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Introduction. Let x be an odd positive integer, N a positive integer divisible
by 4, and X a character modulo N. We denote by &N, X) the space of modular
cusp forms of Neben-type X and of weight £/2 with respect to I4(N) and denote
by TY«(p?) the Hecke operator defined on &.(N, X). We denote by S{P(L, ¢) the
space of Siegel modular cusp forms of Neben-type ¢ and of weight & with

A B
respect to Féz’(L)={< )eSp(Z, Z)[ C=0 (mod L)}. Let T{%;%(n) denote the
Cc D

Hecke operator on S{(L, ¢).

In this paper we discuss two problems. The first problem is a construction
of Siegel modular forms of degree two from modular cusp forms of half integral
weight. The second one is a construction of modular cusp forms of half integral
weight from Siegel modular forms of degree two.

In §1 we show the existence of a linear mapping F¥*: &, k_l(A7I, V-SSP (M, X)
where M and % are even positive integers, M=l.c.m. (4, M) and X is a character
modulo M. In §2, using the same method as in [3], we determine Fourier
coefficients of ¥'¥-*(f) at infinity. In § 3 we study a relation between Andrianov’s
zeta function associated with T#-*(f) and Shimura’s one associated with f, where
fEG, (M, X). In [3], we have treated the case M=2.

In §4 we give a linear mapping I.(L, ¢): HP(L, $)—Sye_i(L, ¢) which is
a generalization of the mapping given in and [5], where4 } L, C=lc.m.(4, L)
and MP(L, ¢) denotes the MaaB’s space of S{P(L, ¢).

In the last section we present an application of the results in §1, §2, §3
and §4. With some assumption on M we show the existence of an isomorphic
mapping TE* of Syuyi(M, X) onto FL (M, X) with the following properties: if
fe@“-l(ﬁ, X) satisfies TE . {pD)f=w,f for every prime p, then TH-X(f) satisfies
TE M) TEHN=An)TEX ) for every positive integer n and moreover,

L(2s—2k-+4, 12) 21 in)n-

=L(s—k+1, OL(s—k+2, X)];I(l—pr"SWLX(P)Zp“'3‘“)",
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where L(s, X)= il AWUn)n~% and @zk_l(ﬂ, X) (resp. DM, ) is the subspace of

@zk_l(ﬁ, X) (resp. M2 (M, X)) spanned by the eigenfunctions of the Hecke operators
TE . (p?) (resp. T&M(n)) for all primes p (resp. positive integers n).

§1. Notations and preliminaries.

We denote by Z, @, R and C the ring of rational integers, the rational
number field, the real number- field and the complex number field, respectively.
For a commutative ring A with the unity 1, we denote by A? the set of all
nXm matrices with entries in A. Furthermore we denote by SL,(A) (resp.
GL,(A)) the group of all matrices M satisfying det(M)=1 (resp. det(M)=s A*),
where A* denotes the group of all invertible elements in A, and put A®=A?}
and M,(A)=AZ for the simplicity. For every zeC, we set e[z]=exp(2riz) with
i=+/—1 and define v/ z =z"% so that —rm/2<arg(z"/?)<r/2. Further, we set
z**=(+/z)* for every k=Z. For each positive integer N, set

a b
R(N)ZK d)ESLz(Z)

c

¢=0 (mod N)}.

We consider an automorphic factor j(7, z) of Iy(4) defined by j(r, 2)=0(r(2))/0(z)

for every rely(4), 6(z)= > e[n®z], where z is the variable on the complex

upper half-plane .

We recall the definition of modular forms of half integral weight (cf. [10].
Let £ be an odd positive integer, N a positive integer divisible by 4, and o a
character modulo N. A function f on § is called a modular form of Neben-type
o and of weight £/2 with respect to I,(N) satisfying the following conditions
(i) and @i);

a b
(i) fG@)=w(d)j(r, 2)°/(z) for every 72(

)el”o(NL
d

c
(ii) f is holomorphic on $ and at all cusps of I (N).

The space of such functions is denoted by SN, w). A modular form which
vanishes at all cusps is called a cusp form. We denote by &N, w) the space
of cusp forms in G.(N, w).

Next we give the definition of Siegel modular forms of degree n, i.e.,

0 E,
Sp(n, R)={MeM,,(R)|*!MJ,M=],}, where ]n:( ),
E, means the unity of GL,(R) and ‘M denotes the transpose of M. Let 9, be the
complex Siegel upper half-plane of degree n, i.e., $,={Z=X-+:iY|X, Y e M.(R),
tZ=Z7 and Y>0}. We set $=9,. We define an action of Sp(n, R) on $, by
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A B
Z— M{Z>=(AZ+B)CZ+D)™ (Ze@n and M:(C D)ESp(n, R)),

where A, B, C and D belong to M,(R). We set Sp(n, Z)=Sp(n, RINM:(Z).
For each positive integer L, set

A B
Fé"’(L)={(C D)GSp(n, Z) | A, B, C and DeM,(Z) and C=0 (mod L)}
and I'{P(L)=Iy(L).

