
J. Math. Soc. Japan
Vol. 34, No. 4, 1982

On two fundamental theorems for the
concept of approximate roots

By T. T. MOH*)

(Received April 15, 1981)

Introduction.

In our previous work [1, 2, 3 in collaboration with S. S. Abhyankar] we in-
troduced the concept of approximate root which has been equivalently defined
as follows (cf. [7]).

DEFINITION. Let $\theta=y^{-1}$ and $R[y]\subset R((\theta))$ . Let $f(y)$ be a monic polynomial.
Let $d$ be a unit in $R$ and a factor of $\deg f(y)$ . Then the d-th root of $f(y)$

exists in $R((\theta))$ and let it be $\theta^{-(n/d)}+a_{1}\theta^{-(n/d)+1}+\cdots+a_{nfd}+a_{-1}\theta+\cdots$ . The
d-th approximate root, $g_{d}(y)$ , of $f(y)$ is defined to be

$y^{(n/d)}+a_{1}y^{(n/d)- 1}+\cdots+a_{n/d}$ .
The central theorem proved in $[1, 2]$ (cf. [2. \S 7]) is the following:
THEOREM. Let $f(y, x)$ be a monic irreducible Polynomial in $y$ with coefficients

in $K((x))$ , where $K$ is an algebraically closed field of char $p$ . Let $d_{r}$ be a
characteristlc $g$ . $c$ . $d$ . with $p\nmid d_{r}$ . Let $g_{d_{r}}(y)$ be the $d_{r^{-}}th$ approximate root of
$f(y)$ . Then

$ord_{T}g_{d_{r}}(y(T), T^{n})=\lambda_{r}/d_{r}$

where $x=T^{n}$ and $y(T)$ is a solution of $f(y)$ in $K((T))$ .
The embedding theorem of affine lines $[3, 6]$ follows from the above theorem.

Later on S. S. Abhyankar has given a simplified version of $[1, 2]$ in [4] and we
published a generalized version of the above theorem in [7]. In our generalized
version, we drop the irreducible restriction on the polynomial $f(y)$ and replace
the field $K((x))$ by any field with a real discrete valuation.

H. Hironaka has used the concept of approximate roots in his work on the
resolution of singularities (cf. [5]). We have used a stronger version of the
above theorem in our work ([8]) on the Jacobian conjecture, in fact, a part of
Theorem 2 has been announced in [8]. In this article besides dropping the ir-
reducible restriction on the polynomial $f(y)$ we prove the above theorem for any
non-archimedean valued field. Moreover, we establish a strong property of the
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$g_{d}$-expression of $f(y)$ (cf. Theorems 1 and 2 in \S 3).
It is in fact shorter and simpler to prove the general theorems. Only a

fraction of work as comparing with [1, 2, 4] is required. Conceptually, the
proof of the present article is easier than [7]. The cumbersome method of
Newton polygon is gotten rid of. The present method only involves some count-
ing principles. Due to the non-availability of a suitable reference, we include
all necessary materials in the present article to make it self-contained. For the
applications, the reader is referred to [3, 4, 7, 8]. We want to thank Laura
Zeman for typing this manuscript.

\S 1. Preliminaries.

Let $K$ be any non-archimedean valued field, $i$ . $e$ . $K$ is a field together with
a map $\underline{v}:K\rightarrow G\subset R_{+}$ the non-negative real numbers such that $\underline{v}(\tau_{1}\cdot\tau_{2})=\underline{v}(\tau_{1})\cdot\underline{v}(\tau_{2})$ ,
$\underline{v}(\tau_{1}+\tau_{2})\leqq\max(\underline{v}(\tau_{1}),\underline{v}(\tau_{2}))$ for all $\tau_{1},$ $\tau_{2}$ in $K$ and $\underline{v}(\tau)=0\Leftrightarrow\tau=0$ .

By a disc $D$ we mean a closed disc, $i$ . $e$ . $D=\{\tau;\underline{v}(\tau-\tau^{*})\leqq r_{1}\}$ for some $\tau^{*}\in K$

and some $r_{1}\in G$ . The number $r_{1}$ is the radius of $D$, in symbol $r(D)$ . Note that
it follows from the non-archimedean property of the value $\underline{v}$ every element in
$D$ can serve as a center of $D$ .

Let $f(y)$ be a polynomial in $K[y]$ which splits completely over $K$. We in-
troduce the concept of the tree of discs $\mathcal{D}(f)$ of $f(y)$ as follows. Let

$f(y)=a\prod_{i=1}^{n}(y-\tau_{i})$

and $D_{1}$ be the minimal disc which contains all $\tau_{i}’ s$ . We define

$D_{1}\in \mathcal{D}(f)$ .
Successively let us define $D_{1j\cdots l}\in \mathcal{D}(f)$ . Let us consider the partition of $\tau_{i}’ s$ in
$D_{1j\cdots l}$ by the following equivalence relation

$\tau_{i}\sim\tau_{j}\Leftrightarrow v(\tau_{i}-\tau_{j})<r(D_{1j\cdots l})$ .
Let the partition be

$\{\tau_{1}, \tau_{n}\}\cap D_{1j\cdots l}=\bigcup_{m}E_{1j\cdots lm}$ .

For each $E_{1j\cdots lm}$ we pick the minimal disc $D_{1j\cdots lm}$ which contains all $\tau_{i}’ s$ in
$E_{1j\cdots lm}$ . We dePne

$D_{1j\cdots lm}\in \mathcal{D}(f)$ .
It is easy to see that there are only finite members in $\mathcal{D}(f)$ .

