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1. Introduction.

Let $N$ denote the natural numbers and let $\beta N$ denote the Stone-\v{C}ech com-
pactification of $N$. For each $M\subset N$, we denote $M^{*}=Cl_{\beta N}M-N$. Let $F$ be a
closed subset in $N^{*}$ . We introduce a topology in $X=N\cup\{F\}$ as follows; each
point of $N$ is isolated and a neighborhood filter of $\{F\}$ in $X$ is {$(N\cap U)\cup\{F\}$ :
$U\in \mathfrak{U}_{F}\}$ , where $\mathfrak{U}_{F}=\{U\}$ is the neighborhood filter of $F$ in $\beta N$.

A countable space with one non-isolated point is denoted by $N\cup\{q\}$ . Here
$q$ is the non-isolated point and its filter of neighborhoods restricted to $N$ is
denoted by $\mathfrak{F}_{q}=\{F_{\alpha} : \alpha\in A\}$ . We denote $F_{q}=\cap\{Cl_{\beta N}F_{\alpha} : \alpha\in A\}$ and call $F_{q}$ the
representation of $q$ in $\beta N$. Clearly $N\cup\{F_{q}\}$ is homeomorphic to $N\cup\{q\}$ . Each
countable space with one non-isolated point is denoted by the form $N\cup\{F\}$ ,
where $F$ is a closed subset in $N^{*}$ . In this paper we sometimes use $N\cup\{F\}$ as
a countable space with one non-isolated point.

Let $p$ denote a free ultrafilter on $N$. Let $\mathfrak{T}$ denote a certain nice class of
spaces such that each $X\in \mathfrak{T}$ cannot contain $N\cup\{p\}$ as a subspace. Then does
finite (or countable) product of elements of $\mathfrak{T}$ contain $N\cup\{p\}$ as a subspace?
We have much concern with this problem.

In the previous paper ([5]), we showed that, assuming the continuum hypo-
thesis (CH), there exist Fr\’echet spaces (see Definition 2-2) $X$ and $Y$ such that $X\times Y$

contains $N\cup\{p\}$ as a subspace. In this paper, we shall show the following;
1 (CH). There exist strongly Fr\’echet spaces (see Definition 2-2) $X$ and $Y$

such that $X\times Y$ contains $N\cup\{p\}$ as a subspace.
2. Let $X$ be a bi-sequential space (see Definition 2-2) and $Y$ be any topol-

ogical space. If $X\times Y$ contains $N\cup\{p\}$ as a subspace, then $Y$ contains $N\cup\{p\}$

as a subspace.
3. There exists a non-metrizable La\v{s}nev space $T$ such that countable pro-

duct of $T$ does not contain $N\cup\{p\}$ as a subspace, where a $ Lasnev\vee$ space is the
closed continuous image of a metric space.
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In this paper all spaces are assumed to be topological spaces.

2. Properties of La\v{s}nev spaces.

DEFINITION 2-1 ([1]). A space $X$ is said to be Fr\’echet if, whenever $ x\in$

$Cl_{X}A$ for some $A\subset X$, there exists a sequence $\{x(n):n\in N\}\subset A$ such that
$\lim_{n\rightarrow\infty}x(n)=x$ .

DEFINITION 2-2 ([4]). A space $X$ is said to be bi-sequential if, whenever $\mathfrak{F}$

is a filter in $X$ with a cluster point $x$ , then there exists a countable filter base
$\mathfrak{H}$ in $X$ which converges to $x$ and all of whose elements intersect all elements
of $\mathfrak{F}$ If the definition of a bi-sequential space is modified by restricting $\mathfrak{F}$ to
be a countable filter base, the resulting concept is said to be strongly Fr\’echet.

LEMMA 2-1 ([3]). (1) $N\cup\{F\}$ is a Fr\’echet space if and only if $F=$

$Cl_{\beta N}(Int_{N}\cdot F)$ .
(2) $N\cup\{F\}$ is a strongly Fr\’echet space if and only if $F=\{x\in N^{*}:$ for each

zero set $Z$ in $N^{*}$ such that $x\in Z,$ $ Z\cap Int_{N}F\neq\emptyset$}.
(3) $N\cup\{F\}$ is a bi-sequential space if and only if $F$ is the union of zero

sets in $N^{*}$ .
A family $\mathfrak{H}=\{H_{\alpha} : \alpha\in A\}$ of subsets of a space $X$ is said to be hereditarily

closure preserving if for each $B\subset A$ and $K_{\alpha}\subset H_{\alpha},$ $\cup\{Cl_{X}K_{\alpha} ; \alpha\in B\}=Cl_{X}(\cup\{K_{\alpha}$ :
$\alpha\in B\})$ . A family $\mathfrak{H}=\{H_{a} : \alpha\in A\}$ of subsets of a space $X$ is said to be a net-
work at $x\in X$ if, for each open neighborhood $U$ of $x$ , there exists $H_{\alpha}\in \mathfrak{H}$ such
that $x\in H_{\alpha}\subset U$ . $\mathfrak{H}$ is said to be a network of $X$ if it is a network at each
point of $X$.

