# On a Volevič system of singular partial differential equations

## By Hidetoshi TAHARA

(Received Sept. 2, 1980)

In this paper, we deal with a certain class of Volevič systems of linear partial differential equations with some singularities and establish an existence and uniqueness theorem for analytic solutions, that is, an analogue of the Cauchy-Kowalewski theorem. Further, we also give a uniqueness theorem for distribution solutions with some regularity. Our results are generalizations of those in Baouendi-Goulaouic [1][2], where they discussed for higher-order single equations. Analogous results are obtained in Elschner [3][4].

#### §1. Assumptions and results.

First, we state the existence and uniqueness theorem for analytic solutions. Let  $\Omega$  be a bounded open set in  $\mathbb{R}^n$ . For s>0, we set

$$\Omega_s = \bigcup_{a \in O} B(a, s)$$
,

where  $B(a, s) = \{z \in \mathbb{C}^n ; |z-a| < s\}$ . We denote by  $A_s(\Omega)$  the Banach space of all functions holomorphic in  $\Omega_s$  and continuous on  $\overline{\Omega}_s$  with its norm  $\|u\|_s = \sup\{|u(z)|; z \in \Omega_s\}$ . Now, let  $(t, z) \in \mathbb{R} \times \mathbb{C}^n$  and let us consider an  $m \times m$  system of linear partial differential equations of the form

(S) 
$$t^{\sigma}D_{t}u + A(t, z, t^{\rho}D_{z})u = f(t, z)$$

in  $C^0([0,T],A_{s_0}(\Omega))$ , where  $D_t=\partial/\partial t$ ,  $D_z=\partial/\partial z$ ,  $u=^t(u_1,\cdots,u_m)$ ,  $f(t,z)=^t(f_1(t,z),\cdots,f_m(t,z))$  and  $A(t,z,t^\rho D_z)=(A_{ij}(t,z,t^\rho D_z))_{1\leq i,j\leq m}$  is an  $m\times m$  matrix of differential operators. We assume the following three conditions: (1)  $\sigma\geq 1$  and  $\rho>\sigma-1$ , (2) the order of  $A_{ij}\leq n_i-n_j+1$  for some  $(n_1,\cdots,n_m)\in N^m$  and  $A_{ij}(t,z,t^\rho D_z)$  is expressed in the form

$$A_{ij}(t, z, t^{\rho}D_z) = \sum_{|\alpha| \le n_i - n_{j+1}} a_{ij, \alpha}(t, z) (t^{\rho}D_z)^{\alpha}$$

for some  $a_{ij,\alpha}(t,z) \in C^0([0,T], A_{s_0}(\Omega))$ , and (3) the eigenvalues  $\alpha_j(z)$   $(1 \le j \le m)$  of A(0,z,0) satisfy  $\text{Re } \alpha_j(z) \ge c$  on  $\Omega_{s_0}$  for some c > 0. Then, we have the following

This research was partially supported by the Sakkokai Foundation.

280 H. Tahara

lowing result which is an analogue of the Cauchy-Kowalewski theorem.

Theorem 1. For any s  $(0 < s < s_0)$ , there is a positive number  $\varepsilon$   $(0 < \varepsilon < T)$  which satisfies the following: for any f(t)  $(=f(t,z)) \in C^0([0,T], A_{s_0}(\Omega))$  there exists a unique solution  $u(t) \in C^0([0,\varepsilon], A_s(\Omega)) \cap C^1((0,\varepsilon], A_s(\Omega))$  of (S) satisfying  $t^\sigma u'_t(t) \in C^0([0,\varepsilon], A_s(\Omega))$ .

Secondly, we state the uniqueness theorem for distribution solutions. Assume that  $\Omega$  contains the origin of  $\mathbb{R}^n$ . Let  $(t, x) \in \mathbb{R} \times \mathbb{R}^n$  and let us consider the  $m \times m$  system

$$(S)_{\mathbf{R}} \qquad \qquad t^{\sigma} D_t u + A(t, x, t^{\rho} D_x) u = 0$$

in  $C^0([0, T], \mathcal{D}'(\Omega))$ , where  $A(t, x, t^\rho D_x)$  is the restriction of  $A(t, z, t^\rho D_z)$  on  $[0, T] \times \Omega$  and  $\mathcal{D}'(\Omega)$  is the space of all distributions on  $\Omega$ . Then, combining the dual version of Theorem 1 for analytic functionals with arguments developed in Treves [7] and Baouendi-Goulaouic [1], we obtain the following result which is an analogue of Holmgren's uniqueness theorem.

THEOREM 2. Let  $u(t) = u(t, x) \in C^0([0, T], \mathcal{D}'(\Omega)) \cap C^1((0, T], \mathcal{D}'(\Omega))$  be a solution of  $(S)_R$ . Then, we have u(t, x) = 0 in a neighbourhood of (0, 0) in  $[0, T] \times \mathbb{R}^n$ .

