©2009 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 61, No. 1 (2009) pp. 315–325 doi: 10.2969/jmsj/06110315

A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space

Dedicated to Professor Masao Hashiguchi on the occasion of his 77th birthday

By Sadahiro MAEDA, Toshiaki ADACHI and Young Ho KIM

(Received Mar. 25, 2008)

Abstract. It is well-known that there exist no homogeneous *ruled real hypersurfaces* in a complex projective space. On the contrary there exists the unique homogeneous ruled real hypersurface in a complex hyperbolic space. Moreover, it is minimal. We characterize geometrically this minimal homogeneous real hypersurface by properties of extrinsic shapes of some curves.

1. Introduction.

For a non-zero constant c we denote by $M_n(c)$ a complex *n*-dimensional complete and simply connected Kähler manifold of constant holomorphic sectional curvature c. It is hence holomorphically isometric to a complex projective space $CP^n(c)$ when c > 0, and is holomorphically isometric to a complex hyperbolic space $CH^n(c)$ when c < 0. In the study of real hypersurfaces of $\widetilde{M} = M_n(c)$ there can be the following two problems.

- (1) Classify homogeneous real hypersurfaces in $M_n(c)$ ($c \neq 0$) and characterize such examples in the class of all real hypersurfaces.
- (2) Construct non-homogeneous *nice* real hypersurfaces in $M_n(c)$ ($c \neq 0$) and characterize such examples in the class of all real hypersurfaces.

A real hypersurface M is called *homogeneous* in $\widetilde{M} = M_n(c)$ if it is given as an orbit under some subgroup of the full isometry group $I(M_n(c))$ of the ambient

²⁰⁰⁰ Mathematics Subject Classification. Primary 53B25; Secondary 53C40.

Key Words and Phrases. complex hyperbolic spaces, real hypersurfaces, totally geodesic complex hypersurfaces, homogeneous ruled real hypersurfaces, geodesics, horocycle-circles, integral curves of the chracteristic vector field, real hyperbolic planes.

The first author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 19540084), Japan Society for the Promotion of Sciences.

The second author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 17540072, 20540071), Japan Society for the Promotion of Sciences.

The third author is partially supported by Grant from KOSEF, R01-2007-000-20014-0.

space $\widetilde{M} = M_n(c)$. In his paper, Takagi ([14]) classified all homogeneous real hypersurfaces in $\mathbb{C}P^n(c)$. After about 30 years Berndt and Tamaru ([4]) classified such hypersurfaces in $\mathbb{C}H^n(c)$. Those hypersurfaces are treated as typical examples in the theory of real hypersurfaces in $M_n(c)$ ($c \neq 0$). There are many characterizations of such real hypersurfaces (for instance, see [1], [3], [6], [7], [10], [12], [13]).

In this paper, we treat ruled real hypersurfaces of $\widetilde{M} = M_n(c)$ $(c \neq 0)$ (for the definition of ruled real hypersurfaces and other fundamental knowledge on such hypersurfaces, see Section 2). It is well-known that every ruled real hypersurface in $\mathbb{C}P^n(c)$ is not homogeneous (see [14]). This fact implies that we study ruled real hypersurfaces in $\mathbb{C}P^n(c)$ only from the viewpoint of Problem (2). On the other hand, there exists the unique homogeneous (minimal) ruled real hypersurface in $\mathbb{C}H^n(c)$ (see [4]). Needless to say, there exist also many non-homogeneous ruled real hypersurfaces in $\mathbb{C}H^n(c)$. Hence we can investigate ruled real hypersurfaces in $\mathbb{C}H^n(c)$ from both of the viewpoints of Problems (1) and (2), which enriches the study of real hypersurfaces in $\mathbb{C}H^n(c)$. The purpose of this paper is to give a geometric characterization of the homogeneous minimal ruled real hypersurface of $\mathbb{C}H^n(c)$, which is based on the viewpoint of Problem (1).