DEFINITION 2-3. Let $X$ be a space. A sequence $\{\mathfrak{H}_{n} : n\in N\}$ of closed
coverings of $X$ is said to be a La\v{s}nev sequence if the following three conditions
are satisfied.

(1) $\mathfrak{H}_{n}$ is hereditarily closure preserving for each $n\in N$.
(2) If $x\in X$ and if for each $n\in N,$ $H_{n}\in \mathfrak{H}_{n}$ and $x\in H_{n}$ then $\{H_{n} : n\in N\}$ is

hereditarily closure preserving or a network at the point $x$ .
(3) $\cup\{\mathfrak{H}_{n} : n\in N\}$ is a network of $X$ .
LEMMA 2-2 ([2]). A space $X$ is Lasnev if and only if $X$ is Fr\’echet and has

a $LaS$nev sequence.
LEMMA 2-3. Let $\{U_{i} : i\in N\}$ be a family of clopen subsets in $N^{*}$ . Then

$\cap\{U_{i} : i\in N\}=Cl_{N}.(Int_{N}\cap\{U_{i} : i\in N\})$ .
PROOF. $SinceInt_{N}\cdot\cap\{U_{i} : i\in N\}\subset U_{i},$ $Cl_{N}(Int_{N}\cap\{U_{i} : i\in N\})\subset\cap\{U_{i} : i\in N\}$ .

We shall show the converse implication. Choose

$x\in\cap\{U_{i} : i\in N\}-Cl_{N}.(Int_{N}*\cap\{U_{i} : i\in N\})$ .
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Let $V$ be a clopen subset of $N^{*}$ such that

$x\in V$ and $ V\cap Cl_{N}(Int_{N}\cdot\cap\{U_{i} : i\in N\})=\emptyset$ .
Then $x\in V\cap\cap\{U_{i} : i\in N\}$ and

$Int_{N}\cdot(V\cap\cap\{U_{i} : i\in N\})=V\cap Int_{N}.\cap\{U_{i} : i\in N\}=\emptyset$ .
This is impossible since each non-empty zero set in $N^{*}$ has non-empty interior
in $N^{*}$ . The proof is completed.

LEMMA 2-4. Let $X=N\cup\{F\}$ be a $LaS$nev space and let $\mathfrak{H}_{n}=\{H_{\alpha} : \alpha\in A_{n}\}$

$n\in N$ be a LaSnev sequence of X. Put $H_{a}^{*}=Cl_{\beta N}(H_{\alpha}-\{F\})-N$ and $\mathfrak{H}_{n}^{*}=\{H_{a}^{*}$ :
$\alpha\in A_{n},$ $ H_{\alpha}^{*}\cap F\neq\emptyset$}. Then we have

(1) $\mathfrak{H}_{n}^{*}$ is a locally finite covering of $Int_{N}\cdot F$ for each $n\in N$.
(2) $\mathfrak{H}_{n}^{*}$ is countable.
PROOF. We shall show that $\cup \mathfrak{H}_{n}^{*}$ is dense in $Int_{N^{*}}F$ for each $n\in N$, where

$\cup \mathfrak{H}_{n}^{*}=\cup\{H_{\alpha} : H_{\alpha}\in \mathfrak{H}_{n}^{*}\}$ . Since $X$ is Fr\’echet and $H_{a}^{*}\cap F\neq\emptyset,$ $ H_{\alpha}^{*}\cap Int_{N}\cdot F\neq\emptyset$ by
Lemma 2-1. Assume that $\cup \mathfrak{H}_{n}^{*}$ is not dense in $Int_{N}\cdot F$. Then we can choose
$K(\subset N)$ such that $\emptyset\neq K^{*}\cap Int_{N}F$ and $ K^{*}\cap H^{*}=\emptyset$ for each $H\in \mathfrak{H}_{n}$ . Then $K\cap H$

is finite for each $H\in \mathfrak{H}_{n}$ . Put $H_{\alpha}^{\prime}=K\cap H_{a}$ for each $\alpha\in A_{n}$ . Then $H_{\alpha}^{\prime}$ is closed
in $X$ and $K=\cup\{H_{\alpha}^{\prime} : \alpha\in A_{n}\}$ . Since $\{F\}\in Cl_{X}K$ and $\{F\}\not\in Cl_{X}H_{a}$ for each $\alpha\in A_{n}$ ,
$\mathfrak{H}_{n}$ is not hereditarily closure preserving. This is a contradiction.