Finally, we remark the case of higher-order single equations. Let

$$(t^{\sigma}D_t)^m u + \sum_{\substack{j+\lfloor \alpha \rfloor \leq m \\ j \leq m}} a_{j,\alpha}(t,z) (t^{\rho}D_z)^{\alpha} (t^{\sigma}D_t)^j u = f(t,z)$$

be a single equation of order m with  $\sigma \ge 1$ ,  $\rho > \sigma - 1$  and  $a_{j,\alpha}(t,z) \in C^0([0,T], A_{s_0}(\Omega))$ . Then, by the usual method (for example, see Tahara [5]), we can rewrite the above equation into an  $m \times m$  system of type (S) with  $(n_1, \cdots, n_m) = (1, \cdots, m)$ . Therefore, we can obtain the same results as Theorems 1 and 2 above. The case  $\sigma = 1$  is already proved in Baouendi-Goulaouic [1][2] and the case  $\rho \ge \sigma > 1$  in Elschner [3]. Elschner [4] treats the case  $\sigma \ge 1$  and  $\rho > \sigma - 1$ , but his function spaces are somewhat different from ours. In Tahara [6], analogous equations are discussed in the space of differentiable functions under some hyperbolicity.

#### § 2. Basic estimates for a Volevič system.

Before the proofs of Theorems 1 and 2, we prepare some estimates for resolvent operators of the system of ordinary differential equations

$$t^{\sigma}D_{t}u + A(t, z, 0)u = f(t, z)$$
 (2.1)

in  $C^0([0, \varepsilon], A_s(\Omega))$ , where u, f(t, z) and A(t, z, 0) are the same as in § 1. Note that the (i, j) component of A(t, z, 0) vanishes identically, if  $n_i - n_j + 1 < 0$ . This fact will play an essential role in our discussion. The existence of resolvent

operators of (2.1) is guaranteed by the following lemma.

LEMMA 1. Assume that  $\varepsilon$  (>0) is sufficiently small. Then, for any s (0< $s \le s_0$ ) and for any f(t) (=f(t, z)) $\in C^0([0, \varepsilon], A_s(\Omega))$  there exists a unique solution  $u(t) \in C^0([0, \varepsilon], A_s(\Omega)) \cap C^1((0, \varepsilon], A_s(\Omega))$  of (2.1) satisfying  $t^{\sigma}u'_t(t) \in C^0([0, \varepsilon], A_s(\Omega))$ .

PROOF. Notice the following facts: (i) for any  $\varepsilon$ , s and  $g(t, z) \in C^0([0, \varepsilon], A_s(\Omega))$  there exists a unique solution  $v(t) \in C^0([0, \varepsilon], A_s(\Omega)) \cap C^1((0, \varepsilon], A_s(\Omega))$  of the equation  $t^{\sigma}D_tv + A(0, z, 0)v = g(t, z)$  satisfying  $t^{\sigma}v'_t(t) \in C^0([0, \varepsilon], A_s(\Omega))$ , and (ii) the unique solution v(t, z) (=v(t)) in (i) is given by

$$v(t, z) = \int_0^\infty e^{-A(0, z, 0)s} g(\phi_{\sigma}(t, s), z) ds, \qquad (2.2)$$

where  $\phi_{\sigma}(t, s)$  is the function defined by

$$\phi_{\sigma}(t, s) = \begin{cases} te^{-s}, & \text{when } \sigma = 1, \\ t\left(\frac{1}{(\sigma - 1)st^{\sigma - 1} + 1}\right)^{1/(\sigma - 1)}, & \text{when } \sigma > 1. \end{cases}$$

Using these facts, we can solve (2.1) by the method of successive approximations. For given  $f(t) \in C^0([0, \varepsilon], A_s(\Omega))$ , we define  $u^{(p)} \in C^0([0, \varepsilon], A_s(\Omega)) \cap C^1((0, \varepsilon], A_s(\Omega))$  by the solution of

$$t^{\sigma}D_{t}u^{(p)} + A(0, z, 0)u^{(p)} = (A(0, z, 0) - A(t, z, 0))u^{(p-1)} + f$$
 (2.3)

inductively on  $p \ge 0$ , where  $u^{(-1)} = 0$ . Put  $v^{(p)} = u^{(p)} - u^{(p-1)}$ . Since  $\sup\{|e^{-A(0,z,0)t}|\}$ ;  $z \in \mathcal{Q}_{s_0}\} \le Me^{-(c/2)t}$  holds for some M > 0 (by (3) in §1), we obtain the estimate

$$\|v^{(p)}(t)\|_{s} \leq CM^{p+1} \left(\frac{2}{c}\right)^{p+1} \delta(t)^{p}$$
 (2.4)