Let ¢ be a character modulo L and let k2 be a positive integer. We call a
holomorphic function F on $, a Siegel modular cusp form of Neben-type ¢ and
of weight 2 with respect to I'{™(L), if the following conditions are satisfied :

A B
(i) For every r:(c D)el’é"’(L) and for every Z€9,,

F(r<{Z>)=¢(det(A))det(CZ+ D)*F(Z),
(i) |F(Z)|(det(Im(Z)))*/* is bounded on H,.
We denote by S{™(L, ¢) the space of such modular forms.
Let Q be a non-degenerate symmetric nXn matrix. We denote by O(Q)

(resp. O(Q),) the real orthogonal group (resp. the connected component of the

unity of O(Q)) for Q, i.e, O(Q)={geGL.(R)|'gQg=0}.
Let S(R™) denote the space of all rapidly decreasing functions on R™ For
each feS(R™), we define a function 7(s, @)f on R" by

|cl""/2Idet(Q)l”ZSRne[(Mx, x>—2{x, y>+d<ly, y))/2c]1f(y)dy,
(r(e, Qf Nx)= if ¢+0,
la|™2e[ablx, x>/2]f(ax) if ¢=0
for every
a b
az( )eSLZ(R),
d

c

where <{x, y>='xQy. We can easily check 7(s, Q)f=S(R™) and

[el700, @0 1ax={ 15001

So the operator 7(o, ) can be extended to a unitary operator on L% R"), which
is denoted by 7(o, Q) again. We call (o, Q) the Weil representation associated
with Q.

Take a lattice L in R™ and set L*={xeR"|{x, y>&Z for every yeL}.
We assume that L*DL.

For every feS(R™), define a series (f: h) (heL*/L) by 6(f: h):xéf(h—i—x).
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The following theorem was proved by Shintani [117].

a

b
THEOREM A. Suppose that a=< )ESLZ(Z). Then

¢ d
O(r(o, Q)f: h)ZZkEC(h, R),O(f: k),

where k runs over L*/L and

On arelablh, h>/2]  if ¢=0,
c(h, k)= vm—l(SRnlde>_llcl-n/z

> e[(alh+y, h+7r>—2¢k, h+7>-+d<lk, k>)/2] otherwise.

7€L/cL

Moreover assume that ¢ is even, cL*CL, ¢d+0, d>0 and ¢<{x, x)=0 (mod 2) for
every x& L*. Then
VT oD by 5 se[ab<h h>/2](:1—)"'2 ;20)"(2)
r e ’ ’ d d d/’

where p (vesp. q) is the number of positive (resp. negative) eigenvalues of Q,
D=det({4s, A;>1<4, jsn) and {23, ---, An} is a Z-base of L.

The group GL,(R) operates on L*R™) in the following manner: Tf(x)=
det(T)|"22f(T-'x) for every TeGL,(R) and for every fe L*(R").

Now we consider

0 —-1 0 0 O
-1 0 0 0 0 0 -1 0
Qo= 0 0 0 -1 0 and Ql———(—-l 0 0)
0 0-1 0 O 0 0 -1
0 0 0 0 —1

For a positive integer K, set L(K)={xi, x2, Kxs x4, /2 x5)|x:€Z} and L,=
{(x1, %2, vV 2 x35)|x;€Z}. Let M be an even positive integer and let X be a
character modulo M with X(—1)=1. We consider an isomorphism z: L(1)/L(M)
—Z/MZ given by z(x+ L(M))=x.+MZ, where x=%---, x;, ---) L(1). By virtue
of Lemma 1.1 in [3], we have

(1.1) (p(g) 'x)=det(A)z(x)
A B
for every g:(c D)el’o‘z’(M) and x& L(1)/L(M), where p is the isomorphism
of Sp2, R)/{#E,} onto O(Q,), given in [3, §1]. Set
Fulm)=Cx, (=i, i, 1, =1, O Fexp(—= 3} x1)

for all x=%x,, -, x;)€R°. Then we have
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(1.2) p(r)f=(det(A— Bi))*f4
A B

—B A
We consider a theta series 8%%(z, g) on DX Sp(2, R) given by O¥*(z, g)=
v‘<“'1”4§)%(r(1))§p(g)r(az, Qo)fw(l+h) for every z=u+iwed and for every

g€Sp(2, R), where [ (resp. h) runs over L(1)/L(M) (resp. L(M)) and

(\/7 u«/?“)
0,= .

for all /c=< )EKg, where K,={M&Sp2, R)|M{E,)=iE,}.

0 Vvt
Then, by and Theorem A, we get the following lemma.
LEMMA 1.

*

(1) 0FXo(2), e)=Ud)j(a, 2**7101 (2, g) for every g:( Z)ER(M)-

*

A B
(ii) 0¥z, rg)=%(det(A)O¥ Xz, g) for every r=(c D)EFO‘”(M)-

A B
(i) 0¥ *(z, gr)=(det(A—Bi)*0¥ *(z, g) for every /:::< A)ng,
where K,={geSp2, R)Ig((z'E~2>)=z'E2}.
For a function f€8,,_.,(M, X), we define a function ¥X-*(f) on 9, by

T ) 2)=)(g, z'E»kS p@EDRLGN K2 Yt dudy

Do)
with Z=g{E,)>, where Do(ﬁ) is a fundamental domain for I 0(]\71) and (g, {E,)
=det(Ci+D) with g:(z ;)ES;D(Z, R). By virtue of (i) and (iii) in
1, the above function is well-defined. The property (ii) of shows
TEH)r<Z>)=A(det(A)) det(CZ+D)* T *(f)(Z) for every T=<2 i)EFé”(M)-

‘We can observe that ¥¥-*(f) is holomorphic on D, (see and [9]). Therefore
we see that ¥¥-*(f) is a Siegel modular form of Neben-type X and of weight %
with respect to I'{®(M).