2. Ruled real hypersurfaces in a complex space form.

For a real hypersurface M^{2n-1} with unit normal local vector field \mathscr{N} in a Kähler manifold $(\widetilde{M}, J, \langle , \rangle)$, we can naturally define an almost contact metric structure $(\phi, \xi, \eta, \langle , \rangle)$ as $\eta(v) = \langle \xi, v \rangle$ and $\phi(v) = Jv - \eta(v)\mathscr{N}$ with the characteristic vector field $\xi = -J\mathscr{N}$, where \langle , \rangle is the Riemannian metric on M induced from the metric \langle , \rangle of the ambient Kähler manifold \widetilde{M} . The Riemannian connections $\widetilde{\nabla}$ of \widetilde{M} and ∇ of M are related by the following formulas of Gauss and Weingarten

$$\begin{cases} \widetilde{\nabla}_X Y = \nabla_X Y + \langle AX, Y \rangle \mathcal{N}, \\ \widetilde{\nabla}_X \mathcal{N} = -AX \end{cases}$$
(2.1)

for vector fields X and Y on M, where A is the shape operator of M in \widetilde{M} . Thus we have

$$(\nabla_X \phi)Y = \eta(Y)AX - \langle AX, Y \rangle \xi, \qquad (2.2)$$

$$\nabla_X \xi = \phi A X. \tag{2.3}$$

In this paper we study ruled real hypersurfaces in $\widetilde{M} = M_n(c)$. A real hy-

316

persurface M in the ambient space $\widetilde{M} = M_n(c)$ $(n \ge 2, c \ne 0)$ is said to be a ruled real hypersurface if the holomorphic distribution T^0M , which is a subbundle of TM defined by $T^0M = \bigcup_{x \in M} \{v \in T_xM \mid v \perp \xi_x\}$, is integrable and each of its maximal integral manifolds is locally congruent to a totally geodesic complex hypersurface $M_{n-1}(c)$ in the ambient space $\widetilde{M} = M_n(c)$. It is known that every ruled real hypersurface is constructed in the following manner. We take an arbitrary regular (real) curve $\gamma : I \to M_n(c)$ defined on some open interval I. At each point $\gamma(s)$ $(s \in I)$ we attach a totally geodesic complex hypersurface M_s which is locally congruent to $M_{n-1}(c)$ of $\widetilde{M} = M_n(c)$ and is orthogonal to the plane spanned by $\{\dot{\gamma}(s), J\dot{\gamma}(s)\}$ at the point $\gamma(s)$. We then get a ruled real hypersurface $M = \bigcup_{s \in I} M_s$ in $\widetilde{M} = M_n(c)$.

Ruled real hypersurfaces in $M = M_n(c)$ are characterized by properties of their shape operators in the following manner (see [13] and Proposition 2 in [11]).

LEMMA 1. For a real hypersurface M in $\widetilde{M} = M_n(c)$ $(n \ge 2, c \ne 0)$, the following conditions are mutually equivalent.

- (1) M is a ruled real hypersurface.
- (2) The shape operator A of M satisfies $\langle Av, w \rangle = 0$ for arbitrary tangent vectors $v, w \in T_x M$ orthogonal to ξ_x at any point $x \in M$.
- (3) If we define differentiable functions μ, ν on M by $\mu = \langle A\xi, \xi \rangle$ and $\nu = ||A\xi \mu\xi||$, then they satisfy the following two conditions.
 - i) The set $M_1 = \{x \in M \mid \nu(x) \neq 0\}$ is an open dense subset of M.
 - With a unit vector field U on M₁ orthogonal to ξ the shape operator A of M satisfies

$$A\xi = \mu\xi + \nu U, \qquad AU = \nu\xi, \quad Av = 0 \tag{2.4}$$

on M_1 for an arbitrary tangent vector $v \in T_x M$ orthogonal to ξ_x and U_x .

Remark 1.