for any  $p \ge 0$ , where  $C = \sup\{|f(\tau,z)| \; ; \; 0 \le \tau \le \varepsilon, \; z \in \Omega_{s_0}\}$  and  $\delta(t) = \sup\{|A(0,z,0) - A(\tau,z,0)| \; ; \; 0 \le \tau \le t, \; z \in \Omega_{s_0}\}$ . If we choose  $\varepsilon$  (>0) such that  $\delta(\varepsilon) < c/2M$ , it follows from (2.4) that the series  $\sum_p v^{(p)}$  is convergent in  $C^0([0,\varepsilon], A_s(\Omega))$  and therefore the sequence  $\{u^{(p)}\}$  converges to a function u in  $C^0([0,\varepsilon], A_s(\Omega))$ . Applying (2.2) to (2.3) and making  $p \to \infty$ , we can see that u is a desired solution in  $C^0([0,\varepsilon], A_s(\Omega)) \cap C^1((0,\varepsilon], A_s(\Omega))$ . Thus, the existence of solutions is obtained. The uniqueness may be proved in the same way. Q. E. D.

By Lemma 1, we can define the resolvent matrix R of (2.1) by u=R[f], where  $f \in C^0([0, \varepsilon], A_s(\Omega))$  and u is the unique solution of (2.1) given in Lemma 1. In other words, R is an  $m \times m$  matrix of operators in  $C^0([0, \varepsilon], A_s(\Omega))$  which satisfies the following: (i)  $R[f] \in C^0([0, \varepsilon], A_s(\Omega)) \cap C^1((0, \varepsilon], A_s(\Omega))$  and  $t^{\sigma}(R[f])_t' \in C^0([0, \varepsilon], A_s(\Omega))$  for  $f \in C^0([0, \varepsilon], A_s(\Omega))$ , (ii)  $(t^{\sigma}D_t + A(t, z, 0))R[f] = f$  for  $f \in C^0([0, \varepsilon], A_s(\Omega))$ , and (iii)  $R[(t^{\sigma}D_t + A(t, z, 0))u] = u$ , if  $u \in C^0([0, \varepsilon], A_s(\Omega)) \cap C^1([0, \varepsilon], A_s(\Omega))$ 

282 H. Tahara

 $C^1((0, \varepsilon], A_s(\Omega))$  satisfies  $t^{\sigma}u'_t \in C^0([0, \varepsilon], A_s(\Omega))$ . We denote by  $R^{ij}$  the (i, j) component of R.

We now introduce the following notation

$$\mathcal{A}[g](t) = \int_0^\infty e^{-(c/2)s} g(\phi_{\sigma}(t, s)) ds,$$

where c is the constant in (3) of § 1. Note that the formula

$$\mathcal{H}^{k}[g](t) = \frac{1}{(k-1)!} \int_{0}^{\infty} s^{k-1} e^{-(c/2)s} g(\phi_{\sigma}(t, s)) ds$$
 (2.5)

holds for any  $k \ge 1$ . This is verified by the change of variables and the fact  $\phi_{\sigma}(\phi_{\sigma}(t, s_1), s_2) = \phi_{\sigma}(t, s_1 + s_2)$ .

Under these notations, we obtain the following a priori estimate which is the main result of this section.

Lemma 2. Assume that  $\varepsilon$  (>0) is sufficiently small. Then, there is a positive constant C such that the estimate

$$||R^{ij}[g](t)||_s \leq C \mathcal{H}^{p_{ij}}[||g||_s](t)$$
(2.6)

holds for any t  $(0 \le t \le \varepsilon)$ , s  $(0 < s \le s_0)$  and any scalar function  $g(t) \in C^0([0, \varepsilon], A_s(\Omega))$ , where  $p_{ij} = \max(n_j - n_i + 1, 1)$ ,  $\|\cdot\|_s$  is the supremum norm on  $\Omega_s$  and  $\|g\|_s(t) = \sup\{\|g(\tau)\|_s; 0 \le \tau \le t\}$ .

COROLLARY. If  $g(t) \in C^0([0, \varepsilon], A_s(\Omega))$  satisfies  $||g(t)||_s \leq t^L$  for some  $L > p_{ij}(\sigma-1)$ , we have

$$||R^{ij}[g](t)||_{s} \le C \left(\frac{2}{c}\right)^{p_{ij}-l} \frac{t^{L-l(\sigma-1)}}{(L-\sigma+1)\cdots(L-l\sigma+l)}$$
(2.7)

for any integer l such that  $0 \le l \le p_{ij}$ .