§ 2. Explicit calculation of the Fourier coefficients of - *(f).
After preparing some theta series, we shall show that for an element

———(\/ >ESP(2 R)
3 ’
g 0 JY 1
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0¥-*(z, g) can be split into a convenient form. Set Y=yY,, where

Vi Ve
YIZ( )y
Y2 Vs
det(Y;)=1, y>0 and y,>0. For a non-negative integer ¢, we consider three

theta series defined by

0,.(z: Y1)=v“”2”2§f15(«/27r§(y1, — s, —v 2 y)De[(u'Q. I+ I R(Y )])/2],

0F (z: Y1)=v“5+2”2§)HE(\/2ﬁ(3’1, — s, =V 2 yo)l)e[(uw'l' Q' +iv' ' R(Y DI)/2]
and

0¥ Xz y)=pi-/2 i__ X(m)exp(—2rimnu—rnv(y*m?-+y 2 n®YH (v 2mv(imy—ny™))

for each z=u-+ive$, where H.(x)=(—1)exp(x?/2) dd;s (exp(—x%/2)),

L¥={yeR*|'yQ.,xeZ for all xeL,},
yi —33 =239,
R(Y)=| —u} ¥ V2 395
—V 2319 V235 14233

and the summation ; (resp. ‘L/_,I“) is taken over all the elements in L, (resp. 2L¥).

1 n
Set Fw———{i—( )
01

@1 OF X (—1/Mz: )

neZ}. Using the Poisson summation formula, we get

=2(v2ZriyvTiz)'y 3 W SUDTT, 2k (@) m, 9),
* X

¢ d

exp(——nnzy2/Mv) (see [7, p. 152]). The following lemma was proved in [3,
Lemma 3.1].

LEMMA 2.1. Suppose that o belongs to I'y(4). Then
01.(0(2): Y)=7j(o, 2)* 701, (z: Y1)

where 7_—_( ) runs over I\IW(M), Jr, 2)=(cz+d) and k¥(z;n, y)=

and
(dz)~ @020, (—1/4z: Y )=1]2 22°0% (z: V).

A

For every f€@ss-1(, 2), we define a function | gJas-1 of Gyes I, x(—ii))

by fIIW 5des-s(2)=F(—1/ M) M4 (—iz)»=C*->.  Then f|[Wils-, has the
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Fourier expansion f|[W g lsr-1(2)= i a®(n)e[nz] at co. Set
n=1

ny Na/2
Pé: T: Téo and (nl, N, ng)EZ§}
n/2 ns /|

and P,={T'€P;|T>0}. For every T:(nn/lz n;/:Z)ePz, set e(T)=L. c. m. (1, Ny, 1)
2 3

and N(T)=4det(T"). Now we define ¢(T) by ¢ (T)=23 Z(m)mk‘1a<°>(1\7.lN(T)/4m2),

where the summation 3 is taken over all positive integers m with m|e(T). We

prove the following theorem.

THEOREM 1. Under the above notations, let f be an element of @zk_l(ﬁ, ).
Suppose k (>5) is even. Then the Fourier expansion of ¥T¥-*(f) at infinity has
the form TEXf)NZ)=c ; c;(Myeltr(T Z)], where ¢ (+0) is a constant not depend-

ing upon f and T runs over all T<P,.
PrOOF. Since ¥¥-*(f) is a Siegel modular form with respect to I'{®(M),
we have the following Fourier expansion Z¥-*( f)(Z):ZT] c{TMe[tr(T Z)] at infin-

ity, where the sum ZT) is taken over all TeP}. Set Z=:Y with Y=yY,;, y>0,
det(Y,)=1 and Y,>0. Then

(%) w}f”x(f)(iY):goc(T)eXp(——Zn' tr(TY)).

Set

Then, by the same method as in [3, §3], we have

__ k
0¥ Xz, g)=~/2n" 3 1C(—i) 0. (z: YOL (21 p).
This shows that
TIHHEY)

— (/27 y)* é szz'ES VERDREA (22 VIO (z: y)v-dudy

Dy Ay

=(2Ry)* 340 | @/l N =1/ Mz Y

'9%;’;(—1/]\7[2: Y 2 dudv .
By and [2.I), we have

THHHEY)

k ~ -
— kCS(M/Zx/Zn)EyI“ESD

e=0

g ngﬂm)mk-s;ﬂd) I, 2% k(1 (2), m, y)
O ((M/D)z: Y DFITW 5 0s0-1(2v"dudv ,

0(
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where 3 is the sum taken over all yeIl\I'(M). By virtue of and
- a
[10, Proposition 1.3 and 1.4], we see that f|[W #1ss-; belongs to @zk_l(ﬁ, x(%))
. M ) N *x ok
and 0% .(M/4)y(2): Yl):(~~d4)](r, 2)=10F (M/4)z: Y, for every r=

