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1. In the classification theory of Riemann surfaces (cf. e.g. Sario-Nakai
[[2]), the problem whether the inclusion O4pCO4pp is strict or not had long
been open and only recently the identity Op=0 45p is established by an elaborate
work of Sakai. On the other hand, Uy [4] also recently proved the follow-
ing interesting theorem: If E is an arbitrary compact subset of the complex
plane C with positive area, then there exists a nonconstant bounded analytic
function ¢(z) on C—E satisfying the Lipschitz condition on C—E. We first
remark here that the above theorem implies the identity O p=04pp. In fact,
suppose there exists a nonconstant analytic function f on a Riemann surface R

with the finite Dirichlet integral D f):SSRI F(2)|*dxdy< +oo, i.e. fe AD(R)—C.

The image region f(R) has a finite area since Dg(f)<+co, and a fortiori C—f(R)
has a positive area (and in fact an infinite area). Therefore we can find a
compact subset £ with positive area in C—f(R). Let ¢(z) be the function in
the above theorem associated with E. It is readily checked that ¢-fe ABD(R)
—C, and we have seen the inclusion Q20 5p. This with the trivial inclusion
04pC 0 45p implies the identity O.p=0 4pp.

One step further Sakai proved that ABD(R) is dense in AD(R) with
respect to the Dirichlet seminorm D(:)/2. By observing the proof of O p=04zp
mentioned above, we naturally come across the question (suggested to the author
by Professor Nakai) whether there exists a sequence {¢,} on C such that ¢nof
€ ABD(R) and {¢,} converges to the identity function on f(R) so that the
sequence {¢r°f} gives the desired approximation of the given fe AD(R). The
purpose of this note is to prove the following theorem by which the above
procedure is certainly possible.

THEOREM. Suppose that a closed set E in the complex plane C satisfies the
condition
1) ' lim sup mEN{r<|zl<2r}) >0

00 7'2

with m the Lebesgue measure on C. Then there exists a sequence of functions
{pn(2)} satisfying the following three conditions:
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(a) each ¢n(2) is bounded and analytic on C—EnN{|z|=n},
i.e. poeAB(C—ENn{|z|=n}),

(B sup{sup{|$n(2)l; zeC—En{lzlzn}}} <+oo,
(1) {@a(2)} converges to z uniformly on each compact subset of C.

The proof of this theorem will be given in nos. 2 and 3. Here we show
that the above theorem implies the approximation theorem: ABD(R) is D(-)'/2-
dense in AD(R). Let feAD(R) and E=C—f(R). It is readily seen that E
satisfies (1) since m(f(R))<-+oo. Choose the sequence {¢,} in the above theorem
constructed for the present E=C—f(R). Observe that

Dalf=gnef)=\|_11=g1( )12 @)1 dxdy

Let K be an arbitrary compact set in R and ¢ be the quantity in () in the
above theorem. Then

Dal =g NIZ\|  1=@W( @11 f @) dxdy+(L+0F Dr-x(£)
On letting n—oo in the above ihequality, the condition (;) implies that
lim sup De(f—@n=f)=A+¢)*Dp-(f) -
Again by letting K1 R, we conclude that Dg(f—g@,ef)—0 (n—+o0).

2. For the proof of our theorem we use notations and results in Uy [4].
We denote by M(C) the set of the finite Borel measures on C and consider

Bp(z):p.v.gg—dﬂ © (p.v.=principal value)

C—=2)

for each peM(C). It is well known (cf. e.g. Stein [3], Zygmund [5]) that the
above singular integral exists almost everywhere and that there exists a universal
constant A such that

@ m(z; [ Buta)| > =20

for any p=M(C). By taking u the Dirac measure in (2) we in particular see
that A=z. If E is any compact set in C such that m(E)>0 and 0« E, then we
denote by I'(E) the set of functions he L*(E) such that ||h].=<1 and |BA|.<1,
where Bh stands for By with du(z)=h(z)dm(z). We set

WE)= sup |Bh(O)|= sup m hE) dm@i.

2
hel(E) hel(E) C

If, moreover, E is the closure of an open set whose boundary consists of a finite
number of analytic Jordan curves, then we also consider the quantity
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b¥(E)=_ sup  |Bh(0)]

hegENT (B

where 9(E) is the set of C>-functions on C with supports in E.

3. The proof of our theorem can be divided into lemmas, the first of
which is:
LMMA 1. The inequality

1 mE)
>_+ M=)
® UEYZ g
is valid for any compact set EC{r=|z|=2r} (r>0).
PrOOF. We use an argument similar as in the proof of Theorem 5.1 in Uy
[4]. Set E,={z/r;zeE}C{1=<|z|<2}. It is off hand to see that 4(E)=4E,).

By Lemma 4.2 of Uy [4], it suffices to show that

1
>_ -
4) YE) = 84 m(E,)
for any compact set E, with E,C{1=|z|=2} and with a boundary consisting
of a finite number of analytic Jordan curves. By using Theorem 3.7 of Uy [4],

we have

) 2([, | =B dm+ 1
for some veM(C). Let F={z<E,; |Bv(z)| >1/8}. By (2), we have m(F)<8A|y]
and
[l | —Bua|ama+a=({, |-
-;—muz ~Ft g mP)Z g mEy.
Hence (4) is established. Q.E.D.

Our theorem can be deduced at once from the following
LEMMA 2. If E is a compact set with positive measure contained in {r=<|z|
<2r} (r>0), then there exists a function g(z) such that

(a) g(2) is bounded and analytic on C—E,

on C—FE,

) 1g'(2—11£124 | z] for |z|<r.

(E)

ProorF. By Lemma 1, there exists an h= L*(E) such that
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i) :Sgg_(f)z— dm(®)

satisfies the following properties :

la

2

3

h(z) is continuous on C,

’ t—d—ﬁ(z)t:IBh(Z)lél on C—E,
dz

_ 1 omE)

. }%ﬁ((})l:]Bh(O)IZQA’ 2

The function

so=ia(2 o)

is clearly bounded and analytic on C—FE and satisfies (b). Since 1=Z3znr?/m(E)
=3Ar*/m(E) (recall A=r), applying the Schwarz lemma to g’—1, g also satisfies

(c).
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Q.E.D.
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