CM *o(t) kgrPiico+pieilllgll, 1) . (2.10)

Here we remark the following facts: (v) if n;—n;,+1<0, we have ﬁj1j2=0,
and (Vl) if njl—‘nj2+]_20, we have pijl_l—pjzjzp” because (njl——ni+l)+(nj-—n,~2—|—l)
=(n;—n;-+1)+(n;—nj+1)=(n;—n;+1). Therefore, applying [2.10), (v) and (vi)

. mn . ~ . .
to the summation R}JH:j > 1K”—‘uéljljzRiezf we have
1, J2=
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| R LgIMI=CMy;M*ot)*+ 9P| glll 1), (2.1
_ _2_ Pij(+DPj(2) - Pij
Mij— 1sj§2sm C( C ) )

njl-nj2+1go

If we choose M=max{M,;;; 1=i, j<m}, it follows from that is also
valid for /=Fk-+1. Thus, is obtained for any /=0. Q.E.D.

PrOOF OF COROLLARY. Put h(t)=tf. Then we have ||g|l;(t)<h.(¢). There-
fore, by we obtain

IRYLgI®s=CoPiilh L (2)
2

=C(5)" ' tnd0. 2.12)

On the other hand, we have the following estimate

tL—d+1

<\~ Lfe— b

AThJO= (@ott, N ds= =5 2.13)

Hence, applying [(2.13) to [2.12) /-times we can easily obtain the estimate [2.7)
Q.E.D.

§3. Proof of Theorem 1.

We shall solve (S) by the method of successive approximations. Assume
that ¢ (>0) is sufficiently small. Then, for given f()<C%([0, T, A;,(2)) we
can define u®<C%[0, ¢, A(DD)NCHO, €], A(2)) (0<s<s,) by the solution of

t’Du®+Alt, z, O u®=(A(, z, 0)—AQ, z, t°D,))u®PP+f
inductively on p=0, where u¢"*=0. In other words, u® (p=0) are defined by
uP=R[f] and u®=R[Bu®Y+f] for p=1, 3.1

where R is the resolvent matrix in §2 and B is the differential operator defined
by Bu(t, z) = (A(, z, 0)—A(t, z, t°D,))u(t, z). Put v®P =y®—y®-H for p=0.
Then, to obtain the existence of solutions of (S) we have only to show that
the series %v(p’ is convergent in C°([0, €], A,(L)). Further, it will suffice to

show that the series X v‘“?*® is convergent in C°([0, €], AJ(Q)) for d=
»

max{n;—n;+1; 1=7, j=m} and ¢=d®*+max{n;; 1=/=<m}, because X v® is
2
expressed formally as follows: pe

S0P =(HRB)+ =+ +HRBFIT o7,

pzgq

‘Therefore, from now on we will discuss only the convergence of 3 p(¢r+®,
D



Volevié system 285
Recall that (A(, z, 0)—A(, z, t*D,)) has the form

Alt, z, 0)—A({, z, t*°D,)= g%d Ig} At, 2)(t°D,)* (3.2)
for some A,(f, z). For simplicity, we denote by BM=(B{),ci, j<m the matrix
of differential operators of order / defined by B®u(¢, z)= E Aa(t 2)(t?D,)%u(t, z).

Since B= Z B®, by [3.1) we can express v+ by

vaw):;szl,;zdngB(ll) <o RBUD[ptd@-n+] (3.3)
Now, we will estimate [[0¢“¢?*®(f)||; by induction on p. Let v{¢?*® be the i-th
component of v‘*?*® and introduce the notation p(/, 1)=d*p+I(p—o+1)+n(c—1).
Then we have
LEMMA 3. Let s, be a positive number (0<s,<s,). Then, there is a positive
constant C such that the estimate

lv2@;=Ctr< (3.4)

holds for any i, t (0=t=e¢) and s (0<s<sy).
Proor. For any 4, 7, ji, ==, Jo P, =+, kg and Ly, -+, I,

IROBYp -+ Ris- B R0 SCtctr s a5

holds for some C;>0, where f; is the j-th component of f. Since (/;+ -+ +Iy)p
=gp=d*p+n;p>d?o+ni(0—1)=pu0, 7), (3.5) immediately leads us to [3.4)
Q.E.D.
In general, we have the following lemma.
LEMMA 4. Let L=0 and assume that wt)=w,(t), -, w,(®)=C%[0, ], A,(2))
satisfies the estimate
(L,

iD= G5 — 5z (LD (3.6

for any i, t (0=t=¢) and s (0<s<s;). Then, thereis a positive constant M inde-
pendent of L and w(t) such that the estimate

HRij]BJ(-ié)l de—lde;;‘i)[wk](t)HS

t;l(L+l1+-~-+ld, 1)

SMhrrtla (LAl oo Flg+ 1) 3.7)

(Sl_s)L+Ll+--«+zd

holds for any i, 71, =+, ja, k1, =, Ra(=k), 1, =+, la, t (0=t=¢) and s (0<s<sy).