~ * d
ely(M). It follows from those that

TEHf)GY)
> kcx@z«/z’%yy-efﬁ 3 2mmt= e, m, )
OF M/ D22 Y ) |IW 52 kr(2D0*dudy
=" 3 4Culll2n/Zry (e oo 3 gonmt=

-3 aOWKE, Uy HN 22N/ Hu(y1, — 35, =V Z y2)1)

LI
cexp {(—xm2y?/ Mv)—(Mzv/)CURY DI+, U} dv
where <, U),=0'Q,l'. We have /R DI+, D= {(v1, —ys, —v 2 y)I'}2.
Now we can check the following formula:
va“"”’zexp(—av—ﬁv‘l)He(\/ZEE)dv:‘8“‘”’2\/;«/’2?exp(—2\/cﬁ)
1]

for each @, >0. Consequently we have

(k%) T @Y )=c" é}i(m)mk‘l X aO(MN(T)/4m?exp(—2xm|tr(TY)|)

:c” ; Cf(T)eXp(_ZTE tr(TY)) ’

where T runs over all T€P, Put t;=exp(—2my;) for Yz(y1 yz). By the

Y2 Vs
equalities (*) and (), we have

ny n2/2 n{ né/z
(k) ¢ ipipetis=c” X ¢y tPL gt
na/2 ng ns/2 nj

for t,, t;=(0, exp(—r)) and t,=(exp(—r), 1), where 3 (resp. >/) is the sum over
ny Maf2\_

na/2 m, >:0 (reSp.

)>0>. By the equality (x#x), we have ¥¥X(f(Z)=¢ 2 ¢ ,(T)e[tr(TZ)],

all (ny, na, ns) (resp. (ni, ni, n3)€Z} under the condition (
(n{ ns/2
nz/2 ng
where & (#0) is a constant not depending upon the choice of f (cf. [3, §3]).
By the same ideas as those in [8, §6], we can verify that ¥¥-*(f) is a cusp
form. We may omit the details.
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§3. Hecke operators and Euler products.

Let TY.(p» (resp. T{2%(n)) be the Hecke operator on SN, w) (resp. on
SP(L, ¢)) for all primes p (resp. for all positive integers n) (cf. [1], [6] and
[10]). In the following we shall investigate the two cases: (1) M+M and M
is divided by the conductor of Q(~/2M) and (2) M=M. In the case (1) (resp.
case (2)), we consider a linear mapping QU2 S,y (M, X)—SB (M, Xzy) (resp.
D22 &,y (M, N)—SE (M, Ay)) defined by X f)=UY T2u(f|[W z]es-y) (resp.

QM F\=TH-u(f|[W 5 las-1), Where thx(%) Now we shall prove the fol-

lowing theorem.

THEOREM 2. In the above case (1) (resp. case (2)), if f e@zk_l(ﬂ, X) satisfies
TE_ (pf=w,f for all primes p, then OY*(f) (resp. O *(f)) is a common
eigenfunction of TM(n) (resp. T (n)) for all n, i.e, THEm)OH*(f)=
An)PEHf) (resp. T X )P ()= ()P (f)). Furthermore

L(2s—2k -4, %) i A

= L(s—h+1, Ya) L(s— k+2, Ya) IT (L=, p™ +U(p)*pt4 =72

(resp. L(2s—2k-+4, 1) 21 2 (m)yn-s
=L(s—k+1, Xy)L(s—k+2, Xy) 1;[ (I—wpp s 4X(p)2p2e-2-2)"1),

where L(s, %) denotes the Dirichlet L function and product I1 is taken over all
primes p. ?

Before proving the above theorem, we recall some lemmas (cf. [3]. Let U
be the set of all complex-valued functions ¢ defined on P, with the property
G T')=¢(T) for every yESLyZ). For every ¢=U, we define

1 0
TE<SL2(Z>( )SL2<Z>)¢<T>= 3 doaT os),
0 m a=1

10 l
where SLz(Z)<O )SLg(Z )= dk_Jl SLyZ)o, (a disjoint union). For each posi-
m Z
tive integer m, the operators 4*(m), 4 (m) and II(m) on U are defined by

A m)p(T)=¢(mT), 4-(m)¢p(T)=¢(m™'T) or 0 according as ml|e(T) or m ) e(T)
and

10
H(m)zTa<SL2(Z)( )SLZ(Z))A‘(m) .
0 m

The following lemma has been proved by Andrianov [1, Proposition 2.1.2] and

Matsuda [6].
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LEMMA A. Let F(Z)::Z,‘ c(Meltr(TZ)1eSP(L, ¢) and let p be a prime.
Then T (p™F(Z)= Zc(p" Teltr(TZ)] and

c(p™T) if pIL,
3 perenbrak-wrg ()T A= (pNIT (pF) A+ (p)e(T)  if p ) L,

where the summation ) is taken over all (a, B, VEZ} with «, B, 720 and
a+B4r=n.