Now we shall show that $\mathfrak{H}_{n}^{*}$ is locally finite in $Int_{N}\cdot F$. Assume that $\mathfrak{H}_{n}^{*}$ is
not locally finite at $x\in Int_{N}\cdot F$. Choose $K_{x}\subset N$ such that $x\in K_{x}^{*}\subset Int_{N}\cdot F$. Then
$\{H\in \mathfrak{H}_{n} : K_{x}^{*}\cap H^{*}\neq\emptyset\}$ is infinite. Choose $K^{\prime}=\{k_{1}, k_{2}, \}\subset K_{x}$ such that $ k_{i}\in$

$H_{n(i)}\in \mathfrak{H}_{n}$ and $H_{n(t)}\neq H_{n(j)}$ if $i\neq j$ . Then $K^{\prime*}\subset K_{x\cap}^{*}Int_{N}*F$. $\{F\}\in Cl_{X}K^{\prime}$ and
$\{F\}\not\in\{k_{i} : i=1, 2, \}$ . This is a contradiction since $\mathfrak{H}_{n}$ is hereditarily closure
preserving.

Since $\cup \mathfrak{H}_{n}^{*}$ is dense in $Int_{N}\cdot F$ and $\mathfrak{H}_{n}^{*}$ is locally finite in $Int_{N*}F,$ $\mathfrak{H}_{n}^{*}$ is a
covering of $Int_{N}\cdot F$.

Next we shall show that $\mathfrak{H}_{n}^{*}$ is countable for each $n\in N$. Assume that $\mathfrak{H}_{n}^{*}$

is uncountable for some $n\in N$. For each $H_{a}^{*}\in \mathfrak{H}_{n}$ , choose $K_{\alpha}\subset H_{\alpha}\cap N$ such that
$ K_{a}^{*}\neq\emptyset$ and $K_{\alpha}^{*}\subset Int_{N}\cdot F$. Put $K=\cup\{K_{\alpha} : H_{\alpha}^{*}\in \mathfrak{H}_{n}^{*}\}$ . For each $m\in K$, there exists
$K_{\alpha(m)}$ such that $m\in K_{\alpha(m)}$ . Fix such $K_{a(m)}$ for each $m\in K$ and put

$\mathfrak{B}_{m}=$ { $K_{\alpha}$ : $K_{\alpha}\cap K_{a(m)}$ is inPnite}.

Since $\mathfrak{H}_{n}^{*}$ is locally finite in $Int_{N}\cdot F$ and $K_{\alpha(m)^{*}}\subset Int_{N^{*}}F,$ $\mathfrak{B}_{n}$ is finite for each
$m\in K$. Pick $K_{a}\in\{K_{\beta} : H_{\beta}^{*}\in \mathfrak{H}_{n}^{*}\}-\cup\{\mathfrak{B}_{m} : m\in K\}$ . Then $K_{\alpha}\cap K_{\alpha(m)}$ is finite for
each $m\in K$ and $K_{\alpha}=\cup\{K_{a}\cap K_{\alpha(m)} : m\in K\}$ . Clearly $\{F\}\in Cl_{X}K_{\alpha}$ but $\{F\}\not\in$

$K_{\alpha}\cap K_{a(m)}$ for each $m\in K$. This is a contradiction since $\mathfrak{H}_{n}$ is hereditarily
closure preserving. The proof is completed.

THEOREM 2-1. Let $X=N\cup\{F\}$ be a La\v{s}nev space. Then, for each $p\in F$,
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there exists a zero set $Z_{p}$ in $N^{*}$ such that $p\in Z_{p}\subset F$ or otherwise $ p\in Z_{p}\subset$

$N^{*}-Int_{N*}F$.
PROOF. Let $\mathfrak{H}_{n}=\{H_{\alpha} : \alpha\in A_{n}, n\in N\}$ be a La\v{s}nev sequence of $X$ . Assume

that there exists $p\in F$ such that the condition of the theorem is not satisfied.
Then we shall show that there exists $H_{\alpha(n)}\in \mathfrak{H}_{n}$ such that $p\in H_{a(n)}^{*}$ for each
$n\in N$. If there exists $n\in N$ such that $p\not\in H^{*}$ for each $H\in \mathfrak{H}_{n}$ , put $Z_{p}=$

$\cap\{N^{*}-H^{*} : H^{*}\in \mathfrak{H}_{n}^{*}\}$ . Then $Z_{p}$ is a zero set in $N^{*}$ since $\mathfrak{H}_{n}^{*}$ is countable by
Lemma 2-4. Moreover, $Z_{p}\subset N^{*}-Int_{N^{s}}F$ since $\mathfrak{H}_{n}^{*}$ is a covering of $Int_{N}*F$. This
contradicts our assumption.

