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On the boundary behavior of superharmonic
functions in a half space
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1. Introduction.

A non-negative superharmonic function u in the half space D= {x=(x4, -*-, X )
€R"; x,>0}, n=2, is represented as

u(x)zaxn—f—SDG(x, y)dpe(y)+g DP(x, ydyv(y), x€D,

~
a

where a is a non-negative number, g (resp. v) is a non-negative measure on D
{resp. 0D), G is the Green function for D and P is the Poisson kernel for D.
It is known in that

1

: -1 — _JIn__ [ —
Jlim (e =a+b,| o dp(y)+en| o ),

xaolixrgD_Ex;l [ x| ™ {u(x)—axa} =c.v({0})

for a Borel set ECD which is minimally thin at O, where
2An—2) if n=3,
e co=n""2(n/2).

2 if n=2,

Our aim in this note is to show that x7?|x|?*{u(x)—ax,}, 081, —1=y<
n—1, has a limit as x—0O with an exceptional set, for which we shall give a
metrical estimate of Wiener type. To do this, we shall study the boundary

behavior of the Green potential G.(x, #):SDGa(x, v)d u(y), where

|x—y|*"—|x—y|* ™ in case 0<a<n,

Galx, y):{

log(|x—y|/|x—y]) in case a=n=2,

% denoting the reflection of x with respect to the surface aD, i.e.,
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=Xy, =" Xn-1, —Xn) for x=(xy, -+, Xa-1, Xa).

As an application, we shall prove the existence of radial limits of G.(x, p.

2. Main results.

We first note the following elementary lemma.
LEMMA 1. There exist positive constants ¢, and ¢, such that

¢ XnYn
Hx—ylmx—y]|

X .
=G.(x, y)§c2|x-—y|"f3}]nf—ylg in case a<n,

XnYn

HEIE

xn n
=Golx, y>§_0217_#

for x=(xy, ==+, x4) and y=(y1, ==, ya) in D.
Set

ko pgo(x, V)=x7°92PGu(x, y)  for x, yeD.

If B=0=1, then k,=F, 1, is extended to be continuous on DX D in the extended
sense, where D=D\UoD.

Following Fuglede [2], we set
ks, = k(x, 3)duty) and kg, )= k(x, dpto)

for a non-negative Borel measurable function 2 on R*X R" and a non-negative
measure g on a Borel set ECR™ Define the capacity

Ck(E):Sup ﬂ(Rn) ’ ECD ’

where the supremum is taken over all non-negative measures g on D such that
S, (the support of z) is contained in E and

k(x, =1 for every x&D.
The following lemma can be proved by using Fuglede [2; Théoréme 7.8].
LEMMA 2. For a Borel set E in D, we have
C,,a,ﬁyé(E):inf A(D) (resp. inf A(D)) if o<1 (resp. 0=1),

where the infimum is taken over all non-negative measures A on D (resp. D) such
that ke, p.5(4, y)=1 for every yeE.
By Lemma 1, we obtain the following lemma.

LEMMA 3. Let p be a non-negative measure on D. Then G (x, p)#> if
and only if | (14131 2yadu(y)<co.

Let ¢ be a non-negative measure on D such that G.(x, p)=%co, and define



Boundary behavior of superharmonic functions 271

dA(y)=yadp(y). Then A is a measure on D by and Gu(x, )=

Xakox, A).
For a non-negative measure 1 on D, we write k. (x, D=k4(x, )+k"(x, 2),

where
Katx, 0= Balx, 9)420),

(yED;Iz~yi2121/2}

Bi(x, x)zg Eo(x, 9)dA3).

(YEDs 12~ YI1<IZ1/2)
LEMMA 4. Let —1=y=n—a+1 and S5|y1“+7‘"‘1d2(y)<00. Then

i 1-8 B+rp’
z—»})l,ral;lern | x| PHTRG(x, A)

kO, 2) if =1 and r=-1,
=1 dA({0}) if B=1 and r=n—a-+1,
0 if 0=28=1 and —1<r<n—a+1,
where d,=2(n—a) if a<n and =2 if a=n.
ProoOF. If x, yeD and |x—y|=|x]|/2, then

x5 P x| Pk a(x, y)=const. | y| =71,

so that Lebesgue’s dominated convergence theorem gives the lemma.
LEMMA 5. Let —1=y<n—a-+0 and 2 be a non-negative measure on D (resp.

D) satisfying
[ Ip1mrrmmyindiy<eo, <,

(resp. S]s‘ ylerdi(y)<oo,  d=1).