For each TP, we denote by d(T) the discriminant of the imaginary
quadratic field Q(v/—N(T)). It is well-known that —N(T)=d(T)f* with a
positive integer f. For a prime p, we have the following equality:

c(p™: T)I{

10 +1
SLz(Z)( 0 )SLz(Z): :‘_(Jl SLiZ)o; (a disjoint union).
U P =
The following lemma was shown in [3, Lemma 4.1].

LEMMA B. Suppose that T €P, satisfies e(T)=1. Then the following asser-

tions hold :

(1) Among (p+1) matrices {0;T0;} 221, there are p—(?) matrices with

e(o;Ttv;)=1 and 1+( ; )> matrices with e(o;T'0))=p, if f is prime to p.

(2) Among (p+1) matrices {o;Ta:} P21, there are p matrices with e(c:Tto;)
=1 and one matrix with e(e;T c;)=7p% if f is divisible by p.

PROOF OF THEOREM 2. Since our proofs of the both cases are same, we
prove the assertions only in the case (1). It is sufficient to show the following
equalities (3.1), and (3.3):

CRY) Ty P)P (=0, @ Hf)  if pIM,

8.2) T %(0) DA )= (wp+ (PP p* NP H(f)

and

(3.3) T A D)= (@4 H Lo ()P p* D, +U(p)p** ) PR H(f)

if pJ M.
First of all, we verify the equality [3.2). We see that is equivalent to the
following equality [3.2) :
3.2y c(p: T)=(@p+Xen(PYP*+p*Ne(T)  for all TEP,
where T{Z%(p) D" 7‘(f):g c(p: Teltr(TZ)] and @,;M'X(f)zé) c(Teltr(T Z)].

Therefore we prove [3.2). By Lemma A, we have ¢(p: T)=p* 2eu(p)TL(p)c)(T)
4 p2E Ao (P)H A~ (D) XT)+(A*(p)cXT). We calculate ¢(p: T) step by step. Let
a be the greatest number satisfying p*|e(T). Set e=e(T), N=N(T) and T=eT,.
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Let D be the discriminant of the imaginary quadratic field Q(+~/—N(T,)). Clearly
—N(T)=Df? where f is a certain positive integer. Since the Fourier coeffi-
cient ¢(T) of @M% f) is determined by only ¢ and N, we can write ¢(T)
=c(e, N).

First, we prove [3.2) under the conditions @=1 and p ff. By virtue of

Lemma B, we see that p* *Xoy(P)TI(P))NT)=p* *Lou(p) g c((e/p)oiT' o=

Pk‘zxm(p){(p*(ég»de/ p, N )+(1+<%))c(e, N )}, where

10

0 »

By virtue of [Theorem 1, we have
pE 2 (YL (p)e)(T)

SLZ(Z)( )SLZ(Z): lel SL(Z)s;: (a disjoint union).

=pk-zxm(p){(p—(%))dle/pdk-lxmw)a(MN/zdz)
+(1+(%)) p3 dk‘lsz(d)a(MN/ZdZ)}
=pF Uon(p) d%p d* Yo (d)a(MN/2d*)+ p ¥ Loy (p)e(T)

()5 a5 3 (@) el da(—(M/DD fes ),

where f(z)= i}l a(n)e[nz] and e=p%e, ((p, ¢))=1). On the other hand, by

Lemma B, we have (4*(p)c)(T)=c(pe, p>N). By virtue of [Theorem 1, we see
that

D)D)= 2 d* Uon(d)a(p*MN/2d*)+p* Xon(p) 2 d* " Xan(d)a(MN/2d7)

—Pk‘lxm(;b)d§p d*Aou(d)a(MN/2d%) .

Now
g}e d*Yyy(d)a(p®MN/2d?)

=3 3 (04l p'dVa(p* i~ DYM/ 2 (p'd )
Han(pIp™HD 3 (@) Tarld)a(~(M/2DDP feo/ d'))

By [10, Corollary 1.8], we have
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2 d* Ueu(d)a(p®MN/2d%)

dle

)
-

=2 dZwO(pid’)k'IXZM@"d’){wpa(—(M/2)Dﬁ2‘““"(eof/d’)2)

.
o

—(kp)(H)) Pt e~ 2Dy Henf ')

a a -1 4 -1 ’ D -2 N2
(PP 3 (@) an(d )~ Lanp)( )04 al— M/ D(Senf d'))
= w,e(T)—~Tau(p)*p™ (4~ (P)e)T)
— " L) Vaap P 3 (@) Ll d)a(— (MDD feo )

Thus we obtain* [3.2) in the case a=1 and (p, f)=L1.
Secondly, we consider the case a=1 and p|f. Let 3 be the greatest number
satisfying p#|f. By Lemma B, we can check

DE Lo (PYUTT (p)e)(T)
=p*Aau(p){pcle/p, N)+c(pe, N)}
=p* Aon(p) dg}p d* Aoy (d)a(MN/2d%) + p* 2o (p)c(T)

+ D2 Lau(p)? dEIe d* Uou(d)a((M/2)N/ p*d*) — p** = Lan(p)*(d~(p)eXT) .
On the other hand, we see that