We shall show that $\{H_{\alpha(n)} : n\in N\}$ is neither a network at $\{F\}$ nor here-
ditarily closure preserving. This contradicts that $\mathfrak{H}_{n}$ is a La\v{s}nev sequence.

(I) $\{H_{\alpha(n)} : n\in N\}$ is not a network at $\{F\}$ .
By Lemma 2-3, $Cl_{N}.(Int_{N}*\cap\{H_{\alpha(n)}^{*} : n\in N\})=\cap\{H_{a(n)}^{*} : n\in N\}$ . By our as-

sumption, $\cap\{H_{\alpha(n)}^{*} : n\in N\}\cap(N^{*}-F)\neq\emptyset$ . Choose $K\subset N$ such that

$\emptyset\neq K^{*}\subset(Int_{N}*\cap\{H_{\alpha(n)}^{*} : n\in N\})\cap(N^{*}-F)$ .
Put $V=(N-K)\cup\{F\}$ . Then $V$ is a neighborhood of $\{F\}$ in $X$. Since $H_{\alpha(n)}-V$

is infinite for each $n\in N,$ $H_{a(n)}c\not\subset V$ for each $n\in N$. This shows that {$H_{\alpha(n)}$ :
$n\in N\}$ is not a network at $\{F\}$ .

$(ll)$ $\{H_{\alpha(n)} : n\in N\}$ is not hereditarily closure preserving.
By Lemma 2-3 and by our assumption, we obtain $Int_{N}.(\cap\{H_{\alpha(n)}^{*} : n\in N\}\cap F)$

$\neq\emptyset$ . Choose $K=\{k_{1}, k_{2}, \}\subset N$ such that $k_{n}<k_{n+1},$ $k_{n}\in H_{\alpha(n)}$ for each $n\in N$

and $K^{*}\subset(Int_{N}\cdot\cap\{H_{a(n)}^{*} : n\in N\})\cap F$. Then $Cl_{X}K=K\cup\{F\}$ . Therefore {$H_{a(n)}$ :
$n\in N\}$ is not hereditarily closure preserving. The proof is completed.

In the following sections we shall sometimes use $M\cup\{p\}$ instead of $N\cup\{p\}$

to avoid the confusion. If $M\cup\{p\}$ can be embedded in a certain space, then
we identify $M\cup\{p\}$ with the image of the embedding.

3. Bi-sequential and strongly Fr\’echet spaces.

LEMMA 3-1. Let $X_{i}=N\cup\{F_{i}\}$ for each $i=1,2,$ $\cdots$ , $n$ . If there exists $M\subset N^{n}$

such that the neighborhood filter of $\prod_{i=1}^{n}\{F_{i}\}$ resiricted to $M$ is an ultrafilter on
$M$ and moreover if $p=(p_{1}, p_{2}, \cdots , p_{n})\in(Cl_{(}N)nM)\prod_{i=1}^{n}F_{i}$ , then $M\cap\prod_{i=1}^{n}K_{i}$ is an

element of the ultrafilter for each $K_{i}\subset N$ and $p_{i}\in m$ .
PROOF. Let $\mathfrak{M}$ be the ultrafilter on $M$ mentioned in the theorem. Let $\mathfrak{F}_{i}$

$=\{F_{\alpha} : \alpha\in A_{i}\}$ be the filter on $N$ such that $F_{i}=\cap\{Cl_{\beta N}F_{\alpha} : \alpha\in A_{i}\}$ . We shall

show $ M\cap\prod_{i\Rightarrow 1}^{n}F_{\alpha(i)\cap}\prod_{i=1}^{n}K_{i}\neq\emptyset$ for each $(\alpha(1), \alpha(2),$ $\cdots$ , $\alpha(n))\in\prod_{i=1}^{n}A_{i}$ . This shows
$M\cap\prod_{i=1}^{n}K_{i}\in \mathfrak{M}$ . Since $p_{i}\in F_{a(t)}^{*}\cap Kf$ , there exists $L_{i}\subset F_{\alpha(i)}\cap K_{i}$ such that $p_{i}\in Lf$
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for each $i=1,2,$ $\cdots$ , $n$ . Since $p\in Cl_{(\beta N)}nM,$ $ M\cap\prod_{t=1}^{n}L_{i}\neq\emptyset$ . Therefore $\emptyset\neq$

$M\cap\prod_{i=1}^{n}L_{i}\subset M\bigcap_{i=1}\Pi^{n}F_{\alpha(i)}\cap\prod_{i=1}^{n}K_{i}$ . The proof is completed.

LEMMA 3-2. Let $X_{i}=N\cup\{F_{i}\}$ for each $i=1,2,$ $\cdots$ , $n$ . If there exists $M\subset N^{n}$

such that the neighborhood filter of $\prod_{i=1}^{n}\{F_{i}\}$ restricted to $M$ is an ultrafilter on

$M$, then $(Cl_{(}N)nM)\Pi^{n}F_{\iota}$ is a singleton.