Let $\beta(y)$ be any polynomial which splits completely over $K$ with

$\beta(y)=b\Pi(y-\tau_{j}^{*})$ .
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Let $D$ be any disc in $K$. We introduce the multiplicity of $\beta(y)$ in $D$ , in symbol
$l(\beta, D)$ , as follows

$l(\beta, D)=the$ number of $\tau_{j}^{*}’ s$ in $D$ .
We $int_{\rfloor}roduce$ the quasi-multiplicity of $\beta(y)$ in $D$ , in symbol $l^{*}(\beta, D)$ , for $ D_{1j\cdots l}\supsetneqq$

$D\supset D_{1j\cdots lm}$ where $D_{1j\cdots l}$ and $D_{1j\cdots lm}$ are successive members of $\mathcal{D}(f)$ as follows

$1^{*}(\beta, D)=the$ number of $\tau_{j}^{*}’ s$ in $D_{1j\cdots l}$ with $\underline{v}(\tau_{j}^{*}-D)<r(D_{1j\cdots l})$ .
We define the tree of radii of $f(y)$ as $\{r(D):D\in \mathcal{D}(f)\}$ and the tree of

$multiplicities$ of $f(y)$ as $\{l(f, D):D\in \mathcal{D}(f)\}$ .
Let us fix a representative set $\{t_{\delta} : \delta\in G\}$ of the value group of $G$ in $K$

where $\underline{v}(t_{\delta})=\delta$ . We define the leading coefficient of a nonzero element $\tau\in K$ as
follows. Let (V, $M$) be the valuation ring of $\underline{v},$

$i$ . $e$ .
$V=\{\tau\in K;\underline{v}(\tau)\leqq 1\}$ ,

$M=\{\tau\in K:\underline{v}(\tau)<1\}$ .

Let $\Omega$ be the canonical map from $V$ to $V/M$. Given any nonzero element $\tau\in K$

with $\underline{v}(\tau)=1/\delta$ we define the leading coefficient of $\tau$ , in symbol $X(\tau)$ , as $\Omega(t_{\delta}\tau)$ .
We introduce the general elements or the $\pi$-elements of $K$ as follows. Let $\pi$

be a symbol. We extend the value $\underline{v}$ to $K(\pi)$ by assigning the value 1 to $\pi$ and
extend $\Omega$ accordingly. A general element or a $\pi$-element $\sigma$ is an element in
$K[\pi]$ of the following form

$\sigma=\tau+\pi t_{\delta}$

where $\tau\in K$ and $\delta$ may or may not be the value of $\tau$ . The disc $D$ in $K$ cen-
tered at $\tau$ with radius $\delta$ is the associate disc of $\sigma$ and $\sigma$ is a general element
for $D$ . We have the following useful algebraic lemmas.

LEMMA 1.1. Let $f(y)$ be a polynomial which factors completely over $K$ with

$f(y)=a\prod_{i=1}^{n}(y-\tau_{i})$ .

Let $\sigma=\tau+\pi t_{\delta}$ be a general element and $X(f(\sigma))$ the leading coefficient of $f(\sigma)$ .
Then we have

(1) $X(f(\sigma))=b\prod_{i=1}^{n}\mathcal{L}(\sigma-\tau_{i})$ , $0\neq b\in V/M$ ,

(2) $\deg_{\pi}\mathcal{L}(\sigma-\tau_{i})=1$ iff $\tau_{i}\in D$ the disc associated with $\sigma$ ,

(3) $deg$. $X(a-\tau_{i})=0$ iff $\tau_{i}\not\in D$ ,

(4) $X(\sigma-\tau_{i})=\mathcal{L}(\sigma-\tau_{j})$ and $\deg_{\pi}\mathcal{L}(a-\tau_{i})=1$

iff $\rho(\tau_{i}-\tau_{j})<a$ and $\tau_{\ell}\in D$ .
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PROOF. Routine.
LEMMA 1.2. Let $\sigma$ and $a^{*}$ be two general elements for disc $D$ and $D^{*},$ re-

spectively. SuppOse that $D\subset D^{*}$ . Then we have for any $\tau^{\prime}\in K$ the following

(1) $\rho(a^{*}-\tau^{\prime})\geqq q(a-\tau^{\prime})\geqq\rho(\sigma^{*}-\tau^{\prime})$ $(r(D)/r(D^{*}))$ ,

(2) $\tau^{\prime}\not\in D^{*}\Rightarrow\underline{v}(a^{*}-\tau^{\prime})=\underline{v}(\sigma-\tau^{\prime})$ ,

(3) $\rho(a-\tau^{\prime})=r(D^{*})\Rightarrow\rho(\sigma^{*}-\tau^{\prime})=\rho(\sigma-\tau^{\prime})$ ,

(4) $\tau^{\prime}\in D\Rightarrow v(\sigma-\tau^{\prime})=\rho(a^{*}-\tau^{\prime})$ $(r(D)/r(D^{*}))$ .
PROOF. Routine.
LEMMA 1.3. Let $a$ be a general element for a disc D. Let the following chain

be maximal in $\mathcal{D}(f),$ $i$ . $e$ . no more members of $\mathcal{D}(f)$ can be inserted in between

(1) $D_{u}\supsetneqq D_{u+1}\supsetneqq\cdots\supsetneqq D_{w}\supsetneqq D$

with $a_{i}’ s$ as general element for $D_{i}’ s$ . Then for any polynomial $\beta(y)$ which splits
completely over $K$ we have

(2) $\underline{v}(\beta(\sigma_{u}))\prod_{i=u+1}^{w}(r(D_{i})/r(D_{i-1}))^{l^{*}(\beta,D_{i})}(r(D)/r(D_{w}))^{l_{(}^{s}\beta.D)}$

$\leqq\rho(\beta(a))\leqq\rho(\beta(\sigma_{u}))\prod_{i=u+1}^{w}(r(D_{i})/r(D_{i-1}))^{l(\beta.D_{i})}(r(D)/r(D_{w}))^{l(\beta.D)}$ .

PROOF. Clearly it suffices to prove for the case $u=w$ and $\beta(y)$ is linear and
monic. Our lemma follows from Lemma 1.2. Q. E. D.

\S 2. The approximate roots and the quasi-approximate roots
of a polynomial.

Let $f(y)$ be a monic polynomial of degree $n$ . Let $d$ be a factor of $n$ and
$d\neq 0$ in $K$. Recall the following definition of the d-th approximate root of $f(y)$

from [7].

