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Abstract. On the setting of the upper half-space H of the Euclidean n-spaces,
we give a sharp norm estimate of the weighted harmonic Bergman projection on L%
for 1 < p < oco. Also, we obtain the norm estimate of the projection depending on
a > —1 when p is fixed.

1. Introduction.

For a fixed positive integer n > 2, let H = R™ ! x R be the upper half-space
where R denotes the set of all positive real numbers. We write point z € H as
z = (7', 2,) where 2 € R"~! and z, > 0.

For a > —1 and 1 < p < oo, let b2 denote the weighted harmonic Bergman
space consisting of all real-valued harmonic functions u on H such that

lallze o= ( |u<z>|pdva<z>)l/p <o,

where dV,(z) = 2% dz and dz is the Lebesgue measure on R™. The space b? is a
closed subspace of L?. In particular b2 is a Hilbert space. Thus, there is a unique
orthogonal projection I1,, of L2 onto b2:

M, /() = /H £(w) R (2 0) dVia ()

for every f € L2 and for each 2 € H where R,(z,w) is the weighted harmonic
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Bergman kernel. The projection I, is called the weighted harmonic Bergman
projection.

Let 2° be the fractional differentiation of order s > 0 and let P,(w) be the
extended Poisson kernel on H, i.e.,

2 z,+w,

P,(w) := P(z,w) = z,we H (1.1)

noy, |z — |

where W = (w', —w,,) and o, is the volume of the unit ball in R™. Then the
weighted harmonic Bergman kernel R, (z,w) is given by

(_1) [cﬂ+12a+1

Ra(z,w) = T(a+1)

2°T1P,(w) (1.2)

where T' is the Gamma function and [«] is the smallest integer greater than or
equal to a. Also, it is well known

Cn,a
Rl w)] < e (1.3)
for z,w € H. Thus, we have
1Ra(z, )Ly S 25t/ (1.4)

for 1 < ¢ < oco. Thus, the weighted harmonic Bergman projection 1l is well
defined whenever f € L? for 1 < p < oo. Moreover, II, is a bounded projection
of LP, onto b, for 1 < p < oo (See [1] and [2] for details).

Recently, Zhu [4] gave a sharp norm estimate of the Bergman projection on
LP of the unit ball in C™. In this paper we show that the result of Zhu continues
to hold on the setting of the weighted harmonic Bergman projection on L? of the
unbounded domain H (Theorem 3.1). Additionally, we obtain the norm estimate
of II,, depending on « when p is fixed (Theorem 3.2).

Throughout the paper we use the same letter C, to denote various positive
constants depending only on the constant a which may change at each occurrence.
For nonnegative quantities A and B, we often write A < Bor B 2 Aif A'is
dominated by B times some positive constant. Also, we write A ~ B if A < B
and B < A.

2. Auxiliary estimates.

In this section, we recall the definition of the weighted harmonic Bergman
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kernel R, (z,w) and then we get the estimate of it on some local area.
The fractional derivative of v of order —s < 0 is defined by

7"*(z) = 1)/000t51v(z’,zn+t) dt. (2.1)

(s)

Let D be the differentiation with respect to the last component. Then the frac-
tional derivative of u € b? of order s > 0 is defined by

D5y = g~ [s1=5) plsly,.

Also, 2V is the identity operator. If a is not an integer, we have from (1.2)

-1 [a]+12a+1 00
(=1) / glel=e=1plalip (W' w, +t)dt  (2.2)

Hel ) = Do 0T~ o) Jo

for z,w € H.
Note that for each j =1,...,n—1,

D., P(z,w) = =Dy, P(z,w)

and

D, P(z,w) = D,, P(z,w).

Therefore, we can show that for multi-indices 6 = (f1,...,0,) and v =
(717"')771)7

DZ'BD;YUP(Z,’LU) _ (71)71+...+7n*1D§11+A/1 . D§:+’YTLP(Z,U))

(1 \t Y- fp(z — W)
== P TR (2:3)

where fg - is a homogeneous polynomial of degree 1 + |5] + |7].
Fix e = (0,1) for the rest of this paper. Then (2.3) gives that for each
nonnegative integer k

(—1)*120(n + k)

no,I'(n —1) 70, (24)

frr1(e) =
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where fri1(e) = fo,. 0,0, ,0,k+1)(€). Thus there exists 0 < ¢ < 1 such that
C7' > frr1(e) fry1(2) > C for some constant C' > 0 and every z € B(e,¢) where
B(e,¢) is the open ball in R™ centered at e with radius e. For w € H U {0},
let To(w) = {z € H | (2 +wyp) > €|z’ —w'|}. Because fiy1 is a homogeneous
polynomial of degree k + 2, there exists ¢y > 0 such that

C™ant? > frpa(e) fri(2) = Ozt (255)

for every z € T'.,(0). Note that z —w € T'.,(0) for w € H and z € ', (w). Thus
(2.5) implies that

_ Jrr(e)fira(z — W)

frt1(e)DF TP, (w) [z — w|ntere
k42
> ol £ wn)
= |Z _ w|n+2+2k
C
> (2.6)

(Zn + wn)nJrk ’

for every z € I'; (w). Then R, (z,w) can be estimated as the following.