PROOF. Let $\mathfrak{M}$ be an ultrafilter on $M$ mentioned in the lemma. Assume

that $(Cl_{(\beta N)^{n}}M)\cap\prod_{i=1}^{n}F_{i}$ is not a singleton. Choose $p,$ $q(\beta N)n\bigcap_{i\Rightarrow 1}p=$

$(p_{1}, p_{2}, \cdots p_{n}),$ $q=(q_{1}, q_{2}, \cdots q_{n})$ and $p\neq q$ . Without loss of generality, we assume
$p_{1}\neq q_{1}$ . Let $K$ be a subset of $N$ such that $p_{1}\in K^{*}$ and $q_{1}\not\in K^{*}$ . Since

$(K\times\prod_{i=2}^{n}N_{i})\cap L\neq\emptyset$ for each $L\in \mathfrak{M}$ by Lemma 3-1, $(K\times\prod_{i=2}^{n}N_{i})\cap M\in \mathfrak{M}$ , where $N_{i}$

is a copy of $N$ for each $i\in N$. Similarly, $((N-K)\cap\prod_{i=2}^{n}N_{i})\cap M\in \mathfrak{M}$ . This is a
contradiction. The proof is completed.

LEMMA 3-3. Let $\mathfrak{F}_{n}=\{F_{\alpha} ; \alpha\in A_{n}\}$ be a filter on $N$ for each $n\in N$ and let
$\mathfrak{F}_{n}\subset \mathfrak{F}_{n+1}$ . If $\mathfrak{F}=\cup\{\mathfrak{F}_{n} : n\in N\}$ is a free ultrafilter on $N$, then there exists $n(O)$

$\in N$ such that $\mathfrak{F}=\mathfrak{F}_{n(0)}$ .
PROOF. $PutF_{n}=\cap\{Cl_{\beta N}F_{\alpha} : \alpha\in A_{n}\}$ . Since $\mathfrak{F}$ is an ultrafilter, $\cap\{F_{n} : n\in N\}$

is a singleton. Assume $\mathfrak{F}_{n}$ is not the ultrafilter $\mathfrak{F}$ for each $n\in N$. Then we
can choose $\{F_{n(k)} : k\in N\}$ such that $F_{n(k+1)}\subsetneqq F_{n(k)}$ for each $k\in N$. Choose $x(k)$

$\in F_{n(k)}-F_{n(k+1)}$ . Then $Cl_{\beta N}\{x(k):k\in N\}-\{x(k):k\in N\}$ is homeomorphic to
$N^{*}$ . On the other hand, $Cl_{\beta N}\{x(k):k\in N\}-\{x(k):k\in N\}\subset\cap\{F_{n} : n\in N\}=$

singleton. This is a contradiction. The proof is completed.
DEFINITION 3-1 ([1]). A subset $U$ of a space $X$ is said to be sequentially

open if each sequence in $X$ converging to a point in $U$ is eventually in U. $X$

is said to be a sequential space if each sequentially open subset of $X$ is open.
A space is said to be subsequential if it can be embedded in a sequential space.

LEMMA 3-4 ([5]). $N\cup\{p\}$ is not subsequential for each free ultrafilter $p$

on $N$.
Let $X$ be a space and $p\in X$. We denote by $X_{p}$ , the space with the same

underlying set as $X$, for which each point of $X-\{p\}$ is isolated and the neigh-
borhoods of the point $p$ in $X_{p}$ is the same as $p$ in $X$.

The following Lemma 3-5 is easy to prove, so we omit the proof.
LEMMA 3-5. (1) Let $X$ be a Lasnev space. Then $X_{p}$ is La\v{s}nev for each

$p\in x$ .
(2) Let $X$ be a bi-sequential space. Then $X_{p}$ is bi-sequential for each $p\in X$.
LEMMA 3-6. Let $p\in N^{*}$ . Let $K$ be a subset of $\Lambda^{\tau}$ such that $p\in Cl_{\beta_{\sim}V}K$.

Then $N\cup\{p\}$ is homeomorphic to $K\cup\{p\}$
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PROOF. Let $L$ be an inPnite subset of $K$ such that $K-L$ is infinite and
$p\in Cl_{\beta N}L$ . Define $\phi$ as follows;

$\phi(n)=n$ for each $n\in L$ ,

$\phi(p)=p$ ,

$\phi/N-L$ is a one to one and onto map from $N-L$ to $K-L$ .

Then clearly $\phi$ is a homeomorphism from $N\cup\{p\}$ to $K\cup\{p\}$ . The proof is
completed

THEOREM 3-1. Let $X$ be a bi-sequential space and $Y$ be any space. If
$M\cup\{p\}$ can be embedded in $X\times Y$ , then $M\cup\{p\}$ can be embedded in $Y$ , where
$p$ is a free ultrafilter on $M$.