Then there exists a Borel set ECD with the properties:

i H 1-8 B+rpn —0-
i) x~o¥21’elp-g"" | x| P*TRG(x, A)=0;

ii) i=212i(n—a+,9+5)cka, ﬁ.a(E(i))< o0,

where EO={xeE; 2'<|x| <2 1},
PrROOF. We shall prove only the case =1, because the case <1 can be

proved similarly. Let {a;} be a sequence of positive numbers such that lim a;
100

=oo but _Elaib,-<00, where
=

|y l a+7’—n—1d2(y) .

b= - . .
SWED;2""1<HII<2'“'ZI
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Consider the sets
Ei={xeD;27<|x| <27, xiPRi(x, D= a;'2!F+}

for 7=1,2,.-. If p is a non-negative measure on D such that S,CFE; and
ko p.(x, p)=1 for x&D, or equivalently, for xeD by the lower semicontinuity
of ka,ﬁ,l, then

Spdﬂg ai2‘“ﬂ+”gx}fﬁk’a’(x, Dd p(x)

éaﬂ““ﬁ”)g }ka,ﬂ,l(y, wdi(y)

{yeDiz~ -1 yi<e—1+2

§ai2—icﬁ+r>g

di(y)

(yeD2-t- 1 yice—i+2;

§4"-“—7+12‘“"'“+ﬁ+”a,~b,~ ,
which yields
Cka,ﬁ,I(Ei)§4n_a_r+12_i(n_a+ﬁ+l)aibi .

Thus the set E= O E; has the required properties.
i=1

THEOREM 1. Let y=—1, 0=1 and n—a—7y+06=0. Let p be a non-negative
measure on D satisfying

[ 1p1=r-onyaduty)<co.
Then there exists a Borel set ECD such that

lim Ex;ﬂ | x| PG (x, p)

z-0, xED-

daglyl"‘"‘2ynd(,e(y) if B=1 and y=—1,

0 if 0=B=1 and y>—1; and

Ms

(A) 2i(n—a+ﬂ+5)cka,ﬁ,g(E(i))<°o,

1
where E®={x€E; 27| x| <271},

This theorem follows readily from Lemmas 4 and 5.

Let Ru(x, y)=|x—y|* ™ if a<n and =log(|Z—y]|/|x—y]|) if a=n. For

simplicity, we write C, for Cg,. We denote by /A, the /-dimensional Hausdorff
measure.

COROLLARY. Let a+y—1>1, and p be a non-negative measure on D such
that Guo(x, p)¥#co. Then we can find a set ECOD such that Cuey-1(E)=0 and
for each §€0D—E, there exists a Borel set E:CD with the properties:

o~
It
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i) lim Eéxzﬁlx—élﬁ”Ga(x, D)

z-§, xeD~

d“gp|5‘y|“‘"‘2ynd#<y> if p=1 and r=-1,

0 if 0=B=<I1 and y>—1;
ii) glzi(n_”ﬂﬂ)cka,;9,1(Eéi))<oo’

where EP={xeE; 27" S| x—§| <27,
In fact, it is seen that

E={econ; | 16—ylvrrtyaduy) =co)

Bi¢, D

has the required properties, where B.(& r)={xeD; |x—&|<r}, r>0. Since
Ca+r—1(E):0, An—1(E):0-

The case a+r—1=1 is treated in the following.

PrOPOSITION 1. If —1<y=n—a+1 and G (x, p)F=oo, then there exists a
set ECAD such that Ap-q-7e:(E)=0 and to each §€0D—E, there corresponds a
set E:CD with the properties:

i) lim |x—=&"Galx, 1)=0;

z-§, 2§, a)-E¢

ity E:N['(, a) is a-thin at &, i.e.,
3 280 (EPATE, a) <o,

where I'(§, a)={x=(x1, =+, xa); |x—E&|<ax.}, a>1.

To prove this, we need the following lemmas.

LEMMA 6. Let —1<y=n—a+1 and p be a non-negative measure on D such
that Go(x, py5Eo. Then the following are equivalent:

H r — . .

a> z-4, al:lergce,zwan(yean~y1zb—lxn)Ga(x’ y)dpt(y) 0 for a and b>1’
e yadp(y) .
b) 17_1}1(;1 8 SB.;.(&I) (r__’_ly_sl)n—cu-z 0:

¢ lim wr-n-lSB o dp()=0.
+(@, T

740

Proor. By [Lemma 1, a) is equivalent to b). Clearly, b) implies ¢). It is
not difficult to see that c) implies b). Thus the lemma is obtained.