PROOF OF LEMMA 2. For simplicity, we denote by  $K=(K^{ij})_{1\leq i,j\leq m}$  the operator defined by

$$K[f](t, z) = \int_0^\infty e^{-A(0, z, 0)s} f(\phi_{\sigma}(t, s), z) ds$$

and by  $\widetilde{A} = (\widetilde{A}_{ij})_{1 \le i, j \le m}$  the operator defined by  $\widetilde{A}[f](t, z) = (A(0, z, 0) - A(t, z, 0))f(t, z)$ . Then, by the construction of approximate solutions in (2.3) we can express the resolvent matrix R by

$$R = \sum_{l=0}^{\infty} R_l$$
,

$$R_0 = K$$
 and  $R_t = K\widetilde{A}R_{t-1}$  for  $t \ge 1$ .

Therefore, to obtain Lemma 2 it is sufficient to show that the estimates

$$||R_l^{ij}[g](t)||_s \leq CM^l \delta(t)^l \mathcal{H}^{p_{ij}}[||g|||_s](t)$$
(2.8)

 $(l \ge 0)$  hold for some C > 0 and M > 0, where  $R_i^{ij}$  is the (i, j) component of  $R_i$ and  $\delta(t)$  is the same as in (2.4). First, we will show the case l=0. Note that A(0, z, 0) satisfies the following conditions: (i)  $\sup\{|e^{-A(0, z, 0)t}|; z \in \Omega_{s_0}\} \le$  $M_1e^{-(3c/4)t}$  for some  $M_1>0$ , and (ii) if  $p_{ij}\geq 2$ , the (i, j) component of  $A(0, z, 0)^k$ vanishes identically for any k such that  $0 \le k \le p_{ij} - 2$ . (i) is clear by (3) in §1 and (ii) is verified as follows. Suppose that  $p_{ij} \ge 2$  and that the (i, j) component of  $A(0, z, 0)^k$  does not vanish identically for some k such that  $0 \le k \le p_{ij} - 2$ . If k=0, we have i=j and hence  $p_{ij}=1$ . But this contradicts  $p_{ij}\geq 2$ . If k=1, we have  $n_i - n_j + 1 \ge 0$ . Hence we obtain  $p_{ij} \le 2$ , because  $n_j - n_i + 1 = 2 - (n_i - n_j + 1)$  $\leq 2$ . But this contradicts  $k(=1) \leq p_{ij} - 2$ . If  $k \geq 2$ , there exist  $j_1, \dots, j_{k-1} \in$  $\{1, 2, \dots, m\}$  such that the  $(j_{\nu-1}, j_{\nu})$  component of A(0, z, 0) does not vanish identically for  $1 \le \nu \le k$ , where  $j_0 = i$  and  $j_k = j$ . This implies  $n_{j_{\nu-1}} - n_{j_{\nu}} + 1 \ge 0$  for  $1 \le \nu \le k$ . Hence we obtain  $p_{ij} \le k+1$ , because  $n_j - n_i + 1 = (k+1) - (n_{j_0} - n_{j_1} + 1) - (n_{j_0} - n_{j_1} + 1)$  $\cdots -(n_{j_{k-1}}-n_{j_k}+1) \le k+1$ . But this contradicts  $k \le p_{ij}-2$ . In any case, denying (ii) leads us to a contradiction. Thus, (ii) is also verified. From (i) and (ii), it follows that the (i, j) component  $e_{ij}(z, t)$  of  $e^{-A(0, z, 0)t}$  satisfies the following conditions: (iii) sup  $\{|e_{ij}(z,t)|; z \in \Omega_{s_0}\} = O(e^{-(3c/4)t})$  as  $t \to +\infty$ , and (iv)  $\sup\{|e_{ij}(z,t)|\;;\;z\in\Omega_{s_0}\}=O(t^{p_{ij}-1})\;\text{as}\;t\to+0.\;\;\text{Consequently, we obtain }\sup\{|e_{ij}(z,t)|\;;\;$  $z \in \Omega_{s_0} \leq M_2 t^{p_{ij}-1} e^{-(c/2)t}$  for some  $M_2 > 0$ . Therefore, we have

$$||K^{ij}[g](t)|| = \left\| \int_{0}^{\infty} e_{ij}(z, s) g(\phi_{\sigma}(t, s), z) ds \right\|$$

$$\leq M_{2} \int_{0}^{\infty} s^{p_{ij}-1} e^{-(c/2)s} ||g|| ||\phi_{\sigma}(t, s)| ds$$

$$\leq M_{2}(p_{ij}-1)! \mathcal{H}^{p_{ij}}[||g||](t), \qquad (2.9)$$

where  $\|\cdot\|=\|\cdot\|_s$  and  $\|\cdot\|=\|\cdot\|_s$ . Here we used (2.5). If we choose  $C=\max\{M_2(p_{ij}-1)!;\ 1\leq i,\ j\leq m\}$ , (2.9) immediately leads us to (2.8). Thus, (2.8) is proved for l=0. Now, we will show (2.8) for the general case by induction on l. Suppose that (2.8) is valid for l=k. Then, for any i,  $j_1(=j(1))$ ,  $j_2(=j(2))$  and j we have