PROOF. Put $M_{1}=M\cap(\{p_{1}\}\times Y)$ and $M_{2}=M\cap(X\times\{p_{2}\})$ , where $P=(p_{1}, p_{2})$ .
If $p\in Cl_{XxY}(M_{2}-\{p\})$ , then $M\cup\{p\}$ can be embedded in $X$ by Lemma 3-6,
which is impossible by Lemma 3-4. Thus, without loss of generality, we can
assume $ M_{1}\cup M_{2}=\emptyset$ . Let $\pi_{X}$ and $\pi_{Y}$ be the projections from $X\times Y$ to $X$ and $Y$,
respectively. Put $\pi_{X}(M\cup\{p\})\cap X_{p_{1}}=N\cup\{p_{1}\}$ and $\pi_{Y}(M\cup\{p\})\cap X_{p_{2}}=N\cup\{p_{2}\}$ .
Let $F_{1}$ and $F_{2}$ be the representations of $p_{1}$ and $p_{2}$ in $\beta N$, respectively. By
Lemma 3-2, $(Cl_{(\beta N)2}M)\cap(F_{1}\times F_{2})=q=(q_{1}, q_{2})$ . Since $N\cup\{F_{1}\}$ is bi-sequential by
Lemma 3-5, then there exists a zero set $Z$ in $N^{*}$ such that $q_{1}\in Z\subset F_{1}$ by
Lemma 2-1. Let $\{K_{n} : n\in N\}$ be a sequence of subsets of $N$ such that $K_{n+1}\subset K_{n}$

and $Z=\cap\{Cl_{\beta N}K_{n} : n\in N\}$ . Let $\mathfrak{G}_{n}$ be the filter generated by the filter base
$\{M\cap(K\times F):K_{n}\subset K, F\in \mathfrak{F}_{2}\}$ . Then $\mathfrak{G}_{n}\subset \mathfrak{G}_{n+1}$ for each $n\in N$. We shall show
that $\cup\{\mathfrak{G}_{n} : n\in N\}$ is an ultrafilter on $M$. Choose $F\in \mathfrak{F}_{2}$ , then, since $Z\subset F_{1}$ and
$F_{1}\subset F^{*}$ by the definition of $F_{1}$ (see Introduction), there exists $K_{n}$ such that
$K_{n}\subset F$. This shows $M\cap(F\times F_{\beta})\in \mathfrak{G}_{n}$ for each $F_{\beta}\in \mathfrak{F}_{2\circ}$ Thus $p\subset\cup\{\mathfrak{G}_{n} : n\in N\}$ .
Since $P$ is an ultrafilter and $\cup\{\mathfrak{G}_{n} : n\in N\}$ is a filter, $p=\cup\{\mathfrak{G}_{n} : n\in N\}$ .

By Lemma 3-3, there exists $n(O)$ such that $\mathfrak{G}_{n(0)}=p$ . Put $L=\pi_{Y}(M\cap(K_{n(0)}$

$\times Y))$ . We shall show that $L\cup\{L\cap F_{\beta} : F_{\beta}\in \mathfrak{F}_{2}\}$ is homeomorphic to $M\cup\{p\}$ .
Assume that, for each $F_{\beta}\in \mathfrak{F}_{2}$ , there exists $k_{\beta}\in F_{\beta}$ such that $|M\cap\pi_{Y}^{-1}(k_{\beta})|\geqq 2$ .
It is easy to choose $n_{\beta}\in M\cap\pi_{Y}^{-1}(k_{\beta})$ and $m_{\gamma}\in M\cap\pi_{Y}^{-1}(k_{\gamma})$ such that $n_{\beta}\neq m_{\gamma}$ . Put
$A=\{n_{\beta} : F_{\beta}\in \mathfrak{F}_{2}\}$ and $B=\{m_{\beta} : F_{\beta}\in \mathfrak{F}_{2}\}$ . Then $A\cup B\subset M$ and $A\bigcap_{1}B=0$ . By the
definition of $A$ and $B,$ $ A\cap(K_{n_{0}}\times F_{\beta})\neq\emptyset$ and $ B\cap(K_{n_{0}}\times F_{\beta})\neq\emptyset$ for each $F_{\beta}\in \mathfrak{F}_{2}$ .
These are impossible since $\mathfrak{G}_{n_{0}}$ is an ultrafilter and $ A\cap B=\emptyset$ . Hence, we can
assume that there exists $F_{\beta}\in \mathfrak{F}_{2}$ such that $|M\cap\pi_{Y}^{-1}(n)|=1$ for each $n\in F_{\beta}$ .
Then, clearly, $L\cup\{L\cap F_{\beta} : F_{\beta}\in \mathfrak{F}_{2}\}$ is homeomorphic to $M\cup\{p\}$ by Lemma 3-6.
The proof is completed.