- (1) We treat a ruled real hypersurface *locally*, because generally this hypersurface has self-intersections and singularities. Moreover, we usually omit points where ξ is principal. That is, when we study a ruled real hypersurface M, we suppose that $M_1 (:= \{x \in M \mid \nu(x) \neq 0\})$ coincides with M.
- (2) Every leaf M_s of a ruled real hypersurface $M = \bigcup_{s \in I} M_s$ in $M = M_n(c)$ is a totally geodesic submanifold of M.

We say a real hypersurface M to be a Hopf hypersurface if ξ is a principal curvature vector of M at its each point in the ambient space $\widetilde{M} = M_n(c)$, namely for the shape operator A of M in $\widetilde{M} = M_n(c)$, it satisfies $A\xi = \alpha\xi$ with a function α on M. It is well-known that this function α is automatically locally constant on each Hopf hypersurface M and that tubes of sufficiently small constant radius around Kähler submanifolds in $\widetilde{M} = M_n(c)$ are Hopf hypersurfaces. The following proposition characterizes geometrically all Hopf hypersurfaces of $\widetilde{M} = M_n(c)$.

PROPOSITION 1. For a real hypersurface M in $\widetilde{M} = M_n(c)$ $(n \ge 2, c \ne 0)$, the following two conditions are mutually equivalent.

- (1) M is a Hopf hypersurface in M.
- (2) At each point x ∈ M, if we take a totally geodesic holomorphic line M₁(c) in M̃ through x whose tangent space T_xM₁(c) is the complex one dimensional linear subspace of T_xM̃ spanned by ξ_x, then the normal section N_x = M ∩ M₁(c) given by M₁(c) is the integral curve through the point x for the characteristic vector field ξ of M.

PROOF. It follows from the first equality in (2.1) and (2.3) that $\widetilde{\nabla}_{\xi}\xi = \phi A\xi + \langle A\xi, \xi \rangle \mathcal{N}$. This equation implies that the condition (1) in our proposition is equivalent to saying that

$$\widetilde{\nabla}_{\xi}\xi = \langle A\xi, \xi \rangle \mathscr{N} = \langle A\xi, \xi \rangle J\xi,$$

which is nothing but the condition (2).

Ruled real hypersurfaces are typical examples of non-Hopf hypersurfaces in $M_n(c)$ ($c \neq 0$) (see Lemma 1). We compute the function ν for a ruled real hypersurface.

LEMMA 2 (c.f. [8]). For a ruled real hypersurface M in $M = M_n(c)$, the function ν is of the following form on each geodesic ρ with $\dot{\rho}(0) = \phi U_{\rho(0)}$, which is the integral curve of ϕU through the point $\rho(0)$. When c > 0,

$$\nu(\rho(s)) = \left(\frac{\sqrt{c}}{2}\right) \tan\left(\frac{\sqrt{c}(s+a)}{2}\right)$$

with some constant a and when c < 0,

$$\nu(\rho(s)) = -\left(\frac{\sqrt{|c|}}{2}\right) \tanh\left(\frac{\sqrt{|c|}(s+a)}{2}\right) \quad or \quad \nu(\rho(s)) = \frac{\sqrt{|c|}}{2}$$

with some constant a. In particular, every ruled real hypersurface in a complex

projective space is not complete.

PROOF. By use of the Codazzi equation for a hypersurface in $\widetilde{M} = M_n(c)$ which is written as

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2\langle\phi X, Y\rangle\xi\},$$
(2.5)

we have $(\nabla_{\xi} A)\phi U - (\nabla_{\phi U} A)\xi = -(c/4)U$. On the other hand, from (2.2), (2.3) and (2.4) we find that

$$\begin{aligned} (\nabla_{\xi}A)\phi U - (\nabla_{\phi U}A)\xi &= \nabla_{\xi}(A\phi U) - A\nabla_{\xi}(\phi U) - \nabla_{\phi U}(A\xi) + A\nabla_{\phi U}\xi \\ &= -A\big((\nabla_{\xi}\phi)U + \phi\nabla_{\xi}U\big) - \nabla_{\phi U}(\mu\xi + \nu U) \\ &= -A\big(\eta(U)A\xi - \langle A\xi, U\rangle\xi + \phi\nabla_{\xi}U\big) - (\phi U\mu)\xi \\ &- \mu\nabla_{\phi U}\xi - (\phi U\nu)U - \nu\nabla_{\phi U}U \\ &= \nu(\mu\xi + \nu U) - A\phi\nabla_{\xi}U - (\phi U\mu)\xi - (\phi U\nu)U - \nu\nabla_{\phi U}U, \end{aligned}$$