DEFINITION 2.1. Let $\theta=y^{-1}$ and $K[y]\subset K((\theta))$ . Then the d-th root of $f(y)$

exists in $K((\theta))$ and let it be $\theta^{-(n/d)}+a_{1}\theta^{-(nfd)+1}+\cdots+a_{nfd}+a_{-1}\theta+\cdots$ Then
the d-th approximate root, $g_{d}(y)$ , of $f(y)$ is defined to be

$y^{(n/I)}(+a_{1}y^{(n/d)-1}+\cdots+a_{n/d}$ .
To clarify the significance of the d-th approximate root of $f(y)$ , we give the

following definitions.
DEFINITION 2.2. A system of discs $\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ is said to be complete

for $f(y)=\prod_{i=1}^{n}(y-\tau_{i})$ iff the following conditions are satisfied:

(1) $ U_{i}\cap U_{j}=\emptyset$ for $i\neq j$ ,

(2) $l(f, U_{j})\geqq 1$ for $j=1,$ $\cdots$ , $s$ ,
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(3) $\sum_{j=1}^{s}l(f, U_{j})=n$ .

A complete system of discs $\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ is said to be coherent iff there ex-
ists a system of $\pi$-elements $\{\sigma_{1}, \cdots , \sigma_{s}\}$ satisfying

(1) $\sigma_{j}$ is a general element for $U_{j}$ ,

(2) $\rho(f(\sigma_{j}))=\lambda$ for $j=1,$ $\cdots$ , $s$ .
The common number $\lambda$ is called the accuracy of $\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ .

REMARK 1. It follows from Lemma 1.2 that the coherent condition is in-
dependent of the choice of the general elements $\{\sigma_{1}, \cdots , \sigma_{s}\}$ .

REMARK 2. If the field $K$ is algebraically closed, $i.e$ . the value group $G\backslash \{0\}$

is divis\’iible, then any $\lambda\in G$ can be used as accuracy to determine a unique
coherent complete system of discs $\mathcal{U}$ .

DEFINITION 2.3. Let $\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ be a coherent complete system of discs

for $f(y)=\prod_{i=1}^{n}(y-\tau_{i})$ . Let $d$ be a factor of $n$ . Suppose that

$d|l(f, U_{j})$ for $j=1,$ $\cdots$ , $s$ .
A monic polynomial $g(y)$ of degree $(n/d)$ is said to be a quasi-approximate root
of $f(y)$ with respect to $\mathcal{U}$ iff

$dl(g, U_{j})=l(f, U_{f})$ for $j=1,$ $\cdots$ , $s$ .
If $d\neq 0$ in $V/M$, we prove that the d-th approximate root is a d-th quasi-

approximate root of $f(y)$ , thus guaranteeing the existence of the quasi-approximate
roots. We shall prove the following preliminary lemmas.

LEMMA 2.1. Let $\beta(y)$ be a Polynomial which factors completely over K. Let

$D\in \mathcal{D}(f)=\{D_{1j\cdots l}\}$ where $f(y)=\prod_{i=1}^{n}(y-\tau_{i})$ . Let $r^{*}$ be the number with

$l(\beta, D)=r^{*}l(f, D)$ .
Then we can construct a chain starting with $D$

$ D=D_{u}^{*}\supset D_{u+1}^{*}\supset\cdots\supset D_{i}^{*}\supset\cdots$

with

(1) $D_{i}^{*}\in \mathcal{D}(f)$ ,

(2) the chain is maximal $i$ . $e$ . no more disc in $\mathcal{D}(f)$ can be added,

(3) $l(\beta, D_{i}^{*})\leqq l^{*}(\beta, D_{i}^{*})\leqq r^{*}l(f, D_{i}^{*})$ .
PROOF. Let $\{E_{j}\}$ be the members of $\mathcal{D}(f)$ which are directly included in

$D=D_{u}^{*},$ $i.e$ . no member of $\mathcal{D}(f)$ is properly between $D$ and $E_{j}$ . It follows from
the definitions that
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$l(f, D_{u}^{*})=\Sigma l(f, E_{j})$ ,

$l(\beta, D_{u}^{*})\geqq\Sigma l^{*}(\beta, E_{j})\geqq\Sigma l(\beta, E_{j})$ .
Then we may choose one of the $E_{j}’ s$ as $D_{u+1}^{*}$ . Clearly we can continue this
procedure. Q. E. D.

LEMMA 2.2. Let $\beta(y)$ be a p0lyn0mial which factors completely over K. Let

$\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ be a coherent complete system of discs for $f(y)=\prod_{i=1}^{n}(y-\tau_{i})$ .
SuppOse that there are two chains (1) and (2) in $D(f)\cup \mathcal{U}$

(1) $D_{u}\supset D_{u+1}\supset\cdots\supset D_{v}\supset D_{v+1}\supset\cdots\supset D_{w}=U_{i}$ ,

(2) $D_{u}=D_{u}^{*}\supset\cdots\supset D_{w}^{*}.=U_{j}$ ,

with both chains maximal with respect to the end discs. Let $\sigma_{t}^{*}$ be a general Point
for $D_{i}^{*}$ and $r,$ $q$ be numbers with $0\leqq r\leqq q$ . If we have

(3) $l(\beta, D_{i}^{*})\leqq l^{*}(\beta, D_{i}^{*})\leqq rl(f, D_{i}^{*})$ $\forall u<i\leqq w^{*}$ ,

(4) $v(\beta(\sigma_{w^{*}}^{*}))\leqq\rho(f(\sigma_{w}^{*}\cdot))^{q}$ ,

then we have the following

(5) $v(\beta(\sigma_{u}^{*}))\leqq\rho(f(\sigma_{u}^{*}))^{q}$

with the equality only if all inequalities in (3) and (4) are equalities and $r=q$ .
Moreover, let $D$ be a disc satisfying

(6) $D_{v}\supsetneqq D\supset D_{v+1}$

with $\sigma$ a general pojnt for it. Supp0se that we have

(7) $l(\beta, D_{u})\leqq rl(f, D_{u})$ ,

(8) $l(\beta, D_{j})\geqq rl(f, D_{j})$ $\forall u<j\leqq v$ ,

(9) $l(\beta, D)\geqq rl(f, D)(=rl(f, D_{v+1}))$ .