THEOREM 3-2 (CH). There exist strongly Fr\’echet spaces $X,$ $Y$ and $p\in N^{*}$

such that $N\cup\{p\}$ can be embedded in $X\times Y$ , where $p$ is a free ultrafilter on $N$.
PROOF. V. I. Malyhin ([3]) used the continuum hypothesis to construct a
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strongly Fr\’echet space $X=N\cup\{F\}$ which has the following properties;
(1) $Bdy_{N}*F=\{p\}$ , where $P$ is a P-point in $N^{*}$ .
(2) $F-\{p\}$ is a clopen subset of $N^{*}-\{p\}$ and $F$ is a closed subset of $N^{*}$ .

Put $Y=N\cup\{G\}$ , where $G=(N^{*}-F)\cup\{p\}$ . Then $Y$ is strongly Fr\’echet by
Lemma 2-1.

Put $p=\{P_{\alpha} : \alpha\in A\}$ . Note that $F-P_{a}^{*}$ and $G-P_{\alpha}^{*}$ are clopen in $N^{*}$ for each
$\alpha\in A$ . Since $(F-P_{\alpha}^{*})\cap(G-P_{\alpha}^{*})=\emptyset$ , there exist disjoint subsets $F_{\alpha}$ and $G_{\alpha}$ of $N$

such that $F_{\alpha}^{*}=F-P_{\alpha}^{*}$ and $G_{a}^{*}=G-P_{a}^{*}$ , respectively. Put $\mathfrak{F}=\{F_{\alpha}\cup P_{\alpha}\cup\{F\} : \alpha\in A\}$

and $\mathfrak{G}=\{G_{\alpha}\cup P_{\alpha}\cup\{G\} : \alpha\in A\}$ . Then clearly $\mathfrak{F}$ and $\mathfrak{G}$ are neighborhood filters
of $\{F\}$ in $X$ and $\{G\}$ in $Y$ , respectively. Define $\psi:N\cup\{p\}\rightarrow X\times Y$ as follows;

$\psi(n)=(n, n)$ and $\psi(p)=\{F\}\times\{G\}$ .
We shall show that $\psi$ is an embedding. The implication

$\psi^{-1}(((F_{\alpha}\cup P_{\alpha})\times(G_{\beta}\cup P_{\beta}))\cap\Delta)\supset P_{\alpha}\cap P_{\beta}$ ,

implies $\psi$ is continuous, where $\Delta=\{(n, n):n\in N\}$ . We shall show $\psi$ is an open
map. Since $F_{\alpha}\cap G_{\alpha}=F_{\alpha}\cap P_{\alpha}=G_{\alpha}\cap P_{\alpha}=\emptyset,$ $\psi(P_{a})=((F_{\alpha}\cup P_{\alpha})\times(G_{\alpha}\cup P_{\alpha}))\cap\Delta$ . The
above equality implies that $\psi$ is an open map. Clearly $\psi$ is one to one, hence $\psi$

is an embedding. The proof is completed.
Theorem 3 of [5] is strengthened as follows.
COROLLARY 3-1 (CH). There exist strongly Fr\’echet spaces $X$ and $Y$ such

that $X\times Y$ is not subsequential.
PROOF. By Lemma 3-4, $N\cup\{p\}$ is not subsequential. Hence this $corollary_{A}^{\tau}$

is a direct consequence of Theorem 3-2.
The author does not know Theorem 3-2 and Corollary 3-1 are still true

without the continuum hypothesis.

4. La\v{s}nev space $T$ .
Let $R=\{0\}\cup\{1/n:n\in N\}$ be a convergent sequence and let $S=\oplus\{R(n)$ :

$n\in N\}$ , where $\oplus denotes$ the disjoint union and $R(n)$ denotes a copy of $R$ for
each $n\in N$. Let $A=\{0(n)\in R(n):O(n)=0, n\in N\}$ and let $T=S/A$ , the quotient
space obtained from $S$ by identifying $A$ to a point $\{A\}$ . It is easy to show
that the quotient map $\nu;S\rightarrow T$ is closed and hence $T$ is a La\v{s}nev space.

THEOREM 4-1. $T^{n}$ is sequential for each $n\in N$.
PROOF. Clearly $T^{1}$ is sequential. Assume $T^{k}$ is sequential for each $k\leqq n-1$

$(n\geqq 2)$ . We shall show that each sequentially open subset of $T^{n}$ is open in $T^{n}$ .
Let $U$ be a sequentially open subset in $T^{n}$ and $(x_{1}, x_{2}, \cdots , x_{n})\in U$ .