so that

$$\nu\mu\xi + \left(\nu^2 + \frac{c}{4}\right)U - A\phi\nabla_{\xi}U - (\phi U\mu)\xi - (\phi U\nu)U - \nu\nabla_{\phi U}U = 0.$$
(2.6)

Taking the inner product of each side of (2.6) and U, we see by (2.4) that $\phi U\nu = \nu^2 + (c/4)$. Solving this differential equation, we find the form of the function ν on each integral curve ρ of ϕU .

For each vector X which is orthogonal to both ξ and U, taking the inner product of each side of the equation (2.6) and X, we see by (2.4) that $\langle \nabla_{\phi U}U, X \rangle =$ 0. This, together with the fact that $\langle \nabla_{\phi U}U, U \rangle = \langle \nabla_{\phi U}U, \xi \rangle = 0$, implies $\nabla_{\phi U}U =$ 0. Thus we find by (2.2) that $\nabla_{\phi U}(\phi U) = 0$, so that every integral curve ρ of ϕU is a geodesic on our real hypersurface M.

Since a complex hyperbolic space CH^n is a Hadamard manifold, being different from the case of a complex projective space CP^n , we have complete ruled real hypersurfaces in CH^n . In this paper, we pay particular attention to the homogeneous minimal ruled real hypersurface in $CH^n(c)$. In order to explain our result, we here recall such a hypersurface (cf. [9]). We take a circle γ in $CH^n(c)$ (with Riemannian connection $\widetilde{\nabla}$), which lies on some totally real totally geodesic real hyperbolic plane $\mathbf{R}H^2(c/4)$ and whose curvature is $\sqrt{|c|}/2$. That is, the curve γ is a smooth curve parameterized by its arclength which satisfies $\widetilde{\nabla}_{\dot{\gamma}}\dot{\gamma} = (\sqrt{|c|}/2)Y$, $\widetilde{\nabla}_{\dot{\gamma}}Y = -(\sqrt{|c|}/2)\dot{\gamma}$ with unit principal normal vector field Y along γ orthogonal to complex lines spanned by $\dot{\gamma}$. We should note this circle is an unbounded curve and lies on a horosphere (see for example [2], [5]). It is known that the ruled real hypersurface obtained by this circle is the unique minimal homogeneous ruled real hypersurface in $CH^n(c)$. This hypersurface is characterized as follows.

LEMMA 3 ([4], [9]). A ruled real hypersurface M in $\mathbb{C}H^n(c)$ $(n \geq 2)$ is the homogeneous minimal hypersurface in $\mathbb{C}H^n(c)$ if and only if the shape operator Aof M in $\mathbb{C}H^n(c)$ satisfies

$$A\xi = \left(\frac{\sqrt{|c|}}{2}\right)U, \quad AU = \left(\frac{\sqrt{|c|}}{2}\right)\xi, \quad AX = 0.$$
(2.7)

The following figure is a section of the homogeneous minimal ruled real hypersurface in the ball model of $CH^n(c)$. The figure shows its image cutted by totally real totally geodesic $RH^2(c/4)$. In this figure, the solid line denotes a circle of positive curvature $\sqrt{|c|}/2$ on $RH^2(c/4)$ and every dotted line denotes a geodesic on $RH^2(c/4)$. We note that when a solid line crosses a dotted line at some point these curves cross orthogonally at this point.

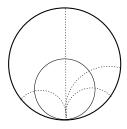


Figure 1. The image of the homogeneous minimal ruled real hypersurface in CH^n .