REMARK. Let A={¢€dD;limsupr'|  5.du(y)>0} If Galx, £ co,
740 By,
then by and [5; p. 1657, A,_,(4)=0.
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LEMMA 7. Let p be a non-negative measure on D satisfying

(1) yodu(y)<oo  for any r>0,

SB+(0.T)

and set
Ay ={gedD; S

Th.en An—a-r+5(A51):0.
PrOOF. If n—a—y+0=0, then

lf—yl“”'a'""y%'du(y)=00}, 8'>0.

By (&1

g=ylero-ryidpns|  idp)<es,

S3+($,1) B4+, D

which implies that A; is empty. Let n—a—7+0>0, and suppose An-qa-y+5(4s)
>0. Then by [1; Theorems 1 and 3 in § I ] we can find a positive measure
v with compact support in A; such that v(B(x, r)<rr-a-1+8 for any x<R™ and
r>0, B(x, r) denoting the open ball with center at x and radius ». Note that

Sl’c‘—yI"”“’""dv(é)éconst- ya*, yeD.

Taking N>0 such that S,CB(0, N), we obtain
= — oy | atr=d-n 0
= S{Sm,n’f )| ¥idp(y)}dn@)

<

< {fle=y1=r-2-rdu@)}y% duy)

SB+(O,N+1)

éconst.g y2dp(y)<oo,

B4+(0,N+1)
which is a contradiction. Thus An-4-;+5(A45)=0, and our lemma is proved.
PROOF OF PROPOSITION 1. Define A with /=a-+7y—1 and A;, d’>1, as
above. Then A,_,(A\JA;)=0 by and the remark given after
6. Let EcdD—(AUA;), and write

Gulx, #)=S Galx, y)d#<y)+g Galx, y)du(y)

LYED1Z-Y12Zq/2} (yilz-yI<zp/2}

=G"(x)+G"(x).
Then implies that lim  |x—&|"G’(x)=0.

z-§, zel'¢, a)

For a>1, take b>1 such that {y; [x—y|<x,/2} CI'(& b) whenever x&
I'(¢, a). Note that if xeI'(§, a), then

| x—&|7G"(x)<const. S | x—y |- ().

wlr-yi<ry/2}
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Since S [E—y|atT*du(y)< oo, in the same way as the proof of

By, NI &b

5, we can find a set E¢ , such that E;, is a-thin at £ and

lim |x—&17G"(x)=0.

z=§, zel'¢,a)-Eg, q

One easily finds a sequence {r,} of positive numbers such that E.=

Q(Ee,a/‘\B(é', 7)) satisfies ii)”. Clearly, i)’ holds for this E,, and hence the
proof of is complete.

PROPOSITION 2. Let 6<1 and —1<y=n—a+d0. Let p be a non-negative
measure on D such that G.(x, p)7Fco and p satisfies (1). Define As,06<0'<1, as
in Lemma 7. Then for each §€0D—A;., there exists a Borel set E¢ 5 CD with
the properties:

) lim  x7f|x—E&|#YG(x, )=0;

z-§, zED-Ee'a,
i) 32T, (E)< o,

where E{y,={x€E;s; 27'<|x—&| <2711,
This is an easy consequence of [Theorem 1. We note here that A4,-4-;+5(As)
=0 on account of
Let u be a non-negative superharmonic function on D, and write
u(x)=ax,+Gy(x, )+P(x, v)I=axnt+x,k(x, 2).

THEOREM 2. [If —1=y=n—1 and

@ o1y di)<eo,

then there exists a Borel set ECD with the properties:
i i =81y |B+r -
Do im awflx [ lu(x)—axa]

bnS[;lnn d#(y)—l—cngwlln—dV(y) in case =1 and y=—1,

=< ¢ v({0}) in case =1 and y=n—1,
0 in case 0=B=1 and —1<y<n—1;
i) D 2krsnC,,  (E®)<oo,
i=1
This theorem follows readily from Lemmas 4 and 5.
REMARK. In case f=1, property ii) is equivalent to the condition that E
is minimally thin at O.
PropoSITION 3. If 0=y<n—1 and u is a non-negative superharmonic func-
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tion in D, then there exists a set ECOD with A,_,_,(E)=0 such that for each
§€0D—E, there correspond a number c; and a set E:CD with the properties:

i lim x—&[Tulx)=ce;
) ot 2elE, a)-Ee l S‘ (x) CE )

i) E:NI', a) is 2-thin at &,
for every a>1.
REMARK. In case >0, c,=0.

