Norm estimation of the harmonic Bergman projection on half-spaces

By Hyungwoon Koo, Kyesook Nam and HeungSu Yi

(Received Sep. 25, 2007) (Revised Jan. 29, 2008)

Abstract. On the setting of the upper half-space \boldsymbol{H} of the Euclidean n-spaces, we give a sharp norm estimate of the weighted harmonic Bergman projection on L^p_α for $1 . Also, we obtain the norm estimate of the projection depending on <math>\alpha > -1$ when p is fixed.

1. Introduction.

For a fixed positive integer $n \geq 2$, let $\mathbf{H} = \mathbf{R}^{n-1} \times \mathbf{R}_+$ be the upper half-space where \mathbf{R}_+ denotes the set of all positive real numbers. We write point $z \in \mathbf{H}$ as $z = (z', z_n)$ where $z' \in \mathbf{R}^{n-1}$ and $z_n > 0$.

For $\alpha > -1$ and $1 \le p < \infty$, let b^p_{α} denote the weighted harmonic Bergman space consisting of all real-valued harmonic functions u on H such that

$$||u||_{L^p_\alpha} := \left(\int_{H} |u(z)|^p dV_\alpha(z)\right)^{1/p} < \infty,$$

where $dV_{\alpha}(z) = z_n^{\alpha} dz$ and dz is the Lebesgue measure on \mathbb{R}^n . The space b_{α}^p is a closed subspace of L_{α}^p . In particular b_{α}^2 is a Hilbert space. Thus, there is a unique orthogonal projection Π_{α} of L_{α}^2 onto b_{α}^2 :

$$\Pi_{\alpha} f(z) = \int_{\mathbf{H}} f(w) R_{\alpha}(z, w) \, dV_{\alpha}(w)$$

for every $f \in L^2_{\alpha}$ and for each $z \in \mathbf{H}$ where $R_{\alpha}(z, w)$ is the weighted harmonic

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B05; Secondary 31B10, 30D45, 30D55. Key Words and Phrases. weighted Bergman kernel, harmonic Bergman functions, Bergman projection, upper half-space.

The first author was partially supported by KOSEF(R01-2003-000-10243-0), the second author was supported by Hanshin University Research Grant and the last author was supported by the Research Grant of Kwangwoon University (2006).

Bergman kernel. The projection Π_{α} is called the weighted harmonic Bergman projection.

Let \mathscr{D}^s be the fractional differentiation of order $s \geq 0$ and let $P_z(w)$ be the extended Poisson kernel on \mathbf{H} , i.e.,

$$P_z(w) := P(z, w) = \frac{2}{n\sigma_n} \frac{z_n + w_n}{|z - \overline{w}|^n} \qquad z, w \in \mathbf{H}$$

$$(1.1)$$

where $\overline{w} = (w', -w_n)$ and σ_n is the volume of the unit ball in \mathbb{R}^n . Then the weighted harmonic Bergman kernel $R_{\alpha}(z, w)$ is given by

$$R_{\alpha}(z,w) = \frac{(-1)^{\lceil \alpha \rceil + 1} 2^{\alpha + 1}}{\Gamma(\alpha + 1)} \mathscr{D}^{\alpha + 1} P_z(w)$$
(1.2)

where Γ is the Gamma function and $\lceil \alpha \rceil$ is the smallest integer greater than or equal to α . Also, it is well known

$$|R_{\alpha}(z,w)| \le \frac{C_{n,\alpha}}{|z-\overline{w}|^{n+\alpha}} \tag{1.3}$$

for $z, w \in \mathbf{H}$. Thus, we have

$$||R_{\alpha}(z,\cdot)||_{L^{q}_{\alpha}} \lesssim z_{n}^{(n+\alpha)(1/q-1)} \tag{1.4}$$

for $1 < q < \infty$. Thus, the weighted harmonic Bergman projection Π_{α} is well defined whenever $f \in L^p_{\alpha}$ for $1 \le p < \infty$. Moreover, Π_{α} is a bounded projection of L^p_{α} onto b^p_{α} for 1 (See [1] and [2] for details).

Recently, Zhu [4] gave a sharp norm estimate of the Bergman projection on L^p of the unit ball in \mathbb{C}^n . In this paper we show that the result of Zhu continues to hold on the setting of the weighted harmonic Bergman projection on L^p_α of the unbounded domain H (Theorem 3.1). Additionally, we obtain the norm estimate of Π_α depending on α when p is fixed (Theorem 3.2).

Throughout the paper we use the same letter C_a to denote various positive constants depending only on the constant a which may change at each occurrence. For nonnegative quantities A and B, we often write $A \lesssim B$ or $B \gtrsim A$ if A is dominated by B times some positive constant. Also, we write $A \approx B$ if $A \lesssim B$ and $B \lesssim A$.