The construction of the homogeneous minimal ruled real hypersurface M in $CH^n(c)$ tells us that the isomery group I(M) of M is a direct product of the isometry group $I(CH^{n-1}(c))$ of totally geodesic $CH^{n-1}(c)$ and a one-parameter subgroup $\{\varphi_s\}$ (of the isometry group $I(CH^2(c))$ of totally geodesic $CH^2(c)$) whose orbit is a circle of curvature $\sqrt{|c|}/2$ on totally geodesic $RH^2(c/4)$. This means that the totally geodesic embedding of every leaf M_s into our homogeneous minimal ruled real hypersurface M is an equivariant mapping.

3. Extrinsic shapes of some curves on the homogeneous minimal ruled real hypersurface.

In this section we give a characterization of the homogeneous minimal ruled real hypersurface in CH^n from the viewpoint of extrinsic shapes of some geodesics and all integral curves of the characteristic vector field ξ on this real hypersurface.

THEOREM. A real hypersurface M in $CH^n(c)$ $(n \ge 2)$ is the minimal homogeneous ruled real hypersurface if and only if it satisfies the following three conditions.

- i) At an arbitrary point $x \in M$, there exist such orthonormal vectors $v_1, \ldots, v_{2n-2} \ (\in T_x M)$ orthogonal to the characteristic vector ξ_x that every geodesic $\gamma_{ij,x}$ on M through the point $\gamma_{ij,x}(0) = x$ in the direction of $v_i + v_j$ $(1 \le i \le j \le 2n-2)$ is an extrinsic geodesic, namely $\gamma_{ij,x}$ is also a geodesic in the ambient space $CH^n(c)$.
- ii) At an arbitrary point $x \in M$, the integral curve γ_x of the characteristic vector field ξ on M through $\gamma_x(0) = x$ lies locally on a totally real totally geodesic 2-dimensional real hyperbolic space $\mathbf{R}H^2(c/4)$ of constant sectional curvature c/4 in $\mathbf{C}H^n(c)$.
- iii) The curvature function $\kappa_x = \| \nabla_{\dot{\gamma}_x} \dot{\gamma}_x \|$ of the curve γ_x in ii) does not depend on the choice of γ_x , where $\widetilde{\nabla}$ is the Riemannian connection of the ambient space $CH^n(c)$. This means that for any curves γ_x, γ_y in ii) their curvature functions $\kappa_x(s)$ and $\kappa_y(s)$ satisfy the following equality with some constant $s_0: \kappa_x(s) = \kappa_y(s+s_0)$ for $-\infty < \forall s < \infty$.

In order to prove our Theorem we here recall some fundamental properties of ruled real hypersurfaces in a nonflat complex space form.

From the viewpoint of extrinsic shapes of geodesics we have the following results.

PROPOSITION 2. On a ruled real hypersurface M in $\widetilde{M} = M_n(c)$ $(c \neq 0)$, every geodesic ρ whose initial vector $\dot{\rho}(0)$ is orthogonal to the characteristic vector $\xi_{\rho(0)}$ is an extrinsic geodesic.

PROOF. Let M_0 be the leaf through the point $\rho(0)$ for the holomorphic distribution T^0M . We here take a geodesic ρ_1 on M_0 with the same initial condition that $\rho_1(0) = \rho(0)$ and $\dot{\rho}_1(0) = \dot{\rho}(0)$. Since M_0 is locally congruent to a totally geodesic complex hypersurface $M_{n-1}(c)$ of $\widetilde{M} = M_n(c)$, we see that the curve ρ_1 is also a geodesic in the ambient space $\widetilde{M} = M_n(c)$, which implies that the curve ρ_1 is a geodesic on our ruled real hypersurface M. Hence the uniqueness theorem on geodesics tells us that these two curves ρ and ρ_1 are coincidental. Thus we get the desirable conclusion.

322

We should note that the tangent vector $\dot{\rho}(s)$ of a geodesic ρ in this proposition is orthogonal to $\xi_{\rho(s)}$ at each point $\rho(s)$. Ruled real hypersurfaces are characterized by such a property in Proposition 2.