Case I. $x_{i}\neq\{A\}_{i}$ for each $i\leqq n$ .
In this case $\pi_{i}^{-1}(x_{i})$ is an open subspace of $T^{n}$ and is homeomorphic to $T^{n-1}$ ,
where $\pi_{i}$ is the projection from $T^{n}$ to $T_{i},$ $T_{i}=T$ . Hence there exists an open
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neighborhood $W$ of $(x_{1}, x_{2}, \cdots , x_{n})$ such that $W\subset U$ by the inductive assumption
Case II. $x_{i}=\{A\}_{i}$ for each $i\leqq n$ .

Since $U\cap\prod_{i=1}^{n}\nu(R(k_{i}))$ is a sequentially open subset of $\prod_{i=1}^{n}\nu(R(k_{i}))$ and $\prod_{i=1}^{n}\nu(R(k_{t}))$

is a metrizable subspace of $T^{n},$ $U\cap\prod_{i=1}^{n}\nu(R(k_{i}))$ is open in $\prod_{i=1}^{n}\nu(R(k_{i}))$ . We can

choose inductively a sequence $\{t_{m} : m\in N\}$ of increasing natural numbers satisfy-
ing the following condition;

$\prod_{i=1}^{n}\nu([t_{k_{i}}])\subset U\cap\prod_{i=1}^{n}\nu(R(k_{i}))$

for each $k_{i}\leqq m$ , where $[t_{k_{i}}]=\{1/s:s\geqq t_{k_{i}}\}\cup\{0\}$ .
Put $U(k_{1}, k_{2}, \cdots , k_{n})=\prod_{i=1}^{n}\nu([t_{k_{i}}])$ and put $W=\cup\{U(k_{1}, k_{2}, \cdots , k_{n}):k_{i}\in N, i\leqq n\}$ .
Then $W\subset U$ and $W$ is a neighborhood of $\prod_{l=1}^{n}\{A\}_{i}$ in $T^{n}$ since $U_{k}=\nu(\bigoplus_{i=1}^{\infty}[t_{i}])$ is

a neighborhood of $\{A\}_{k}$ in $T_{k},$ $W=\prod_{k=1}^{n}\nu(U_{k})$ and $\nu^{-1}(\nu(U_{k}))=U_{k}$ . By I and II, $U$

is open in $T^{n}$ . The proof is completed.
THEOREM 4-2. Let $\{X_{n} : n\in N\}$ be a family of spaces. If $N\cup\{p\}$ can be

embedded in $\prod_{i=1}^{\infty}X_{n}$ , then there exists $n(0)\in N$ such that $N\cup\{p\}$ can be embedded

in $\prod_{n=1}^{n(0)}X_{n}$ , where $p$ is a free ultrafilter on $N$.
PROOF. Put $p=(p_{1}, p_{2}, )$ . Let $\mathfrak{U}_{n}=\{U_{\beta} : \beta\in B_{n}\}$ be the neighborhood

filter of $p_{n}$ in $X_{n}$ for each $n\in N$. Put

$\mathfrak{F}_{n}=\{N\cap(U_{\beta(1)}\times U_{\beta(2)}\times\cdots\times U_{\beta^{(n)}}\times\prod_{k=n+1}^{\infty}X_{k}) : (\beta(1), \beta(2), \cdots \beta(n))\in\prod_{i=1}^{n}B_{i}\}$ .

Then $\mathfrak{F}_{n}\subset \mathfrak{F}_{n+1}$ and $\mathfrak{F}_{n}$ is a Plter on $N$ for each $n\in N$. Clearly $\cup\{\mathfrak{F}_{n} : n\in N\}$

is the ultrafilter $p$ . Therefore, by Lemma 3-3, there exists $n(O)\in N$ such that

$\mathfrak{F}_{n(0)}$ is the ultraPlter $p$ . Then $N\cup\{p\}$ can be embedded in $\prod_{n=1}^{n(0)}X_{n}$ . The proof
is completed.

COROLLARY 4-1. Let $P$ be a free ultrafilter on N. Then $N\cup\{p\}$ cannot be
embedded in $T^{\omega}$ .

PROOF. Since $T^{n}$ is sequential for each $n\in N$ by Theorem 4-1, $N\cup\{p\}$

cannot be embedded in $T^{n}$ for each $n\in N$ by Lemma 3-4. Hence this corollary
is a direct consequence of Theorem 4-2. The proof is completed.

REMARK 4-1. According to Y. Tanaka ([6], Theorem 1-3), $T^{\omega}$ is not
sequential. The author does not know whether $T^{\omega}$ is subsequential or not.

PROBLEM 4-1. Can $N\cup tP$ } not be embedded in a countable product of
La\v{s}nev spaces?

Perhaps Theorem 2-1 is useful to solve the above problem. The author
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thanks the referee for many valuable suggestions and, in paticular, for simpli-
fying an original proof of Theorem 4-1.
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