2. Auxiliary estimates.

In this section, we recall the definition of the weighted harmonic Bergman

(2.1)

kernel $R_{\alpha}(z, w)$ and then we get the estimate of it on some local area. The fractional derivative of v of order -s < 0 is defined by

$$\mathscr{D}^{-s}v(z) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} v(z', z_n + t) dt.$$

Let D be the differentiation with respect to the last component. Then the fractional derivative of $u \in b^p_\alpha$ of order s > 0 is defined by

$$\mathscr{D}^{s} u = \mathscr{D}^{-(\lceil s \rceil - s)} D^{\lceil s \rceil} u$$

Also, \mathcal{D}^0 is the identity operator. If α is not an integer, we have from (1.2)

$$R_{\alpha}(z,w) = \frac{(-1)^{\lceil \alpha \rceil + 1} 2^{\alpha + 1}}{\Gamma(\alpha + 1)\Gamma(\lceil \alpha \rceil - \alpha)} \int_{0}^{\infty} t^{\lceil \alpha \rceil - \alpha - 1} D^{\lceil \alpha \rceil + 1} P_{z}(w', w_{n} + t) dt \qquad (2.2)$$

for $z, w \in \mathbf{H}$.

Note that for each $j = 1, \ldots, n - 1$,

$$D_{z_i}P(z,w) = -D_{w_i}P(z,w)$$

and

$$D_{z_n}P(z,w) = D_{w_n}P(z,w).$$

Therefore, we can show that for multi-indices $\beta = (\beta_1, \dots, \beta_n)$ and $\gamma = (\gamma_1, \dots, \gamma_n)$,

$$D_{z}^{\beta} D_{w}^{\gamma} P(z, w) = (-1)^{\gamma_{1} + \dots + \gamma_{n-1}} D_{z_{1}}^{\beta_{1} + \gamma_{1}} \dots D_{z_{n}}^{\beta_{n} + \gamma_{n}} P(z, w)$$

$$= (-1)^{\gamma_{1} + \dots + \gamma_{n-1}} \frac{f_{\beta, \gamma}(z - \overline{w})}{|z - \overline{w}|^{n+2|\beta| + 2|\gamma|}},$$
(2.3)

where $f_{\beta,\gamma}$ is a homogeneous polynomial of degree $1+|\beta|+|\gamma|$.

Fix e = (0,1) for the rest of this paper. Then (2.3) gives that for each nonnegative integer k

$$f_{k+1}(e) = \frac{(-1)^{k+1}2\Gamma(n+k)}{n\sigma_n\Gamma(n-1)} \neq 0,$$
(2.4)

where $f_{k+1}(\mathbf{e}) = f_{(0,\cdots,0),(0,\cdots,0,k+1)}(\mathbf{e})$. Thus there exists $0 < \varepsilon < 1$ such that $C^{-1} \ge f_{k+1}(\mathbf{e}) f_{k+1}(z) \ge C$ for some constant C > 0 and every $z \in B(\mathbf{e},\varepsilon)$ where $B(\mathbf{e},\varepsilon)$ is the open ball in \mathbf{R}^n centered at \mathbf{e} with radius ε . For $w \in \mathbf{H} \cup \{0\}$, let $\Gamma_{\varepsilon}(w) = \{z \in \mathbf{H} \mid (z_n + w_n) > \varepsilon | z' - w' | \}$. Because f_{k+1} is a homogeneous polynomial of degree k+2, there exists $\epsilon_0 > 0$ such that

$$C^{-1}z_n^{k+2} \ge f_{k+1}(e)f_{k+1}(z) \ge Cz_n^{k+2}$$
 (2.5)

for every $z \in \Gamma_{\varepsilon_0}(0)$. Note that $z - \overline{w} \in \Gamma_{\varepsilon_0}(0)$ for $w \in \mathbf{H}$ and $z \in \Gamma_{\varepsilon_0}(w)$. Thus (2.5) implies that

$$f_{k+1}(e)D^{k+1}P_{z}(w) = \frac{f_{k+1}(e)f_{k+1}(z-\overline{w})}{|z-\overline{w}|^{n+2+2k}}$$

$$\geq C\frac{(z_{n}+w_{n})^{k+2}}{|z-\overline{w}|^{n+2+2k}}$$

$$\geq \frac{C}{(z_{n}+w_{n})^{n+k}},$$
(2.6)

for every $z \in \Gamma_{\varepsilon_0}(w)$. Then $R_{\alpha}(z, w)$ can be estimated as the following.

Lemma 2.1. Given $\alpha > -1$ and $w \in \mathbf{H}$, there exists a constant $C = C_{n,\alpha} > 0$ such that

$$R_{\alpha}(z, w) \ge \frac{C}{(z_n + w_n)^{n+\alpha}}$$

for every $z \in \Gamma_{\varepsilon_0}(w)$.