LEMMA 2.1.  Giwen a > —1 and w € H, there exists a constant C = Cy, o >
0 such that

C

Ro(z,w) >
(Z w) (Zn+wn)n+a

for every z € T'g, (w).

PrOOF. Let w € H. Note that I'c,(w) C I'c, (w + (0,¢)) for every t > 0.
If v is not an integer, (2.2), (2.4) and (2.6) imply

R.(z,w)

2a+1 o]
— t[a]—a—l 1 ’—oz.l—‘rlD"a]—‘rlPZ / N tdt
F(a+1)F([a]fa)/0 (1) (W', wn +1)

— nUHQO‘F(n - 1) = [a]l—a— [a] /
" T(a+ DD(n+ [a])T([a] — a)/o t Ufra141(€)DIV P (W w, + 1)t

C,2¢ t]'oz]—a—l

Z Tla+ D + [a])T(a] - a) / (o + 0 + DTl
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for every z € Iy, (w). Since

/oo t’—a-l_a 1 di — 1 /1 Sn—&-a—l(l_s)(a]—a—lds
0 (2n 4wy +t)ntiel - (zn +wn)"t Jo

_ IF'(n+a)'([a] —a) 1
Pln+lal)  (zn+wp)te’

we have

for every z € I'g, (w).
If v is an integer, (1.2), (2.4) and (2.6) give us that

20 .
Ralest) = Fa g Dy @y o (VDT Px(w)
Cn,a

(zn + wp)" e

Y

for every z € I'; (w). The proof is complete. O

The following lemma is Proposition 3.1 in [1]. However we calculate the
constant exactly to use it in this paper.

LEMMA 2.2.  Given a+b > —1 and b < 0, there exists a constant C = C,, > 0
such that

C z, (2.7)

J L EPYEPC SN
w - al Do+ DI(%52)

for every z € H.

PROOF. Integration in polar coordinates and change of variable yield

a+b a+b
Wr, dw' dw,,
/H = / /R (2 — WP + (2 + wy)2) ez 4

waer
(7= Lon- 1/0 / (r? + zn+wn) )(”Jr“)/gdrdwn
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00 ta+b 00 Tn—2
=(n—1)o,_ —_dt A ——"
(n )U 1(/0 (Zn+t)a+1 )(/0 (rz + 1)(n+a)/2 T)

= (n — 1)0n71[1 . 12.

Since —b > 0 and a + b+ 1 > 0, using change of variable again, we have

1 JR—
RS (1 Ry
0

n Tlat+1) ™
Similarly, we get

1

b e ne INEE N
Igzi/ sTl(lfs) ZSdS:M
0

2
20 (#5)

because (a +1)/2 > 0. Combining these estimates, we obtain (2.7) as desired. O

3. Main result.

Now we are ready to prove the main theorem.

THEOREM 3.1.  For any a > —1, the weighted harmonic Bergman projection
has the following norm estimation:

1
L zmax{,p},
p—1

where ||IL, || is the norm of Il, on LP for 1 < p < oc.

PrOOF. We first estimate the lower bound. For some 0 < ¢; < g¢ satisfying
1 —c1 —c1e0 >0, let fo = XB(e,c;)- Note that

1ol = Va(B(e, 1)) = Cnall+c) . (3.1)

Take some constant ¢; satisfying 1 > ¢o/(1 — ¢1 — ¢1€0). Since

1 1
+ci1e1 <

61(1 —Cl) €0

and
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1
o«
C1 1761

Wn,

for w € B(e,c1),

we see that for z € I';, (e) and w € B(e, ¢1),

n+1
z—|—+clwn

7 —u| <
| | €1 1—61

<zl+l Wn _a
€1 811—61 1—01

Wn,

Zn, 14+ cieq

€1 51(1—01) "

Zn + Wn

€0

<

Therefore, we obtain I';, (e) C I'g,(w) for w € B(e,c1). Thus, applying Lemma
2.1, we have

AV, (w)
R.(z,w) dV,(w) > Cma/ _— 3.2
/B o Rl a(w o T (3.2)

for z € T';, (e). Since z, + w, < 2(]z| + 1) for w € B(e, 1), we have by (3.2)