Then we have

(10) $v(\beta(\sigma))\leqq\rho(f(\sigma))^{q}$

with the equality only if all inequalities in (3), (4), (7), (8), (9) are equalities and
$r=q$ .

PROOF. Let $\sigma_{j}$ be a general point for $D_{f}$ for $j=u+1,$ $\cdots$ , $w$ . The coherent
condition on $\mathcal{U}$ states

(11) $v(f(\sigma_{w^{*}}^{*}))=\rho(f(\sigma_{w}))$ .
It follows straightforward from Lemma 1.3 that

(12) $v(f(\sigma_{w^{*}}^{*}))=\underline{v}(f(\sigma_{u}^{*}))\prod_{i\Leftarrow u+1}^{w^{s}}(r(D_{i}^{*})/r(D_{i-1}^{*}))^{l(f,D_{\dot{i}})}$ ,
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(13) $v(f(\sigma_{w}))=y(f(\sigma_{u}^{*}))\prod_{j\Leftarrow u+1}^{w}(r(D_{j})/r(D_{j- 1}))^{l(f.D_{f})}$ .
We deduce at once from (11), (12), (13)

(14) $\prod_{i=u+1}^{w^{*}}(r(D_{i}^{*})/r(Df_{-1}))^{l(f,D_{i}^{s})}=\prod_{j=u+1}^{w}(r(D_{j})/r(D_{j-1}))^{l(f.D_{f})}$

Lemma 1.3 implies

(15) $v(\beta(\sigma_{w^{s}}^{*}))\geqq v(\beta(\sigma_{u}^{*}))\prod_{i=u+1}^{w^{s}}(r(D_{i}^{*})/r(D_{i- 1}^{*}))^{l^{t}(\beta.D_{i}^{*})}$

$\geqq v(\beta(a_{u}^{*}))\prod_{i=u+1}^{w^{2}}(r(D_{i}^{*})/r(D3_{-1}))^{l(\beta.D_{i}^{*})}$ .

lt then follows from (13), (11), (4), (15), (3), (14)

(16) $v(f(\sigma_{u}^{*}))^{q}\prod_{f=u+1}^{w}(r(D_{j})/r(D_{j- 1}))^{ql(f.D_{j})}$

$=v(f(a_{w}))^{q}$

$=v(f(\sigma_{M}^{*}))^{q}$

$\geqq\underline{v}(\beta(\sigma_{W}^{*}))$

$\geqq v(\beta(\sigma_{u}^{*}))\prod_{i=u+1}^{w^{*}}(r(D_{i}^{*})/r(D_{i-1}^{*}))^{l(\beta.D_{\dot{t}}}$

$\geqq v(\beta(\sigma_{u}^{*}))\prod_{i=u+1}^{w^{*}}(r(D_{i}^{*})/r(D_{i- 1}^{*}))^{rl(f.D_{i}^{*})}$

$=v(\beta(a_{u}^{*}))\prod_{j\Rightarrow u+1}^{w}(r(D_{j})/r(D_{f- 1}))^{rl(f.D_{j})}$ .

The inequality (5) follows by observing $0\leqq r\leqq q$ . Clearly the inequality (5) is an
equality only if the inequalities in (3), (4) are equalities and $r=q$ .

For the second part of our lemma, it follows from (8), (9) and Lemma 1.3 that

(17) $v(\beta(a))\leqq\rho(\beta(a_{u}^{*}))\prod_{f=u+1}^{v}(r(D_{j})/f(D_{f-1}))^{rl(f.D_{j})}\cdot(r(D)/r(D_{r}))^{rl(f,D_{0}+1)}$ ,

(18) $v(f(a))^{q}=v(f(\sigma_{u}^{*}))^{q}\prod_{j=1}^{v}(r(D_{j})/r(D_{j-1}))^{ql(f.D_{f)}}\cdot(r(D)/r(D_{v}))^{ql(f,D_{v}+1)}$ .
It follows from our assumption $0\leqq r\leqq q$ and (16) that we have the following

(19) $1i(f(\sigma_{u}^{*}))^{q}\prod_{j=u+1}^{v+1}(r(D_{j})/r(D_{j- 1}))^{ql(f,D_{j})}$

$\geqq v(\beta(\sigma_{u}^{*}))\prod_{j=u+1}^{v+1}(r(D_{j})/r(D_{j-1}))^{rl(f.D_{j})}$ .

The inequality (10) follows from (17), (18), (19) by observing

(20) $r(D_{v+1})/r(D_{v})\leqq r(D)/r(D_{v})$ .
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Clearly the inequality (10) is an equality only if all inequalities in (3), (4), (7),
(8), (9) are equalities and $r=q$ . Q. E. D.

LEMMA 2.3. Let $\beta(y)$ be a polynomial which factors completely over K. Let

$\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ be a coherent complete system of discs for $f(y)=\prod_{i=1}^{n}(y-\tau_{i})$ with

accuracy $\lambda$ . Let $\sigma_{j}’ s$ be general elements for $U_{f}’ s$ and $\sigma$ a general element for a
disc $D$ which prOperly contains some member of $\mathcal{U}$ . If for some fixed positive
integer $j$ we have

(1) deg $\beta(y)\leqq(1/d)n$ ,

(2) $v(\beta(\sigma_{i}))\leqq\lambda^{j/d}=\rho(f(\sigma_{i}))^{j/d}$ for $i=1,$ $\cdots$ , $s$ ,

then we always have

(3) $\rho(\beta(a))\leqq v(f(\sigma))^{J/d}$ with the equality only

if the inequality in (1) is an equality. Furthermore a strict inequality for (1) and
$l(\beta, U_{i})\geqq(1/d)l(f, U_{i})$ imply the inequality in (2) in a strict inequality.

PROOF. We divide the proof of (3) into several cases.
Case 1. Let us assume that

(4) $l(\beta, D)<(1/d)l(f, D)$ .
Let $D_{u}^{*}$ be the largest member of $\mathcal{D}(f)\cup \mathcal{U}$ which is contained in $D$ . Then we
have

(5) $1(\beta, D_{u}^{*})\leqq l(\beta, D)<(1/d)l(f, D)=(1/d)l(f, D_{u}^{*})$ .
If $D_{u}^{*}=U_{i}\in \mathcal{U}$ , then we have

(10) $v(\beta(\sigma_{u}^{*}))\leqq v(f(a_{u}^{*}))^{J/d}$ .