PROOF. Let $w \in \mathbf{H}$. Note that $\Gamma_{\varepsilon_0}(w) \subset \Gamma_{\varepsilon_0}(w + (0, t))$ for every t > 0. If α is not an integer, (2.2), (2.4) and (2.6) imply

 $R_{\alpha}(z,w)$

$$= \frac{2^{\alpha+1}}{\Gamma(\alpha+1)\Gamma(\lceil\alpha\rceil-\alpha)} \int_0^\infty t^{\lceil\alpha\rceil-\alpha-1} (-1)^{\lceil\alpha\rceil+1} D^{\lceil\alpha\rceil+1} P_z(w', w_n + t) dt$$

$$= \frac{n\sigma_n 2^{\alpha} \Gamma(n-1)}{\Gamma(\alpha+1)\Gamma(n+\lceil\alpha\rceil)\Gamma(\lceil\alpha\rceil-\alpha)} \int_0^\infty t^{\lceil\alpha\rceil-\alpha-1} f_{\lceil\alpha\rceil+1}(e) D^{\lceil\alpha\rceil+1} P_z(w', w_n + t) dt$$

$$\geq \frac{C_n 2^{\alpha}}{\Gamma(\alpha+1)\Gamma(n+\lceil\alpha\rceil)\Gamma(\lceil\alpha\rceil-\alpha)} \int_0^\infty \frac{t^{\lceil\alpha\rceil-\alpha-1}}{(z_n+w_n+t)^{n+\lceil\alpha\rceil}} dt$$

for every $z \in \Gamma_{\varepsilon_0}(w)$. Since

$$\int_0^\infty \frac{t^{\lceil \alpha \rceil - \alpha - 1}}{(z_n + w_n + t)^{n + \lceil \alpha \rceil}} dt = \frac{1}{(z_n + w_n)^{n + \alpha}} \int_0^1 s^{n + \alpha - 1} (1 - s)^{\lceil \alpha \rceil - \alpha - 1} ds$$
$$= \frac{\Gamma(n + \alpha)\Gamma(\lceil \alpha \rceil - \alpha)}{\Gamma(n + \lceil \alpha \rceil)} \frac{1}{(z_n + w_n)^{n + \alpha}},$$

we have

$$R_{\alpha}(z, w) \ge \frac{C_{n,\alpha}}{(z_n + w_n)^{n+\alpha}}$$

for every $z \in \Gamma_{\varepsilon_0}(w)$.

If α is an integer, (1.2), (2.4) and (2.6) give us that

$$R_{\alpha}(z, w) = \frac{C_n 2^{\alpha}}{\Gamma(\alpha + 1)\Gamma(n + \alpha)} f_{\alpha+1}(\mathbf{e}) D^{\alpha+1} P_z(w)$$

$$\geq \frac{C_{n,\alpha}}{(z_n + w_n)^{n+\alpha}}$$

for every $z \in \Gamma_{\varepsilon_0}(w)$. The proof is complete.

The following lemma is Proposition 3.1 in [1]. However we calculate the constant exactly to use it in this paper.

Lemma 2.2. Given a+b>-1 and b<0, there exists a constant $C=C_n>0$ such that

$$\int_{\boldsymbol{H}} \frac{w_n^{a+b}}{|z-\overline{w}|^{n+a}} dw = C \frac{\Gamma(\frac{a+1}{2})\Gamma(-b)\Gamma(a+b+1)}{\Gamma(a+1)\Gamma(\frac{n+a}{2})} z_n^b \tag{2.7}$$

for every $z \in \mathbf{H}$.

Proof. Integration in polar coordinates and change of variable yield

$$\int_{H} \frac{w_n^{a+b}}{|z - \overline{w}|^{n+a}} dw = \int_0^\infty \int_{R^{n-1}} \frac{w_n^{a+b}}{(|z' - w'|^2 + (z_n + w_n)^2)^{(n+a)/2}} dw' dw_n$$

$$= (n-1)\sigma_{n-1} \int_0^\infty \int_0^\infty \frac{r^{n-2}w_n^{a+b}}{(r^2 + (z_n + w_n)^2)^{(n+a)/2}} dr dw_n$$

$$= (n-1)\sigma_{n-1} \left(\int_0^\infty \frac{t^{a+b}}{(z_n+t)^{a+1}} dt \right) \left(\int_0^\infty \frac{r^{n-2}}{(r^2+1)^{(n+a)/2}} dr \right)$$

$$:= (n-1)\sigma_{n-1} I_1 \cdot I_2.$$

Since -b > 0 and a + b + 1 > 0, using change of variable again, we have

$$I_1 = z_n^b \int_0^1 s^{-b-1} (1-s)^{a+b} ds = \frac{\Gamma(-b)\Gamma(a+b+1)}{\Gamma(a+1)} z_n^b.$$

Similarly, we get

$$I_2 = \frac{1}{2} \int_0^1 s^{\frac{a-1}{2}} (1-s)^{\frac{n-3}{2}} ds = \frac{\Gamma(\frac{n-1}{2}) \Gamma(\frac{a+1}{2})}{2\Gamma(\frac{n+a}{2})}$$

because (a+1)/2 > 0. Combining these estimates, we obtain (2.7) as desired. \square

3. Main result.

Now we are ready to prove the main theorem.