’ dVy(2)

ITa foll e =/H‘/B( )Ra(z,w) AV, (w)

P
o ( Tl ) v
e e Blec1) (2 + wy )"t

dVy(2)
>CP V,(B(e,c p/ A A
s ( ( 1)) I (e) (1+ |Z‘n+o¢)p

Using integration in polar coordinates, we get

dV, o0
| G do(Q) [
., (e) (1 + |z|nFe)p ., (0)N{z€H||z|=1} a1

(1 ety

~ a1
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Thus, by (3.3) and (3.1), we have

P

C
I1,, pp > pp-
|| fOHLa = (n+a)<p_1) ||f0HLa

Note that for 1 < p < 2,

o) -GRGH) =55
— > .
p—1 p—1/\p—1 “p—1

Consequently, we have

II C
sup HHDLfHLg > || chOHLfY > n,a
£ e =1 [follee —p—1

Also, by the duality and (3.4), we have

sup ||Haflle > Chap for p> 2.
£l 2 =1

for 1<p<a2.

(3.4)

(3.5)

In fact, with 1/p+1/q = 1, the duality property of the weighted harmonic Bergman

space(See [2]) and (3.4) imply

sup [[Mafllrz = sup
I£1p =1 £l =1

5o >‘
o f, 75—
< I ol
= sup

fo >‘
7HOL
£l =1 <f | foll g,

_ e foll g
Il foll g
Cn,a
>
>Chap

\Y

for p > 2. Therefore, we have from (3.4) and (3.5),

1
L > cn,amax{,p}.
p—1
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Now, let’s estimate upper bound. (1.3) and Hoélder’s inequality imply

S (w)|wy g
s < g [ U
a+1 a+l
@ r/q D at=y
<C?f. /71%7 dw /—'f(w)liljn dw
’ H |z — |t H |z—w["re

a+1
1 1 P/q ag1 P, Tq
=C£a<cnar<°‘+ )F(“ )) 2 /%dw
: p q a |z—w"te

where the last equality holds by Lemma 2.2. Thus by Fubini’s theorem and Lemma
2.2, we have

atl

1ML /1,
p/q o ot a—S=
<C£’“(C"*“F<a+l>F<aH)) [ e [ g,
p q H o |z —
1 1 p/q+1
p q H

So we obtain

1ML fls < Co. ar(“; 1)r(“+ 1)||f|Lp (3.6)

In case p — oo, we know F(%) ~ C, and F(O‘Tfl) ~ p. Also, if p — 1, then
F(anl) C, and F(O"H) # Thus (3.6) means that

1
1ML < Co max{,p}
p—1

as desired. The proof is complete. O

When p is fixed, the same argument of the proof of Theorem 3.1 gives us the
following.

THEOREM 3.2. Let 1 < p < oo. Then there exists a constant C = Cy, , > 0
such that
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C
”a <

as o — —17.

PrOOF. Note that |1, | > 1.
If v is an integer, we have form (1.2)

Cp2°T(n + «) 1
< .

If « is not an integer, we have from (2.2),

2a+1
[Ra(z,

< Ootf‘ﬂ*“*1 DI p (W' w, + t)| dt
IS Fa D (a 1—a>/o | ( )

Cn2°T'(n + [a]) /°° tlal—a-1 ”
T Tla+D([a] —a) Jo  (]z =@+ t)" el
_ C2°T(n+[a]) 1 /‘” el
- Tle+Dr([a] - a) [z —w["+e (14 ¢)mtied
_ Cp2°T(n+«) 1
 T(a+1) |z—wnte’

Thus we have

Cp2°T'(n+ ) 1
MNa+1) |z—w|nte

[Ra(2,w)| <

for « > —1. Then Hélder’s inequality give us that

P < ([ 1fw)Ra(zw) dvaw))”
< (St (f ) [ e
_ <Cn2a1“(n+a)>p<0n1“(“+1) (;E)Jr ( ;1)),7/(1

(a+1) F(a + 1) (2E2)

,(H—l / |f ‘Pw dw
|z 7w|”+a
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where the last equality holds by Lemma 2.2. So we have

(Cniig(ll:r)a)) (C P(fzﬂ) ();E () ))p/q

» a4otl Zn
X/H\f(w)| wp° e dz dw

a2, <

_(Cu2°T(n+a)\? (Cul (SFHT (45T () p/q“”pr
= T(a+1) [(a+ 1)T(252) P
Consequently,
Cp2°T(n+ )T (43T () (25
Mo fllze < Tia 1fllzz
I(a+1)2 F( 5 )
C
< P p
< R fly
as o — —17. The proof is complete. O
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