LEMMA 4. A real hypersurface M of $\widetilde{M} = M_n(c)$ $(c \neq 0)$ is a ruled real hypersurface if and only if the following condition holds: At an arbitrary point $x \in M$ there exist such orthonormal vectors $v_1, \ldots, v_{2n-2} \in T_x M$ orthogonal to the characteristic vector ξ_x that every geodesic $\gamma_{ij,x}$ on M through the point $\gamma_{ij,x}(0) =$ x in the direction of $v_i + v_j$ $(1 \leq i \leq j \leq 2n - 2)$ is an extrinsic geodesic.

PROOF. It suffices to show the "if" part. We take a geodesic $\gamma_{ii,x} = \gamma_{ii,x}(s)$ $(1 \leq i \leq 2n-2)$ on M with initial condition that $\gamma_{ii,x}(0) = x$ and $\dot{\gamma}_{ii,x}(0) = v_i$. Then it follows from the first equality in (2.1) that $\langle A\dot{\gamma}_{ii,x}(s), \dot{\gamma}_{ii,x}(s) \rangle = 0$ for every s. Hence, in particular at the point $x(=\gamma_{ii,x}(0)) \in M$ we have

$$\langle Av_i, v_i \rangle = 0 \quad \text{for } 1 \leq i \leq 2n - 2.$$
 (3.1)

We next take a geodesic $\gamma_{ij,x} = \gamma_{ij,x}(s)$ $(1 \leq i < j \leq 2n-1)$ on M with initial condition that $\gamma_{ij,x}(0) = x$ and $\dot{\gamma}_{ij,x}(0) = (v_i + v_j)/\sqrt{2}$. Then, applying the above discussion to the curve $\gamma_{ij,x}$, we get

$$\left\langle \frac{A(v_i + v_j)}{\sqrt{2}}, \frac{v_i + v_j}{\sqrt{2}} \right\rangle = 0 \quad \text{for } 1 \leq i < j \leq 2n - 2.$$
(3.2)

Thus, from (2) in Lemma 1, (3.1) and (3.2) we can see that M is a ruled real hypersurface.

We are now in a position to prove our Theorem. We are enough to show that a real hypersurface satisfying these three conditions is ruled, minimal and homogeneous in the ambient space $CH^n(c)$. We suppose that a real hypersurface M satisfies the three conditions. By Lemma 4 the first condition guarantees that M is a ruled real hypersurface in $CH^n(c)$. By use of the equalities in (2.1), (2.3) and (2.4) we have

$$\widetilde{\nabla}_{\xi}\xi = \nabla_{\xi}\xi + \langle A\xi, \xi \rangle \mathscr{N} = \phi A\xi + \mu \mathscr{N} = \nu \phi U + \mu \mathscr{N}.$$

On the other hand, by the second condition we see that $\langle \widetilde{\nabla}_{\xi} \xi, \mathscr{N} \rangle = \langle \widetilde{\nabla}_{\xi} \xi, J \xi \rangle = 0$. Hence we find μ vanishes identically on M, so that M is minimal and $\widetilde{\nabla}_{\xi} \xi = \nu(\phi U)$.

323

We now compute the function ν . By the Gauss formula and the equalities (2.2), (2.4) we have

$$\widetilde{\nabla}_{\xi}(\phi U) = \nabla_{\xi}(\phi U) + \langle A\xi, \phi U \rangle \mathscr{N} = (\nabla_{\xi}\phi)U + \phi(\nabla_{\xi}U)$$
$$= \eta(U)A\xi - \langle A\xi, U \rangle \xi + \phi(\nabla_{\xi}U) = -\nu\xi + \phi(\nabla_{\xi}U).$$
(3.3)