Otherwise, let $D_{u}^{*}\in \mathcal{D}(f)$ . It then follows from Lemma 2.1 that there are two
maximal chains of the following form

(6) $ D_{u}\supset\ldots$

(7) $D_{u}=D_{u}^{*}\supset\cdots\supset D_{w^{*}}^{*}=U_{j}$ $(\supset D_{w^{*}+1}^{*})$

with the following conditions satisfied (with $U_{j}=D_{w^{*}+1}^{*}$ if $U_{j}\in \mathcal{D}(f)$):

(8) $l(\beta, D_{i}^{*})\leqq l^{*}(\beta, D_{i}^{*})<(1/d)l(f, D_{i}^{*})$ $i=u+1,$ $\cdots$ , $w^{*}-1$ ,

(9) $1(\beta, D_{w^{*}}^{*})\leqq l^{*}(\beta, D_{w^{*}}^{*})=l^{*}(\beta, D_{M+1}^{*})<(1/d)l(f, D_{w^{*}+1}^{*})=(1/d)l(f, D_{w^{*}}^{*})$ .
We apply Lemma 2.2 by setting $r=1/d\leqq j/d=q$ and noting that our conditions
(2), (8), (9) are equivalent to the conditions (3), (4) in Lemma 2.2. We thus
conclude

(10) $v(\beta(\sigma_{u}^{*}))\leqq v(f(\sigma_{u}^{*}))^{j/d}$ .
On the other hand, it follows from Lemma 1.3 that
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(11) $\rho(\beta(\sigma_{u}^{*}))\geqq\underline{v}(\beta(a))(r(D_{u}^{*})/r(D))^{\iota_{(\beta,D)}}$ ,

(12) $v(f(\sigma_{u}^{*}))^{J/d}=v(f(\sigma))^{J/d}(r(D_{u}^{*})/r(D))^{(j/d)l(f,D)}$ .

We conclude from (4), (10), (11), (12)

(13) $v(\beta(a))<\rho(f(\sigma))^{j/d}$ .
Case 2. Let us consider the possibility that

(14) $l(\beta, D)\geqq(1/d)l(f, D)$ ,

(15) $D\supset D_{1}$ , the maximal disc in $\mathcal{D}(f)$ .
Then we have the following

$l(\beta, D)\leqq\deg\beta(y)\leqq(1/d)n=(1/d)l(f, D)$ .

In light of (14) we conclude

(17) $l(\beta, D)=\deg\beta(y)=(1/d)n=(1/d)l(f, D)$ .
The arguments in the case (1) can be repeated verbatim with the strict in-
equalities in (4), (5), (8), (9), (10) replaced by the inequalities to conclude

(18) $v(\beta(\sigma))\leqq v(f(\sigma))^{j/d}$ .
Note that in the case the inequality in (1) must be an equality.

Case 3. We shall consider the final possibility that

(19) $l(\beta, D)\geqq(1/d)l(f, D)$ ,

(20) $D\subsetneqq D_{v}\in \mathcal{D}(f)$ .
Certainly we may extend (20) to a maximal chain

(21) $D_{u}\supset D_{u+1}\supset\cdots\supset D_{v}\supset D_{v+1}\supset\cdots\supset D_{w}=U_{i}$

satisfying the following conditions (22), (23) and (24):

(22) $l(\beta, D_{u})\leqq(1/d)l(f, D_{u})$ ,

(23) $1(\beta, D_{j})\geqq(1/d)l(f, D_{j})$ $\forall u<j\leqq v$ ,

(24) $D_{v}\supsetneqq D\supset D_{v+1}$ .
Note that if (1) is a strict inequality then we may demand (22) to be a strict
inequality. As in the case (1) we construct a second maximal chain

(25) $D_{u}=D_{u}^{*}\supset\cdots\supset D_{w^{*}}^{*}=U_{j}$ $(\supset D_{w^{*}+1}^{*})$

with the following conditions satisfied:

(26) $l(\beta, D_{l}^{*})\leqq l^{*}(\beta, D_{i}^{*})\leqq(1/d)l(f, D_{i}^{*})$ ,

(27) $l(\beta, D_{w^{s}}^{*})\leqq l^{*}(\beta, D_{w^{*}}^{*})\leqq(1/d)l(f, D_{w}^{*}.)$ .
Lemma 2.2 states
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(28) $v(\beta(\sigma))\leqq v(f(a))^{ffd}$

Note that the equality can happen in (28) only if (1) is an equality.
For the last part of our lemma, we observe that $U_{i}\supset\supset D_{1}$ the maximal disc

in $\mathcal{D}(f)$ by (1) and the new inequality. Our proof follows case (3) verbatim
with $D$ replaced by $U_{i}$ .

\S 3. Two fundamental theorems.

Our first theorem establishes the existence of the quasi-approximate roots
by showing the approximate roots are the quasi-approximate roots. Our second
theorem establishes a strong property of the g-adic expansion of $f(y)$ in terms
of a quasi-approximate root $g$ .

THEOREM 1. Let $\mathcal{U}=\{U_{1}, \cdots , U_{s}\}$ be a coherent complete system of discs for
$f(y)=\prod_{i\Rightarrow 1}^{n}(y-\tau_{i})$ . Let $d$ be a positive integer which is not zero in $V/M$. Supp0se

that for $i=1,$ $\cdots$ , $s$ we have

(1) $d|l(f, U_{\ell})$

and the d-th approxjmate root $g_{d}(y)$ of $f(y)$ factors completely over K. Then the
p0lyn0mial $g_{d}(y)$ is a d-th quasi-approximate root of $f(y)$ .