4 (p)eXT)
= 2 A" Lan(d)a(p*MN/2d*)+ p* e (p)e(T)

=0 %on(p) B A Lon(d)a(MN/2d%)

= 5 3 (070 as(dan(p)alp™=3-0+(— MD/2)eu o/ d')

+p"'IXZM(jJ)C(T)—pk‘IXm(I))dlZg}pd""‘XZM(d)a(MN/Zdz) (f=pPfD.
Using [10, Corollary 1.8], we can check
d*(p)eXT)

=3 3 (0" sl d Vo pD{ @, (0«0 (—MD/2)(er 1/ d'))

1=0 d’'leg
il A T 2(a+f-i)- "2
—HpH() B ta(prer i =MD/ 2eo i/ 4"}

+1>"'112M(1>>C(T)~*1Jk'IXzM(P)dEPd"‘lxm(dM(MN/ZdZ)
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=wpc(T)—X(prp** ™" 2 d* Xan(d)a(MN/2p*d*) + p*Lan(p)e(T)

= ou(p) 3 d*Uou(d)a(MN/2d%).

dlie/p

Hence we obtain [3.2) in the case a=1 and p|f.
Thirdly, we consider the case a=0 and (p, f)=1. By Lemma B, we see

that p”'ZXzM(p)(H(p)c)(T);Xgﬂl(p)pk”(l%—(%))c(T). An immediate computa-

tion shows that

(¥ P)eXT)= 2 d* Lon(d)a(p*(—MD/2)(ef/d*)+p*2au(p)e(T)

=w,c(T)— p“ﬂ(p)(%)(%)c(ﬂ—}— PF Lon(p)e(T) .

Therefore we obtain [3.2) in the case a=0 and (p, f)=1.
Fourthly, we consider the remaining case. Set f=p?f,, where (p, f)=1.
Now we see that

P* e DY (PEXT)=p*Xa(p)c(pe, N)
= P Lo (De(T)+ 0 L) T d* Tau(d)a(MN/25%d)

and
d*(p)eXT)
= gg} dk'IXzM(d){wpa(;bzﬂ(—MD/2)(ef1/d)2)
—1\\? 2k-3 28-2 2 -1
—(15)()) 2 apH = MD/Defs A} + p* as(D)AT)
=w,c(T)—X(p)*p** 2 dEle d* Won(d)a(MN/2p*d*)+ p* Ao (p)c(T) .
Therefore we have [3.2) in the case (p, ¢)=1 and p|f. Consequently, we have

completed the proof of [3.2). By a similar argument, we can prove (3.1) and
(3.3). Therefore we obtain the desired results.

§4. MaaB’s space.
Consider a function F (Z):%L c(Meltr(TZ)]=SP(L, ¢) whose coefficients

¢(T) satisfy
ny ny/2 1 ns/2m
(o " oo )
Ne/2 N m ne/2m  mins/m?

where m runs over all positive integers with m|n,, m|n, and m|n;. Denote by



406 H. Kojima

MP(L, ¢) the subspace of S{P(L, ¢) of all such F. We call (L, ¢)

MaaB’s space. It should be noted that H{¥(L, ¢) is an invariant space of all
Hecke operators T'{&;%(n).

In this section we discuss a generalization of MaaB’s theorem (cf. and

[5). For this purpose we introduce two theta functions 6,(z;, z,) and 0x(zi, 25)
which are defined by

04(z1, 2o)= ngwexp(m'(zl(\/f N2 12242/ 2 (V2 n-t++ 2 h/2)zy)
(z;€9 and z,C).

For each x€R, zc9 and z,&C, set g(x: z;, zo)=exp(mwi(z:x*+2+/ 2 x2,)). By
our definition of the Weil representation 7(g, 1),

7(o, Dglx; 21, 22)

=lel" el(ax*~2xy+dy)/261g(y; 21 200y

=|c| ‘”Zexp(maxz/C)g _exp{—(—ni(cz+d)/)y*+2ni(v/ 2 22— x/c)y} d y
=e(o)cz,+d) 2g(x ;5 0(zy), 22/(czi+d))e[—zic/(czi+d)]

a b N
for all 02( d>ESL2(R> (c#0), where e(o)=+/1*"",

¢
Take two lattices ~/2Z and (vV'2/2)Z in R. Now we see easily that

01(z1, 2)= X g(I+~2h/2; z,, z,). By Theorem A, we can verify the follow-
leveZ

ing lemma.

a b

LEMMA 4.1. Let az( ) be an element of Iy(4) and let v be a positive

¢
integer satisfying (4, 7)#4. Then

(1) Onlo(z0), zo/(czitd))=elabh/4]j(o, z)e[c2}/(cz+d)]0 (2, 25)

and

(i) Onlz/Gzi+1), 22/(7’21""1)):\/-Zf_l\/rzl+l€[7'2'%/(721+1)] kzlz)o c(h, k)rﬁ #(21, 22),

where ¢(0, 1), (=c(1, 0),) equals («/T/2)(1+(”71)z') or V7 according as (4, 7)=1
or 4, 1)=2 and (0, 0), (=c(1, 1),) equals O or «/z’(l—(%k)z')///z according as
4, N=2or 4, N=L1L

Let F be an element of M¥(L, ¢). Then we have the expansion of the
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2y Zg o0 a b
form F = 2_]1Fm(zl, zy)e[mz,]. For a matrix o=

29 23
tive determinant D, set

) with the posi-
¢

(Filx0)(z1, 2)=Fi(0(21), VD z/(cz1+d))(cz,+d) *e[—cz}/(czi+d)] .