$$\begin{split} \|K^{ij_1} \widetilde{A}_{j_1 j_2} R_k^{j_2 j} [g](t) \|_s &\leq C \mathcal{H}^{p_{ij}(1)} [\|\widetilde{A}_{j_1 j_2} R_k^{j_2 j} [g] \|_s](t) \\ &\leq C \delta(t) \mathcal{H}^{p_{ij}(1)} [\|R_k^{j_2 j} [g] \|_s](t) \\ &\leq C \delta(t) C M^k \delta(t)^k \mathcal{H}^{p_{ij}(1) + p_{j}(2) j} [\|g\|_s](t) . \end{split}$$

$$(2.10)$$

Here we remark the following facts: (v) if  $n_{j_1} - n_{j_2} + 1 < 0$ , we have  $\tilde{A}_{j_1 j_2} = 0$ , and (vi) if  $n_{j_1} - n_{j_2} + 1 \ge 0$ , we have  $p_{i j_1} + p_{j_2 j} \ge p_{i j}$  because  $(n_{j_1} - n_{i} + 1) + (n_{j} - n_{j_2} + 1) = (n_{j} - n_{i} + 1) + (n_{j_1} - n_{j_2} + 1) \ge (n_{j} - n_{i} + 1)$ . Therefore, applying (2.10), (v) and (vi) to the summation  $R_{k+1}^{ij_1} = \sum_{j_1, j_2=1}^{m} K^{ij_1} \tilde{A}_{j_1 j_2} R_k^{j_2 j}$  we have

$$||R_{k+1}^{ij}[g](t)||_{s} \leq CM_{ij}M^{k}\delta(t)^{k+1}\mathcal{H}^{p_{ij}}[||g||_{s}](t), \qquad (2.11)$$

$$M_{ij} = \sum_{\substack{1 \le j_1, j_2 \le m \\ n_{j_1} - n_{j_2} + 1 \ge 0}} C\left(\frac{2}{c}\right)^{p_{ij(1)} + p_{j(2)j} - p_{ij}}.$$

If we choose  $M=\max\{M_{ij};\ 1\leq i,\ j\leq m\}$ , it follows from (2.11) that (2.8) is also valid for l=k+1. Thus, (2.8) is obtained for any  $l\geq 0$ . Q. E. D.

PROOF OF COROLLARY. Put  $h_L(t)=t^L$ . Then we have  $||g||_s(t) \le h_L(t)$ . Therefore, by Lemma 2 we obtain

$$||R^{ij}[g](t)||_{s} \leq C \mathcal{H}^{p_{ij}}[h_{L}](t)$$

$$\leq C \left(\frac{2}{s}\right)^{p_{ij}-t} \mathcal{H}^{t}[h_{L}](t). \tag{2.12}$$

On the other hand, we have the following estimate

$$\mathcal{H}[h_L](t) \leq \int_0^\infty (\phi_{\sigma}(t, s))^L ds = \frac{t^{L-\sigma+1}}{(L-\sigma+1)}. \tag{2.13}$$

Hence, applying (2.13) to (2.12) *l*-times we can easily obtain the estimate (2.7). Q. E. D.

#### § 3. Proof of Theorem 1.

We shall solve (S) by the method of successive approximations. Assume that  $\varepsilon$  (>0) is sufficiently small. Then, for given  $f(t) \in C^0([0, T], A_{s_0}(\Omega))$  we can define  $u^{(p)} \in C^0([0, \varepsilon], A_s(\Omega)) \cap C^1((0, \varepsilon], A_s(\Omega))$  (0< s< s\_0) by the solution of

$$t^{\sigma}D_{t}u^{(p)} + A(t, z, 0)u^{(p)} = (A(t, z, 0) - A(t, z, t^{\rho}D_{z}))u^{(p-1)} + f$$

inductively on  $p \ge 0$ , where  $u^{(-1)} = 0$ . In other words,  $u^{(p)}$   $(p \ge 0)$  are defined by

$$u^{(0)} = R[f]$$
 and  $u^{(p)} = R[Bu^{(p-1)} + f]$  for  $p \ge 1$ , (3.1)

where R is the resolvent matrix in § 2 and B is the differential operator defined by  $Bu(t,z)=(A(t,z,0)-A(t,z,t^{\rho}D_z))u(t,z)$ . Put  $v^{(p)}=u^{(p)}-u^{(p-1)}$  for  $p\geq 0$ . Then, to obtain the existence of solutions of (S) we have only to show that the series  $\sum_p v^{(p)}$  is convergent in  $C^0([0,\varepsilon],A_s(\Omega))$ . Further, it will suffice to show that the series  $\sum_p v^{(d\,p+q)}$  is convergent in  $C^0([0,\varepsilon],A_s(\Omega))$  for  $d=\max\{n_i-n_j+1;\ 1\leq i,\ j\leq m\}$  and  $q=d^2+\max\{n_i;\ 1\leq i\leq m\}$ , because  $\sum_{p\geq q} v^{(p)}$  is expressed formally as follows:

$$\sum_{p \ge q} v^{(p)} = (1 + (RB) + \cdots + (RB)^{d-1}) \left[ \sum_{p} v^{(dp+q)} \right].$$

Therefore, from now on we will discuss only the convergence of  $\sum_{p} v^{(dp+q)}$ .