First, we prove the following technical lemma.
LEMMA 3.1. We shall use the assumpti0ns of Theorem 1. Let $a$ be a general

point for a disc $D\supsetneqq U_{i}$ for some $i$ . If in the following equation

$f(\sigma)=g_{d}(\sigma)^{d}+h(\sigma)$

we have

(1) $v(h(\sigma))\leqq v(f(\sigma))$ ,

(2) $l(h, D)<(d-1/d)l(f, D)$ ,

then we have

(3) $v(h(\sigma))<v(f(\sigma))$ .

PROOF. It follows from (1) that we have

(4) $v(g_{d}(\sigma))^{d}\leqq v(f(\sigma))$ .
It follows from Lemma 1.1 that

(5) $\deg_{\pi}\mathcal{L}(f(\sigma))=l(f, D)$ ,

(6) $\deg_{\pi}\mathcal{L}(h(a))=l(h, D)$ .
In view of (2) we conclude that (4) must be an equality. Let us assume the
lemma is false, $i.e$ . (1) is an equality. Then we shall deduce a contradiction.

Since both (1) and (4) are assumed to be equalities then we have the follow-
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ing equation of the leading coefficients with $a,$
$b$ nonzeroes in $V/M$ :

(7) $X(f(\sigma))=aX(g_{d}(\sigma))^{d}+b\mathcal{L}(h(a))$ .
We claim

(8) $\mathcal{L}(f(\sigma))=af^{*}(\pi)^{d}$ .
Note that in view of (2), (5), (6), (7), (8) the polynomial $b\mathcal{L}(h(\sigma))$ , which is of
degree $<(d-1/d)\deg_{\pi}X(f(\sigma))$ , would be expressible as the difference of the
d-th powers of two polynomials of degree $(1/d)\deg_{\pi}\mathcal{L}(f(\sigma))$ . This is clearly
impossible. Here we use the fact that $d$ is nonzero in $V/M$.

We are left to prove (8). Let $\{E_{j}\}$ be the set of maximal members of
$\mathcal{D}(f)\cup \mathcal{U}$ which are properly contained in $D$ . It is easy to see that every $ E_{j}\supset$

some $U_{i}$ and the following

(9)
$l(f, E_{j})=\sum_{E_{f}\supset U_{i}}l(f, U_{i})$ .

Thus we have
$d|l(f, E_{j})$ .

Then (8) follows from Lemma 1.1. Q. E. D.
PROOF OF THEOREM 1. We have the following equations

(2) $f(y)=g_{d}(y)^{d}+h(y)$ ,

(3) deg $h(y)<(d-1/d)n$ .
It suffices to show that for any $\sigma$ with associate disc $D\supsetneqq U_{i}$ we have the fol-
lowing

(4) $v(h(\sigma))<v(f(\sigma))$ .
Note that it then follows from (2) that

(5) $X(f(\sigma))=\mathcal{L}(g(\sigma)^{d})$ .
In the case that value group $G$ is discrete we may take $D$ to be the minimal
disc $\supsetneqq U_{i}$ . Otherwise we let $D$ run through all discs $\supsetneqq U_{i}$ . Then Lemma 1.1
establishes that the numbers of roots of $f(y)$ and $g(y)^{d}$ in $U_{i}$ are equal.

We separate the proof of the inequality (4) into several cases.
Case 1. $D\supseteqq D_{1}$ the maximal disc in $\mathcal{D}(f)$ . Let $\sigma^{*}$ be a general element for

$D^{*}$ the minimal disc which contains all roots of $f(y)g_{f}((y)$ . Then we have

(6) $v(f(\sigma^{*}))=\rho(g_{d}(\sigma^{*})^{d})=nr(D^{*})$ .
It follows from (2) and the strong triangle inequality

$(\eta$ $v(h(\sigma^{*}))\leqq v(f(\sigma^{*}))$ .
We trivially have

(8) $l(h, D^{*})\leqq\deg h(y)<(d-1/d)n=(d-1/d)l(f, D^{*})$ .
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Thus it follows from Lemma 3.1 that

(9) $\underline{v}(h(a^{*}))<\underline{v}(f(\sigma^{*}))$ ,

(10) $X(f(a^{*}))=X(g(\sigma^{*})^{d})$ .
It follows from Lemma 1.1 and (10) that

$D^{*}\supsetneqq D_{1}\Leftrightarrow X(f(\sigma^{*}))$ is a power of a linear polynomial

$\Leftrightarrow X(g(\sigma^{*}))$ is a power of the same linear polynomial
$\Rightarrow the$ distance of any two roots of $f(y)g_{d}(y)<r(D^{*})$ .

We must have $D^{*}=D_{1}$ . It follows from Lemma 1.3 and (9) that

(11) $v(f(a^{*}))=v(f(\sigma))(r(D_{1})/r(D))^{l(f.D^{*})}$

$>\underline{v}(h(a^{*}))$

$\geqq v(h(\sigma))(r(D_{1})/r(D))^{l(h,D^{*})}$ .
We thus conclude

(12) $v(h(a))<\rho(f(\sigma))$ .
Case 2. $D\subsetneqq D_{v}\in \mathcal{D}(f)$ . Inductively we assume that for any $D\subsetneqq D_{j}\in \mathcal{D}(f)$

with a general element $\sigma_{j}$ the following

(13) $v(h(\sigma_{f}))<v(f(\sigma_{f}))$ .
Let $D_{u}$ be the smallest disc in $\mathcal{D}(f)$ which contains $D$ properly and satisfies

(14) $1(h, D_{u})<(d-1/d)l(f, D_{u})$ .
Note that the maximal disc $D_{1}$ in $\mathcal{D}(f)$ satisfies (14) thus guarantees the ex-
istence of $D_{u}$ . It follows from Lemma 2.1 and (14) that we may construct two
maximal chains as follows:

(15) $ D_{u}\supset D_{u+1}\supset\cdots\supset D_{v}\supset D_{v+1}\supset$ $\supset D_{w}=U_{i}$ ,

(16) $D_{u}=D_{u}^{*}\supset\cdots\supset D_{w^{s}}^{*}=U_{j}$

with

(17) $1(h, D_{i}^{*})\leqq l^{*}(\beta, D_{i}^{*})<(d-1/d)l(f, D_{i}^{*})$ $\forall u<i\leqq w^{*}$ ,

(18) $D_{v}\supsetneqq D\supset C_{v+1}$ ,

(19) $l(h, D_{f})\geqq(d-1/d)l(f, D_{j})$ $\forall u<j\leqq v$ .
Let $\sigma_{i}^{*}$ be a general element for $D_{i}^{*}$ . We claim

(20) $\rho(h(\sigma_{i}^{*}))\leqq\underline{v}(f(\sigma_{i}^{*}))$ $\forall u<i\leqq w^{*}$ .