For each positive integer m, we define a function
(Fy| e Hm))(z1, z2)=m*! pI) O(S)(F1| S0z, 2)
¢ dJl %

An obvious modification of Maal’s arguments in shows the following
relations

a b\ a, *
where {Sy};Ll:{( )t ad=m, d>0 and beZ/dZ} and gb(( ))ng(ay).

“4.1) (F1| e Hm)) (21, z2)=Fp(z,, z,//m) and Fiy(z, 22)=0

if and only if F,.(z, z,)=0 for every positive m.
Let us consider an embedding of SL,(R) into Sp(2, R) defined by

a 0 b O

o= 0 100 (a:(a b))
c 0d0 c d/l’
0 0 01

Z1 22 o(z1) zy/(cz+d)
Since z'(a)<< )>=( ), we have
Zs 23 zo/(czi+d)  zz—cz3/(czi+d)

glFm(o(zl), z/(cz1+d))e[—mcz3/(czi+d)Je[mzs]

=d(a)czi+d)* 3 Fulz, z)elmz]

a b

for every oz( d)e[{,(l,). Comparing the coefficients of e[z;] in both sides
c

of the above equality, we have

4.2) Fi(o(zy), zo/(czi+d))=e[cz3/(czi+d)]d(a)(cz+d)  Fi(zy, z.)

a

c
the form Fi(z;, z,)= h}_Jo cn(z0)80n(z1, z5). It should be noted that

10
16((0 ))e[nzlj and Fi(z,, z,)=0

n

b
for every az( )ER(L). By our definition of F;, F, has the expansion of

Ms

4.3) colz1)=

I

n
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if and only if ¢,(z,)=0 for h=0 and 1. By virtue of Lemma 41 and we
can verify the following relations

Fi(o(z1), z3/(cz1+-d))e[—cz3/(czi+d)]

= 3 calotaelabh/41j(o, 2)0x(z, 2)

a

1 b ~
=g(a)(czitd)* B ca(z)0n(z, 2,) for every oz( d>EFo(L)
=0 c
and

Fi(z:/(Lzi+1), z/(Lz;+1)e[— Lz3/(Lz,+1)]

= 3 ea@/(Lat DV T VLl S olh, Bifx(, 2)

—(Lz+1)* hi:o cr(z)0n(z,, z2), where L=I.c.m.(, L).

Therefore we obtain the following transformation formula

b3

co(a(z))=¢(a)j(o, 21)**¢co(z1) for every GZ(G )Efo(f:),

[ 3

“4.4)
colz1/(Lzy+1))c(0, 0)p+cy(z1/(Lz+1)e(l, 00p=+"7 ¥ v/ Lz +1° eo(zy) .

n

Consider a mapping I,(L, ¢)F=c, for every Fe (L, ¢). By the fact that
¢(1, 0),=0 and the relations (4.3) and (4.4), the linear mapping I(L, ¢) is
injective. A relation between I,(L, ¢) and Hecke operators on #:®(L, ¢) and
@Zk_l(f , ¢) can be stated as follows:

THEOREM 3. Suppose that k is even and 4} L. Then the mapping I.(L, ¢)
is injective, and, if F satisfies the relations T X(p)F=Ap)F for every odd prime
b, then Thoy s(pUT (L, P)F)=Qp)—PPYp**+p* NIW(L, ))F for every odd
prime p. Moreover, when (4, L)=2, the above last assertion is satisfied for all
primes p.

Proor OoF THEOREM 3. We prove the latter assertion. We note that c¢(z)

o 10
=% c<< ))e[nz]. Set F(z)= X c(Teltr(TZ)] and (T X(p)F)Z)=Zc(p: T)
n=1 0 n >0 >0
-e[tr(TZ)]. By virtue of Lemma A,

c(p: TYy=p*2P(pYTL(P)eXT)+ p*-3p(p)(A=(P)eXT)+H(AH(p)eX(T) .
This shows that

o 10 ~
Noting that ¢(T)=0(N(T)*"), we have co(z)= 3 c((o ))e[nzlje@n-l@, &).
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10 p 0 p+1 10
0 n 0 pn i=1 0 n

10 +1
where SLg(Z)(O >SL2(Z): Z.)U SLy(Z)o;. Define &(e, N)=c(T) with e(T)=e
p =1

and N(T)=N. Since Fe HMP(L, ¢), our definition of &(e, N) is meaningful.
Applying Lemma B, we obtain

gc(ﬁlai(; O)tgi):{ <1+(%>>5(1, 4n) if (p, f)=1,

n c(p, 4n) otherwise,

where d is the discriminant of the imaginary quadratic field Q(+/—4n) and f is
the positive integer satisfying —4n=df% By our definition, we see that