Recall that  $(A(t, z, 0)-A(t, z, t^{\rho}D_z))$  has the form

$$A(t, z, 0) - A(t, z, t^{\rho}D_{z}) = \sum_{1 \le t \le d} \sum_{|\alpha| = t} A_{\alpha}(t, z) (t^{\rho}D_{z})^{\alpha}$$
(3.2)

for some  $A_{\alpha}(t,z)$ . For simplicity, we denote by  $B^{(l)}=(B_{ij}^{(l)})_{1\leq i,j\leq m}$  the matrix of differential operators of order l defined by  $B^{(l)}u(t,z)=\sum\limits_{|\alpha|=l}A_{\alpha}(t,z)(t^{\rho}D_z)^{\alpha}u(t,z)$ . Since  $B=\sum\limits_{l=1}^d B^{(l)}$ , by (3.1) we can express  $v^{(d\,p+q)}$  by

$$v^{(d\,p+q)} = \sum_{1 \le l_1, \cdots, l_d \le d} RB^{(l_1)} \cdots RB^{(l_d)} [v^{(d\,(p-1)+q)}]. \tag{3.3}$$

Now, we will estimate  $\|v^{(d\,p+q)}(t)\|_s$  by induction on p. Let  $v_i^{(d\,p+q)}$  be the i-th component of  $v^{(d\,p+q)}$  and introduce the notation  $\mu(l,i)=d^2\rho+l(\rho-\sigma+1)+n_i(\sigma-1)$ . Then we have

LEMMA 3. Let  $s_1$  be a positive number  $(0 < s_1 < s_0)$ . Then, there is a positive constant C such that the estimate

$$||v_i^{(q)}(t)||_s \le Ct^{\mu(0,i)}$$
 (3.4)

holds for any i, t  $(0 \le t \le \varepsilon)$  and s  $(0 < s < s_1)$ .

PROOF. For any  $i, j, j_1, \dots, j_q, k_1, \dots, k_q$  and  $l_1, \dots, l_q$ 

$$||R^{ij_1}B_{j_1k_1}^{(l_1)}\cdots R^{k_{q-1}j_q}B_{j_qk_q}^{(l_q)}R^{k_qj}[f_j](t)||_s \leq C_1 t^{(l_1+\cdots+l_q)\rho}$$
(3.5)

holds for some  $C_1>0$ , where  $f_j$  is the j-th component of f. Since  $(l_1+\cdots+l_q)\rho \ge q\rho \ge d^2\rho + n_i\rho > d^2\rho + n_i(\sigma-1) = \mu(0,i)$ , (3.5) immediately leads us to (3.4).

Q. E. D.

In general, we have the following lemma.

LEMMA 4. Let  $L \ge 0$  and assume that  $w(t) = {}^t(w_1(t), \cdots, w_m(t)) \in C^0([0, \varepsilon], A_s(\Omega))$  satisfies the estimate

$$||w_i(t)||_s \le \frac{t^{\mu(L,i)}}{(s_1-s)^L} (L+1)^{n_i}$$
 (3.6)

for any i, t  $(0 \le t \le \varepsilon)$  and s  $(0 < s < s_1)$ . Then, there is a positive constant M independent of L and w(t) such that the estimate

$$||R^{ij_{1}}B_{j_{1}k_{1}}^{(l_{1})}\cdots R^{k_{d-1}j_{d}}B_{j_{d}k}^{(l_{d})}[w_{k}](t)||_{s}$$

$$\leq M^{l_{1}+\cdots+l_{d}}\frac{t^{\mu(L+l_{1}+\cdots+l_{d},i)}}{(s_{1}-s)^{L+l_{1}+\cdots+l_{d}}}(L+l_{1}+\cdots+l_{d}+1)^{n_{i}}$$
(3.7)

holds for any i,  $j_1$ ,  $\cdots$ ,  $j_d$ ,  $k_1$ ,  $\cdots$ ,  $k_d(=k)$ ,  $l_1$ ,  $\cdots$ ,  $l_d$ , t  $(0 \le t \le \varepsilon)$  and s  $(0 < s < s_1)$ . PROOF. Note that  $B_{jk}^{(l)} = 0$ , if  $n_j - n_k + 1 < l$ . Therefore, in the proof given below we may assume that  $n_{j_{\nu}} - n_{k_{\nu}} + 1 \ge l_{\nu}$  for  $1 \le \nu \le d$ . By Cauchy's inequality and (3.6), we have