Note that if $i=u$ then (20) follows from (13). Inductively we assume the in-
equality (20) is true for some $i$ we shall prove it for $i+1$ . Note that it follows
from Lemma 3.1, (20) and (17) that
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(21) $v(h(\sigma f))<\rho(f(\sigma_{i}^{*}))=v(g_{d}(\sigma 7)^{d})$ ,

(22) $X(f(a_{i}^{*}))=X(g(\sigma_{i}^{*})^{d})$ .
It then follows from Lemma 1.1 that

(23) $l(f;D_{i+1}^{*})=l^{*}(f, D_{i+1}^{*})=l^{*}(g_{d^{d}}, D_{i+1}^{*})$ .
We copy the proof for case (1) as follows. Let $a^{*}$ be a general element for $D^{*}$

the smallest disc which contains all root $\tau^{*}$ of $f(y)g_{d}(y)$ satisfying

(24) $v(\tau^{*}, \tau)<r(D_{i}^{*})$ , $D^{*}\supset D_{i+1}^{*}$

where $\tau$ is any element in $D_{i+1}^{*}$ . Then it follows from Lemma 1.3, (21) and
(23) that

(25) $v(f(\sigma^{*}))=v(f(\sigma_{i}^{*}))(r(D^{*})/r(D_{i}^{*}))^{l^{*}(f.D_{i+1}^{s}})$

$=v(g(a_{i}^{*}))(r(D^{*})/r(D_{i}^{*}))^{l^{*}(g_{d^{d}}.D_{i+1}^{*}})$

$=v(g_{d}(\sigma_{i}^{*})^{d})$ .
It follows from (2) and the strong triangle inequality

(26) $v(h(\sigma^{*}))\leqq v(f(a^{*}))$ .
It trivially follows from (17)

(27) $l(h, D^{*})\leqq l^{*}(h, D_{i+1}^{*})<(d-1/d)l(f, D_{i+1}^{*})=(d-1/d)l(f, D^{*})$ .
The rest of the proof of case (1) can be copied almost verbatim to show

(28) $D^{*}=D_{i+1}^{*}$ ,

(29) $v(h(\sigma_{i+1}^{*}))=v(h(a^{*}))\leqq v(f(\sigma^{*}))=v(f(a_{i+1}^{*}))$ .
We establish our claim (20).

Note that our conditions (17), (20), (18), (14), (19) fulfill the requirement (3),

(4), (6), (7), (8) of Lemma 2.2 for $r=(d-1/d),$ $q=1$ . Thus if we have

(30) $1(h, D)\geqq(d-1/d)l(f, D)$

then the requirement (9) of Lemma 2.2 is also fulfilled and our theorem follows
from the conclusion (10) of Lemma 2.2. We shall assume the opposite of (30), $i$ . $e$ .

(31) $1(h, D)<(d-1/d)l(f, D)$ .
Let the following chain be the maximal one in $\mathcal{D}(fg_{d^{d}})$

(32) $D_{v}=E_{1}\supset\cdots\supset E_{i}\supset\cdots\supset E_{q}=D$

with $\overline{\sigma}_{i}$ a general element for $E_{i}$ . It suffices to prove inductively the following:

(33) $v(h(\overline{\sigma}_{l}))<v(f(\overline{\sigma}_{i}))$ $i=1,$ $q$ .
Note that if we have

(34) $1(h, E_{i+1})\geqq(d-1/d)l(f, E_{i+1})$
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then the proof used to handle (30) can be copied verbatim to settle this case.
We hence assume for some $i$

(35) $l(h, E_{i+1})<(d-1/d)l(f, E_{i+1})$ ,

(36) $\rho$ ( $h$ (a $i)$ ) $<\rho(f(\overline{a}_{t}))(=\rho(g_{d}(\overline{a}_{i})^{d})$ .
It then trivially follows (cf. Lemmas 1.1 and 1.2)

(37) $\mathcal{L}(f(\overline{\sigma}_{i}))=X(g_{d}(\overline{\sigma}_{i})^{d})$ ,

(38) $l(f, E_{i+1})=l(g_{d^{d}}, E_{i+1})$ ,

(39) $u$( $f$(a $i+1)$ ) $=v(g_{d}(\overline{\sigma}_{t+1})^{d})\geqq\rho$ ( $h$ (a $i+1)$).

It then follows from Lemma 3.1 that

(40) $\rho(h(\overline{a}_{i+1}))<v(f(\overline{a}_{i+1}))$ . Q. E. D.

THEOREM 2. We use the assumpti0ns of Theorem 1. Let $\sigma_{i}’ s$ be general
elements for $U_{i}’ s$ and $g(y)$ be a d-th quasi-approximate root of $f(y)$ . Let $\alpha_{j}(y)$ be
the polynomjals of degrees less than $(n/d)$ and defined by the following equation:

(1) $f(y)=g(y)^{d}+\sum_{j=1}^{d}\alpha_{j}(y)g(y)^{d-j}$ .

Let $a$ be a general element for $D$ which pr0perly contains some member of $\mathcal{U}$ .
Then we have for all $i,$ $j$

(2) $q(\alpha_{j}(\sigma))<\rho(f(\sigma))^{j/d}$ ,

(3) $v(g(a)^{d})=v(f(\sigma))$ ,

(4) $\underline{v}(\alpha_{j}(\sigma_{i}))\leqq\rho(f(a_{i}))^{J/d}$ ,

(5) $l(\alpha_{j}, U_{i})\geqq(1/d)l(f, U_{i})\Rightarrow v(\alpha_{j}(\sigma_{i}))<v(f(\sigma_{i}))^{j/d}$ ,

(6) $v(g(\sigma_{i})^{d})=v(f(\sigma_{i}))^{jfd}$ .
PROOF. By a finite field extension of $K$ we may assume that $\alpha_{j}(y)s$ factor

completely over $K$. Note that the value $\underline{v}$ may be extended accordingly. It
follows from Lemma 2.3 that (4) implies (2) and (5). Moreover, (2) trivially
$i_{mplies}(3)$ . It thus suffices to prove (4) and (6).