We here check $\nabla_{\xi} U = 0$. It is clear that $\langle \nabla_{\xi} U, \xi \rangle = 0 = \langle \nabla_{\xi} U, U \rangle$ from (2.3), (2.4) and the facts $\langle \xi, U \rangle = 0$, $\langle U, U \rangle = 1$. So we only need to verify that $\langle \nabla_{\xi} U, X \rangle = 0$ for each X perpendicular to ξ and U. We take such a vector X. For any vector Y orthogonal to ξ , the Codazzi equation (2.5) gives

$$(\nabla_{\xi} A)Y - (\nabla_{Y} A)\xi = (c/4)\phi Y. \tag{3.4}$$

On the other hand, from (2.3) and (2.4) we have

$$\begin{aligned} (\nabla_{\xi}A)X - (\nabla_{X}A)\xi &= \nabla_{\xi}(AX) - A\nabla_{\xi}X - \nabla_{X}(A\xi) + A\nabla_{X}\xi \\ &= -A\nabla_{\xi}X - \nabla_{X}(\nu U) + A\phi AX \\ &= -A\nabla_{\xi}X - (X\nu)U - \nu\nabla_{X}U. \end{aligned}$$

This, together with (3.4), yields

$$A\nabla_{\xi}X + (X\nu)U + \nu\nabla_{X}U + (c/4)\phi X = 0.$$
(3.5)

Taking the inner product of each side of this equality and ξ , we see from (2.4) and the fact that $\nu \neq 0$ that $\langle \nabla_{\xi} X, U \rangle + \langle \nabla_X U, \xi \rangle = 0$. On the other hand, from (2.3) and (2.4) we get

$$\langle \nabla_X U, \xi \rangle = -\langle U, \nabla_X \xi \rangle = -\langle U, \phi AX \rangle = 0.$$

Hence, from these equalities we have $\langle \nabla_{\xi} X, U \rangle = 0$, so that $\langle \nabla_{\xi} U, X \rangle = 0$. We hence obtain $\nabla_{\xi} U = 0$. Thus we find by (3.3) that $\widetilde{\nabla}_{\xi} (\phi U) = -\nu \xi$.

Next, we shall show that $\xi \nu = 0$. It follows from (2.3), (2.4), (2.5) and $\nabla_{\xi} U = 0$ that

$$(c/4)\phi U = (\nabla_{\xi}A)U - (\nabla_{U}A)\xi$$

= $\nabla_{\xi}(AU) - A\nabla_{\xi}U - \nabla_{U}(A\xi) + A\nabla_{U}\xi$
= $\nabla_{\xi}(\nu\xi) - \nabla_{U}(\nu U) + A\phi AU$
= $(\xi\nu)\xi + \nu(\phi A\xi) - (U\nu)U - \nu\nabla_{U}U.$

Taking the inner product of ξ and each side of this equality, we get $\xi \nu - \nu \langle \nabla_U U, \xi \rangle = 0$, so that

$$\xi \nu = \nu \langle \nabla_U U, \xi \rangle = -\nu \langle U, \nabla_U \xi \rangle = -\nu \langle U, \phi A U \rangle = -\nu^2 \langle U, \phi \xi \rangle = 0.$$

As we see $\widetilde{\nabla}_{\xi}\xi = \nu(\phi U)$, $\widetilde{\nabla}_{\xi}(\phi U) = -\nu\xi$ and $\xi\nu = 0$, we find every integral curve of the characteristic vector field ξ is a circle of positive constant curvature ν in the ambient space $CH^n(c)$. This, combined with the third condition in the hypothesis, implies that ν is a constant function on M. So, setting $X = \phi U$ in (3.5), we get $A\nabla_{\xi}(\phi U) + \nu\nabla_{\phi U}U - (c/4)U = 0$. Taking the inner product of each side of this equality and U, we have from (2.2), (2.4) and $\nabla_{\xi}U = 0$

$$\begin{split} c/4 &= \langle A \nabla_{\xi}(\phi U), U \rangle = \nu \langle \nabla_{\xi}(\phi U), \xi \rangle = \nu \langle (\nabla_{\xi} \phi) U + \phi \nabla_{\xi} U, \xi \rangle \\ &= \nu \langle - \langle A \xi, U \rangle \xi, \xi \rangle = -\nu^2, \end{split}$$

so that $\nu = \sqrt{|c|}/2$, since $\nu > 0$. Then the shape operator of our real hypersurface M satisfies (2.7). We can hence conclude that M is the homogeneous minimal ruled real hypersurface.