Proor. If y=0, follows from and Fatou’s theo-

rem (cf. [3; Theorem 3.9]). The case y>0 can be proved in a way similar to

the proof of Proposition 1l

is best possible as to the size of the exceptional set. In fact
we have the next result.

THEOREM 3. Let E be a Borel set in D which satisfies ii) in Theorem 2.
Then there exists a non-negative measure A on D satisfying (2) such that

loimegxﬁﬁlﬂﬁ”u(x)zoo, where u(x)==xky(x, A).

PrROOF. On account of one can find non-negative measures 4; on
D such that 2,(D)<Ch,, 5 (E®)+27i+8 and ks, ga(Ai, )21 on E®, Denote by
A; the restriction of 2; to the set {xeD; 271 |x|<27%%., If zeE®, then
gives

ko 542, zgl—g sl 2A24(6)

tzisz-i-hunzize-i+e
21_622(i+1)(n+ﬂ—1) {Ckz.ﬁ 1(E(i>)+2-i(n+ﬂ)}.

Let {a;} be a sequence of positive numbers such that lim a;=co and

{00

3 a2 Cy, o (ED)F2710) <oo.

i=1
Define

A= 3 a 208y
i=1
Let u(z)=z,ky(z, ). Then we have
z22P 12| P Tu(2) = a 27 P4 ks, 5,4(A5, 2)

for ze E®, and hence

lim z78|z|f+Tu(z)=0o0.
2-0,z2€E

On the other hand,

[ 1% 1t = 3 ageosn(fxsr-ndz o
D =1
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=

Ma

2P TG QI C, o (B 24P} Coo

]

=1

Thus our theorem is established.
REMARK. Let h be a positive non-decreasing function on (0, o), and set

= {x=(x1, =+, xa); 0<x<h(|x])}.
Then E, satisfies ii) in if and only if

() 4 e

0 s r

To prove this fact, we have only to establish the next lemma.
LEMMA 8. Let E be a non-empty bounded open set in 0D. Then there exists
¢>0 such that

cTtP=Chy 5 (EXO, )=ct?  for 1>0.

For a proof, it suffices to note that
Ct P kupaln, 2ASHZCt?
@

whenever x<=E X (0, t), where C, and C, are positive constants independent of
t, and E@)=1{¢+(, ---, 0, ¢/2); £ E}.

3. Radial limits.

By the definition of C, 4, we have the following lemma.
LEMMA 9. (1) For r>0, let T,E={rx; x€E}, ECR™ Then

Cka,/g,a(TrE):T’n_a+'9+ECka'ﬂ’B(E), EcCD.
(2) There exists M>0 such that
M-lca(E)écka,ﬂ,(;(E)éMca(E)

whenever ECI(O, a)NB(0, 2)—B(0, 1).
For a set ECD, we define

E~={eS,; r{eE for some r>0},
where S.={xeD; |x]|=1}.
COROLLARY. If ECD satisfies (A) in theorem 1, then
®3) Cal () (Y EDP)=0.

PROOF. First note that if ECD is a-thin at O, then E satisfies 3). If E
satisfies (A) in [Theorem 1, then ENI(O, a) is a-thin at O for any a>1 on
account of so that E satisfies (3).
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By using this corollary and Propositions 1, 2, we have the following radial
limit theorem.

THEOREM 4. Let 0=<1 and —1<y=n—a-d. Let p be a non-negative mea-
sure on D satisfying (1) such that G.(x, p)£oo. Then there exists a set ECdD
with Ap-a-y+s(E)=0 such that to each §€0D—E, there corresponds a set E:CS.
with the properties:

i) 1ifl;1 "G (E+7E, 1)=0 for every {eS,—Es;

ii) Cu(Eg=0.

In view of Proposition 3 and the corollary to Lemma 9, we can establish
the following result. ‘

PROPOSITION 4. Let u be a non-negative superharmonic function on D, and
0=r=<n—1. Then we can find a set EC0D with A,_,,(E)=0 such that for each
§€0D—E, there exist a number ¢ and a set E.CS, with the properties:

i) li{I;I r"u(6+rl)=c:  for every LS, —FE¢;

ii) CyEe)=0.

REMARK. Let v(x)=Gy(x, )+ P(x, v). Then there exists a set £ECS; such
that C,(E)=0 and

im 7= 2 d ) +en o dst)

for every {&S.—E. Note here that the right hand side may be infinity; in
this case it is trivial that 11}011 r w@rf)=oc0 for every {&S,.
T
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