Let $\overline{D}$ be any disc which contains some $U_{i}$ . Note that $\overline{D}\cap U_{j}\neq\emptyset$ implies
$\overline{D}\supset U_{j}$ or $\overline{D}\subset U_{j}$ . It then follows $\overline{D}\supset U_{j}$ . We thus conclude

(7) $l(g,\overline{D})=\sum_{U_{j}\subset\overline{D}}l(g, U_{j})=(1/d)l(f,\overline{D})$ .

Let the following chain be maximal in $\mathcal{D}(f)$

(8) $D_{1}\supset D_{2}\supset\cdots\supset D_{w}\supset U_{i}$ .
It follows from (7) that the chain (8) is maximal in $\mathcal{D}(g)$ . It follows from
Lemma 1.3 that
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(9) $v(g(a_{i}))=r(D_{1})^{l(g.D_{1})}\prod_{j=2}^{w}(r(D_{j})/r(D_{j-1}))^{l(g.D_{j})}\cdot(r(U_{i})/r(D_{w}))^{l(g.U_{i})}$ ,

(10) $v(f(\sigma_{i}))=r(D_{1})^{l(f.D_{1})}\prod_{j=2}^{w}(r(D_{j})/r(D_{j-1}))^{l(f,D_{f})}\cdot(r(U_{i})/r(D_{w}))^{l(f.U_{t)}}$ .

Then (6) follows from (7), (9), (10). We are left to prove (4).

Let $e$ be the largest integer $\leqq d+1$ such that (4) is satisfied for $all1\leqq j<e$

and $1\leqq i\leqq s$ . Note the integer $e$ is at least 1. Suppose $e\neq d+1$ and rewrite (1)

as follows

(11) $f(y)=g(y)^{d}+\sum_{j=1}^{e- 1}\alpha_{j}(y)g(y)^{d-j}+\alpha_{e}(y)g(y)^{d-e}+h(y)$ .

Note the following trivial fact

(12) deg $h(y)<(d-e/d)n$ .
Let $a^{*}$ be a general element of a disc $D^{*}$ which contains $U_{i}\in \mathcal{U}$ . Clearly it
suffices to prove

(13) $\rho(h(\sigma^{*}))\leqq\rho(f(\sigma^{*}))$ .
Note tbat (11) and (13) with $a^{*}=a_{i}$ imply

(14) $v(a_{e}(\sigma_{i})g(\sigma_{i})^{d-e})\leqq v(f(a_{i}))$ .
It follows from (6) and (14) that

(15) $v(\alpha_{e}(a_{i}))\leqq v(f(\sigma_{i}))^{e/d}$

and this contradicts the choice of $e$ .
Let us observe the following fact

(16) $1(h, D^{*})<(d-e/d)l(f, D^{*})\Rightarrow v(h(\sigma^{*}))\leqq v(f(a^{*}))$ .
Note that it follows from Lemma 2.3 that for $1\leqq j<e$

(17) $v(\alpha_{f}(\sigma^{*})g(a^{*})^{d-j})\leqq v(f(\sigma^{*}))$

and it follows from Lemma 2.3 and (6) that

(18) $v(g(a^{*})^{d})\leqq v(f(\sigma^{*}))$ .
Thus if (16) is false, then we must have

(19) $\underline{v}(h(\sigma^{*}))=\underline{v}(\alpha_{e}(a^{*})g(a^{*})^{d-e})$ ,

(20) $\mathcal{L}(h(\sigma^{*}))=\mathcal{L}(\alpha_{e}(\sigma^{*})g(\sigma^{*})^{d-e})$ .
While the $\pi$-degrees of the two sides of (20) are given by

(21) $1(h, D^{*})<(d-e/d)l(f, D^{*})=(d-e)l(g, D^{*})\leqq l(\alpha_{e}g^{d- e}, D^{*})$ .
This is clearly impossible. We thus have (16).

We divide the proof of (13) into several cases.
Case 1. $D^{*}\supset D_{1}$ the maximal disc in $\mathcal{D}(f)$ . Clearly we have by (12)
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$1(h, D^{*})\leqq\deg h(y)<(d-e/d)n=l(f, D^{*})$ .

Then (13) follows from (16).

Case 2. $D^{*}\subsetneqq D_{1}$ . We construct the following maximal chain of discs

(22) $D_{u}\supset\cdots\supset D_{v}\supset D_{v+1}\supset\cdots\supset D_{w}=U_{i}$

satisfying the following requirements

(23) $D_{v}\supsetneqq D^{*}\supset D_{v+1}$ ,

(24) $l(h, D_{u})<(d-e/d)l(f, D_{u})$ ,

(25) $l(h, D_{j})\geqq(d-e/d)l(f, D_{j})$ $\forall u<j\leqq v$ .
Note that $D_{1}$ satisfies (24) thus guarantees the existence of the chain (22). It
follows from Lemma 2.1 that we can construct the following maximal chain (26)

satisfying (27)

(26) $D_{u}=D_{u}^{*}\supset\cdots\supset D_{w^{*}}^{*}=U_{j}$ ,

(27) $l(h, D_{i}^{*})\leqq l^{*}(h, D_{i}^{*})<(d-e/d)l(f, D_{i}^{*})$ $\forall u<i\leqq w^{*}$ .
It then follows from (16) that

(28) $v(h(\sigma_{w}^{*}))\leqq\rho(f(\sigma_{w^{*}}^{*}))$ .
Note that the requirements of Lemma 2.2 are fulfilled with $r=(d-e/d),$ $q=1$ .
Then (13) follows from Lemma 2.2. Q. E. D.
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