$$\begin{split} \|B_{j_dk}^{(l_d)}[w_k](t)\|_s & \leq M_1 \frac{t^{l_d \rho}}{\eta^{l_d}} \|w_k(t)\|_{s+\eta} \\ & \leq M_1 \frac{t^{\mu(L, k) + l_d \rho}}{\eta^{l_d}(s_1 - s - \eta)^L} (L + 1)^{n_k} \end{split}$$

for any  $\eta$  (0< $\eta$ < $s_1$ -s), where  $M_1$  is a positive constant which depends only on the coefficients of  $B_{j_dk}^{(l_d)}$ . If we choose  $\eta = (s_1 - s)/(L + 1)$ , it follows that the estimate

$$||B_{j_d k}^{(l_d)}[w_k](t)||_s \leq M_1 e^{\frac{t^{\mu(L,k)+l_d \rho}}{(s_1-s)^{L+l_d}}} (L+1)^{l_d} (L+1)^{n_k}$$
(3.8)

holds. Therefore, applying (2.7) to (3.8) we obtain

$$||R^{k_{d-1}j_d}B^{(l_d)}_{j_{d,k}}[w_k](t)||_{s}$$

$$\leq C_1 M_1 e^{\frac{t^{\mu(L, k) + l_d \rho - a_d (\sigma - 1)}}{(s_1 - s)^{L + l_d}}} \frac{(L + 1)^{l_d} (L + 1)^{n_k}}{(L(\rho - \sigma + 1) + l_d \rho)^{a_d}}$$

for any  $a_d$  such that  $0 \le a_d \le p_{k_{d-1}j_d}$ , where  $C_1$  is the constant in (2.7). Hence, applying the same argument d-times we can obtain the estimate

$$\|R^{ij_{1}}B_{j_{1}k_{1}}^{(l_{1})}\cdots R^{k_{d-1}j_{d}}B_{j_{d}k}^{(l_{d})}[w_{k}](t)\|_{s}$$

$$\leq (C_{1}M_{1}e)^{d}\frac{t^{\mu(L,k)+(l_{1}+\cdots+l_{d})\rho-(a_{1}+\cdots+a_{d})(\sigma-1)}}{(s_{1}-s)^{L+l_{1}+\cdots+l_{d}}}$$

$$\times \frac{(L+l_{2}+\cdots+l_{d}+1)^{l_{1}}\cdots(L+1)^{l_{d}}(L+1)^{n_{k}}}{(L(\rho-\sigma+1)+(l_{1}+\cdots+l_{d})\rho)^{a_{1}}\cdots(L(\rho-\sigma+1)+l_{d}\rho)^{a_{d}}}$$
(3.9)

for any  $a_1, \dots, a_d$  such that  $0 \le a_\nu \le p_{k_{\nu-1}j_\nu}$  for  $1 \le \nu \le d$ , where  $k_0 = i$ . If we choose  $a_1, \dots, a_d$  such that  $a_1 + \dots + a_d = l_1 + \dots + l_d + n_k - n_i$ , then (3.9) immediately leads us to (3.7) because  $\mu(L, k) + (l_1 + \dots + l_d)\rho - (a_1 + \dots + a_d)(\sigma - 1) = \mu(L + l_1 + \dots + l_d, i)$ . Therefore, to complete the proof it is sufficient to show that such a choice is really possible. Put  $\varphi(x_1, \dots, x_d) = x_1 + \dots + x_d$  and  $b_\nu = \max(l_\nu + n_{k_\nu} - n_{k_{\nu-1}}, 0)$  for  $1 \le \nu \le d$ , where  $k_0 = i$  and  $k_d = k$ . Then, we have

$$\varphi(0, \dots, 0) < l_1 + \dots + l_d + n_k - n_i \le \varphi(b_1, \dots, b_d).$$
 (3.10)

Since we have assumed that  $n_{j_{\nu}}-n_{k_{\nu}}+1\geq l_{\nu}$  for  $1\leq \nu\leq d$ , we also have  $0\leq b_{\nu}\leq p_{k_{\nu-1}j_{\nu}}$  for  $1\leq \nu\leq d$ . Therefore, by (3.10) we can choose  $a_1,\cdots,a_d$  such that  $\varphi(a_1,\cdots,a_d)=l_1+\cdots+l_d+n_k-n_i$  and  $0\leq a_{\nu}\leq b_{\nu}$  for  $1\leq \nu\leq d$ . Thus, the possibility of the choice of  $a_1,\cdots,a_d$  is guaranteed. Q. E. D.