1 0 1 0 1 0
&, 4n)=c(( )) and &(p, 4n):c<< >)+ pk~1¢(p)c(< )) if p=2 and
0 n 0 n 0 n/p*

. . . —ny\_ d
plf. First we consider the case p+2. Noting that 1+(—p~)—1+(—p ) or 1
according as (p, f)=1 or not, we obtain %lc plo; 1.¢ Loy —-(l—l—(i))
’ ’ =1 ' 0 n ' p

10 1 0 1 0
c(( >)+pk-2¢(p)c<< )), where c(( )):0 if p*fn. Therefore,
0 n 0 n/p* 0 n/p?
‘ to 1o k-1 k-2 —n 10
vy () o oot )

1 0
+ p?k-3¢(p)2c(( )) It follows from this that
0 n/p*

45) I.(L, pXTEDIF)=T 31, s(pHU (L, $)F)
+(pEF - p PP (L, H)F for every prime p+2.

Next we consider the case p=2 and (4, L)=2. We have

I e

(4.6) Ii(L, ONTR M F)=THh-1, 420U (L, HIF).

By (4.5) and [(4.6), we obtain the desired results.
The above theorem was first proved in for M (1, 1,), where 1, denotes
the trivial character modulo 1.
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§5. An application.

Let M be a positive integer satisfying (4, M)=2 and let X be a character
modulo M. Consider the natural isomorphism (Z/MZ)*= q{(Z/MpZ )", Where
YA

M, denotes the p-factor of M. We denote by (X, the induced character modulo
M, of X
In the following we assume that

(5.1) M is divided by the conductor of Q(+/2M) and M,=m, or M,=p for all
primes p (p|M), where m, means the conductor of (X*),. Let X be a character

modulo M. Let f= 21 a(n)e[nz]

1 0
(a(1)#0) (resp. F(Z):T§ c(Del[tr(T Z)] (c(( 01 )>¢O>)

be an element of 6“_1(1\7, X) (resp. M (M, X)) such that TE_, x(p®f=w,f (resp.
T&M(n)F=A(n)F) for all primes p (resp. positive integers n). We denote by
Sori(M, X) (resp. M (M, X)) the vector space spanned by all such fi, fo, =+, fa

(resp. Fy, Fs, --+, Fp), where f;(z2)= 21 a;(n)e[nz] and F,-(Z)zgocj(T)e[tr(TZ)]

10
with a;(1)=1 and c; =1.
0 1//)°

Now we show that I,(M, X) is an isomorphic mapping between M (M, X)
and &, k-l(M, X), where I,(M, X) denotes the restriction of I,(M, X) to M (M, X).
By we see easily that [,(M, X) is injective. So we prove I.(M, X)
is surjective.

1 0 '
For every f; set ﬁ‘izif,i""(fi):l”é“(( iwzh( )Al} ) [Wzszk-1>7
| 0 M/2 2k-1

1 0 o0 ~
[41( )Al} (@)= X a:;(M/2)n)e[nz]€S,,_«(M, Xsp) (cf.[10, Prop-
0 M/2] lops n=1

osition 1.5]).
Using and [10, (i) of Corollary 1.8], we have F i(Z):TZ;oci(T)

e[tr(T Z)], where ¢,(T)=a;(M/2)?) %} Xm)ym*1q,(N(T)/m?) with m running over

where f;

all positive integers under the condition m|e(T). This shows that I,(M, X)ﬁ =

a;(M/2)%a;d)f;. Set T, 2(p®)fi=(w,):fi. Note that a;(1)=1. By [7, Theorem]

and [10, Theorem 1.97, we see that IT (1—(w,):p~*+X(p)*p?*-2-25)-1 is the zeta
p

function associated with a cusp form of S .(M, X%). Since f; is an eigenfunction
of Hecke operators T#_, ;(p% and a;(1)=1, we have a;(M/2)%a;(4)= I{l(wp)i
pi

(cf. [10, (i) of Corollary 1.8]). The assumption about M shows (w,);#0 for all
p with p|M (cf. [2, Theorem 4.6.17]). So we see that a;((M/2)*)a;(4)=+0.
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1 0
[Al( )Al} is
0 M/2) lsa-s

an eigenfunction of Hecke operators Té‘i_l,xm(pz) for every prime p. Therefore,
by Theorem 2, we can verify that F; is an eigenfunction of all Hecke operators
T{%¥(n). Consequently we obtain F,=cF ; for some ; and ¢ (#0). So we have
I(M, Y)F;=c’f; (c’#0), which yields our assertion.

Thus, if we define a mapping F¥7* of &,,_.(M, X) onto HP M, X) by
Tr-X(f) for each f;, we have the following theorem.

THEOREM 4. Suppose that M satisfies the above assumption (5.1). Then the
mapping TX* is an isomorphic mapping between Gspa(M, X) and F>(M, %), and
if f satisfies TEyM(n)(TEXH)=An)YTYL-X(f)) for every positive integer n.
Furthermore

By virtue of [10, Proposition 1.5 and Theorem 1.7], f;

L(2s—2k+4, 1) 21 in)ns

=L(s—k+1, )L(s—k+2,% 1;{ (I—w,p +A(p)2p2r-2-29)71,
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