At the end of this paper we show the following congruency on some geodesics of the homogeneous minimal ruled real hypersurface M in $CH^{n}(c)$.

PROPOSITION 3. At each point x of the homogeneous minimal ruled real hypersurface M in $CH^n(c)$, up to the action of isometries of M there exists just one geodesic $\gamma_x = \gamma_x(s)$ on M through the point $x = \gamma_x(0)$ whose initial vector $\dot{\gamma}_x(0)$ is orthogonal to ξ_x .

PROOF. We take the leaf M_s through the point x for the holomorphic distribution T^0M on our ruled real hypersurface M. This leaf M_s is congruent to totally geodesic $CH^{n-1}(c)$. If two geodesic γ_x^1, γ_x^2 on M through the point $x = \gamma_x^i(0)$ have initial vectors $\dot{\gamma}_x^1(0), \dot{\gamma}_x^2(0)$ orthogonal to the characteristic vector ξ_x , then they lie on the same leaf M_s (see the proof of Proposition 2). As the leaf M_s is a Riemannian symmetric space of rank one, these two geodesics are congruent to each other with respect to the isometry group $I(M_s)$ of M_s . On the other hand, the canonical totally geodesic embedding of our leaf M_s into our ruled real hypersurface M is an equivariant mapping (see the comment on the isometry group I(M) of M). Hence these geodesics γ_x^1, γ_x^2 are congruent to each other with respect to the isometry $\Gamma(M)$ of M.

324

References

- T. Adachi, M. Kimura and S. Maeda, A characterization of all homogeneous real hypersurfaces in a complex projective space by observing the extrinsic shape of geodesics, Arch. Math. (Basel), **73** (1999), 303–310.
- [2] T. Adachi and S. Maeda, Global behaviours of circles in a complex hyperbolic space, Tsukuba J. Math., 21 (1997), 29–42.
- [3] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math., 395 (1989), 132–141.
- [4] J. Berndt and H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces of rank one, Trans. Amer. Math. Soc., 359 (2007), 3425–3438.
- [5] A. Comtet, On the Landau levels on the hyperbolic plane, Ann. Phys., 173 (1987), 185– 209.
- [6] B. Y. Chen and S. Maeda, Hopf hypersurfaces with constant principal curvatures in complex projective or complex hyperbolic spaces, Tokyo J. Math., 24 (2001), 133–152.
- M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296 (1986), 137–149.
- [8] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in Pⁿ(C), Math. Ann., 276 (1987), 487–497.
- [9] M. Lohnherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata, 79 (1999), 267–286.
- [10] S. Maeda, Real hypersurfaces of complex projective spaces, Math. Ann., 263 (1983), 473–478.
- [11] S. Maeda and T. Adachi, Integral curves of characteristic vector fields of real hypersurfaces in nonflat complex space forms, Geom. Dedicata, **123** (2006), 65–72.
- [12] S. Maeda and K. Ogiue, Characterizations of geodesic hyperspheres in a complex projective space by observing the extrinsic shape of geodesics, Math. Z., 225 (1997), 537–542.
- [13] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, (eds. T. E. Cecil and S. S. Chern), Cambridge University Press, 1998, pp. 233–305.
- R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495–506.

Sadahiro Maeda

Department of Mathematics Saga University 1 Honzyo Saga, 840-8502, Japan E-mail: smaeda@ms.saga-u.ac.jp

Toshiaki Adachi

Department of Mathematics Nagoya Institute of Technology Gokiso Nagoya 466-8555, Japan E-mail: adachi@nitech.ac.jp

Young Ho KIM

Department of Mathematics Kyungpook National University Taegu 702-701, Korea E-mail: yhkim@knu.ac.kr