Applying Lemma 4 to (3.3) p-times, we can obtain

$$||v_{i}^{(d\,p+q)}(t)||_{s} \leq \sum_{\substack{l=l_{1}+\dots+l_{d\,p}\\1\leq l_{1},\dots,l_{d\,p}\leq d}} CM^{l} \frac{t^{\mu(l,\,i)}}{(s_{1}-s)^{l}} (l+1)^{n} i$$

$$\leq \sum_{\substack{d\,p\leq l\leq d^{2}p}} Ct^{d^{2}\rho+n_{i}(\sigma-1)} \left(\frac{2Mt^{\rho-\sigma+1}}{(s_{1}-s)}\right)^{l} (l+1)^{n} i$$
(3.11)

for any i and p. If we choose  $\varepsilon$  (>0) such that

$$\varepsilon < \left(\frac{s_1 - s}{2M}\right)^{1/(\rho - \sigma + 1)}$$
,

it follows from (3.11) that the series  $\sum_{p} v^{(d\,p+q)}$  is convergent in  $C^0([0,\,\varepsilon],\,A_s(\Omega))$ . Hence, we may conclude that the series  $\sum_{p} v^{(p)}$  is also convergent in  $C^0([0,\,\varepsilon],\,A_s(\Omega))$ . This implies that the sequence  $\{u^{(p)}\}$  converges to a function u in  $C^0([0,\,\varepsilon],\,A_s(\Omega))$ . Since u satisfies u=R[Bu+f], it follows that u becomes a genuine solution of (S) in  $C^0([0,\,\varepsilon],\,A_s(\Omega)) \cap C^1((0,\,\varepsilon],\,A_s(\Omega))$ . Thus, the existence part of Theorem 1 is obtained. The uniqueness can be proved in the same way. Therefore, we may omit the details.

### § 4. Proof of Theorem 2.

Recall that any distribution  $u \in \mathcal{D}'(\mathbb{R}^n)$  with compact support can be regarded as an analytic functional  $\tilde{u}$  on  $\mathbb{C}^n$  by the following definition

$$\langle \tilde{u}, \theta \rangle = \langle u, \theta |_{R^n} \rangle_{\mathcal{E}' \times C^{\infty}}, \quad \theta \in \mathcal{H}(\mathbb{C}^n),$$

where  $\mathcal{H}(C^n)$  is the space of all entire functions on  $C^n$ . Therefore, Theorem 2 is obtained from the following proposition which is a Cauchy-Kowalewski type theorem for analytic functionals. Let  $\Omega$  be a bounded open set in  $\mathbb{R}^n$ . We define  $F_s(\Omega)$  by the closure of  $\mathcal{H}(C^n)$  in  $A_s(\Omega)$  and  $F_s'(\Omega)$  by the dual space of  $F_s(\Omega)$  as a Banach space. Note that the system  $\{F_s'(\Omega)\}$  becomes an increasing scale of Banach spaces. Therefore, by the same argument as in §§ 2 and 3 we can obtain

PROPOSITION. For any  $s_1$ , s  $(0 < s_1 < s < s_0)$ , there is a positive number  $\varepsilon$   $(0 < \varepsilon < T)$  which satisfies the following: for any  $f(t) \in C^0([0, T], F'_{s_1}(\Omega))$  there exists a unique solution  $u(t) \in C^0([0, \varepsilon], F'_s(\Omega)) \cap C^1((0, \varepsilon], F'_s(\Omega))$  of (S) satisfying  $t^\sigma u'_t(t) \in C^0([0, \varepsilon], F'_s(\Omega))$ .

Here we used the same notations as in Baouendi-Goulaouic [1], so that we can follow their argument directly. Hence, using the above proposition instead of Proposition 2 of [1], we can easily obtain Theorem 2 by the same argument as in the proof of Theorem 4 of [1]. Therefore, we may omit the details.

#### References

- [1] M.S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.
- [2] M.S. Baouendi and C. Goulaouic, Cauchy problems with multiple characteristics in spaces of regular distributions, Uspehi Mat. Nauk, 29-2 (1974), 70-76 (Russian Math. Surveys, 29-2 (1974), 72-78).
- [3] J. Elschner, Einige Bemerkungen zu einer Arbeit von Baouendi-Goulaouic, Beiträge zur Analysis, 12 (1978), 185-198.
- [4] J. Elschner, Über ein lokales Cauchy-Problem mit mehrfachen Charakteristiken, Math. Nachr., 85 (1978), 185-193.
- [5] H. Tahara, Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math. New Ser., 5 (1979), 245-347.
- [6] H. Tahara, Singular hyperbolic systems, II. Pseudodifferential operators with a parameter and their applications to singular hyperbolic systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26 (1979), 391-412.
- [7] F. Treves, Ovchyannikov theorem and hyperdifferential operators, Notas de Matematica, 46, IMPA, Brazil, 1968.

Hidetoshi TAHARA
Department of Mathematics
Sophia University
Kioicho, Chiyoda-ku, Tokyo 102
Japan