PrOOF. Note that B} =0, if n;—n,-+1</. Therefore, in the proof given
below we may assume that n; —n, +1=/, for 1I=v=d. By Cauchy’s inequality
and we have
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lgl

IBYOLw IO EMy o w4
7711

jak

$CL B +Lg P

e (LD

tple(s;—s
for any 5 (0<% <s;—s), where M, is a positive constant which depends only on
the coefficients of B;iﬁ:' If we choose n=(s;—s)/(L+1), it follows that the
estimate

oL ky+lgf

1B Dwad®Ol= Mie- ——rory

gk (L+1)te(L4-1)"* (3.8)
holds. Therefore, applying to we obtain

I de_lidB;fidk) Lw s

t,u(L,k)+ldP-ad(a—1) (L+l>ld<L+l)nk

<
=CiM,e (s;,—s)E*la (L(p—a+1)+ldp)ad

for any a4 such that 0=<aq=p.,_,;,, Where C, is the constant in [2.7) Hence,
applying the same argument d-times we can obtain the estimate

”Rile_;ilk)l de—lde;;d;[w eJOls

L B+l p-(ag++agd)(a-n

(Sl—S)L+ll+"'+ld

=(C:M,e)*

(L+lyt = gt D o (LD L +D
(Lp=o D+t — +L)p)™  (Lp—o+ 1)+ lap)™e

(3.9)

for any ay, =+, ag such that 0=a,=p.,_,;, for 1=v=d, where ko=i. If we
choose a,, -+, ag such that a,+ - +a,=10+ - +ls+n,—n; then (3.9) im-
mediately leads us to because p(L, k)+(l+ - +l)p—(a+ - +aq)o—1)
=p(L+1;4 --- +14, 7). Therefore, to complete the proof it is sufficient to show
that such a choice is really possible. Put ¢(x,, -+, xg)=x,+ - +x4 and b,=
max (l,+nz,—ng,_, 0) for 1=v=d, where ky=7 and ky=%k. Then, we have

00, -, )<l - Hlatnr—ni=@by, -, ba). (3.10)

Since we have assumed that n; —n, +1=/, for 1=y=<d, we also have 0<5,<

Pi,_5, for 1=v=d. Therefore, by we can choose a;, -+, a4 such that

olay, -, ag)=lL~+ - +lg+nr—n; and 0=a,<b, for 1=<y=<d. Thus, the possi-

bility of the choice of a,, ---, a, is guaranteed. Q.E.D.
Applying to p-times, we can obtain
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et

(EP+D < l ng
vt e®l= | 2, MUt
1§ll,"-,ldp§d

'thp—a+1

< 2 Ctd2p+ni(a—1)(
(81—5)

:dp§lsd2p

) 41y (3.11)

for any ¢ and p. If we choose ¢ (>0) such that

S1—S§ \V(p-a+D
<(“aar) ‘

it follows from that the series 3v¢?*® ig convergent in C([0, &1, A(2)).
»
Hence, we may conclude that the series > v is also convergent in C°[0, €],
D

A(82)). This implies that the sequence {u‘®} converges to a function u in
C([0, €], Ay(£2)). Since u satisfies u=R[Bu-+f], it follows that u becomes a
genuine solution of (S) in C%[0, ], A (2)NCX(O, €], AL(2)). Thus, the existence
part of is obtained. The uniqueness can be proved in the same
way. Therefore, we may omit the details.

§4. Proof of Theorem 2.

Recall that any distribution » €9’(R™) with compact support can be regarded
as an analytic functional # on C™ by the following definition

il, >=<u, Olgre xc=, 0€H(C™),

where 4(C™) is the space of all entire functions on C™. Therefore,
2 is obtained from the following proposition which is a Cauchy-Kowalewski
type theorem for analytic functionals. Let £ be a bounded open set in R™",
We define F,(£2) by the closure of 4(C") in A,(2) and F/(£2) by the dual space
of Fy(2) as a Banach space. Note that the system {F/(£2)} becomes an increas-
ing scale of Banach spaces. Therefore, by the same argument as in §§2 and
3 we can obtain

PROPOSITION. For any s;, s (0<s;<s<sy), there is a positive number e
(0<e<T) which satisfies the following: for any f(t)eC%[0, T, F{(£2)) there
exists a unique solution u(t)eC([0, ], F{(2)NCXO, &, F{(2) of (S) satisfying
tu; ) C[0, €], F{(2)).

Here we used the same notations as in Baouendi-Goulaouic [1], so that we
can follow their argument directly. Hence, using the above proposition instead
of Proposition 2 of [1], we can easily obtain [Theorem 2 by the same argument
as in the proof of Theorem 4 of [1]. Therefore, we may omit the details.
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