THEOREM 3.1. For any $\alpha > -1$, the weighted harmonic Bergman projection has the following norm estimation:

$$\|\Pi_{\alpha}\| \approx \max\left\{\frac{1}{p-1}, p\right\},$$

where $\|\Pi_{\alpha}\|$ is the norm of Π_{α} on L^{p}_{α} for 1 .

PROOF. We first estimate the lower bound. For some $0 < c_1 < \varepsilon_0$ satisfying $1 - c_1 - c_1 \varepsilon_0 > 0$, let $f_0 = \chi_{B(\boldsymbol{e},c_1)}$. Note that

$$||f_0||_{L^p_\alpha}^p = V_\alpha(B(e, c_1)) \ge C_{n,\alpha} (1 + c_1)^{(n+\alpha)}.$$
 (3.1)

Take some constant ε_1 satisfying $\varepsilon_1 > \varepsilon_0/(1-c_1-c_1\varepsilon_0)$. Since

$$\frac{1+c_1\varepsilon_1}{\varepsilon_1(1-c_1)} < \frac{1}{\varepsilon_0}$$

and

$$\frac{|w'|}{c_1} < 1 < \frac{w_n}{1 - c_1}$$
 for $w \in B(e, c_1)$,

we see that for $z \in \Gamma_{\varepsilon_1}(\mathbf{e})$ and $w \in B(\mathbf{e}, c_1)$,

$$|z' - w'| < \frac{z_n + 1}{\varepsilon_1} + \frac{c_1}{1 - c_1} w_n$$

$$< \frac{z_n}{\varepsilon_1} + \frac{1}{\varepsilon_1} \frac{w_n}{1 - c_1} + \frac{c_1}{1 - c_1} w_n$$

$$= \frac{z_n}{\varepsilon_1} + \frac{1 + c_1 \varepsilon_1}{\varepsilon_1 (1 - c_1)} w_n$$

$$< \frac{z_n + w_n}{\varepsilon_0}.$$

Therefore, we obtain $\Gamma_{\varepsilon_1}(\mathbf{e}) \subset \Gamma_{\varepsilon_0}(w)$ for $w \in B(\mathbf{e}, c_1)$. Thus, applying Lemma 2.1, we have

$$\int_{B(\boldsymbol{e},c_1)} R_{\alpha}(z,w) \ dV_{\alpha}(w) \ge C_{n,\alpha} \int_{B(\boldsymbol{e},c_1)} \frac{dV_{\alpha}(w)}{(z_n + w_n)^{n+\alpha}}$$
(3.2)

for $z \in \Gamma_{\varepsilon_1}(e)$. Since $z_n + w_n \le 2(|z| + 1)$ for $w \in B(e, c_1)$, we have by (3.2)

$$\|\Pi_{\alpha} f_{0}\|_{L_{\alpha}^{p}}^{p} = \int_{\mathbf{H}} \left| \int_{B(\mathbf{e},c_{1})} R_{\alpha}(z,w) \, dV_{\alpha}(w) \right|^{p} dV_{\alpha}(z)$$

$$\geq C_{n,\alpha}^{p} \int_{\Gamma_{\varepsilon_{1}}(\mathbf{e})} \left(\int_{B(\mathbf{e},c_{1})} \frac{dV_{\alpha}(w)}{(z_{n}+w_{n})^{n+\alpha}} \right)^{p} dV_{\alpha}(z)$$

$$\geq C_{n,\alpha}^{p} V_{\alpha}(B(\mathbf{e},c_{1}))^{p} \int_{\Gamma_{\varepsilon_{1}}(\mathbf{e})} \frac{dV_{\alpha}(z)}{(1+|z|^{n+\alpha})^{p}}.$$
(3.3)

Using integration in polar coordinates, we get

$$\int_{\Gamma_{\varepsilon_{1}}(e)} \frac{dV_{\alpha}(z)}{(1+|z|^{n+\alpha})^{p}} \ge \int_{\Gamma_{\varepsilon_{1}}(0)\cap\{z\in H||z|=1\}} \zeta_{n}^{\alpha} d\sigma(\zeta) \int_{c_{1}}^{\infty} r^{n-1+\alpha} (1+r^{n+\alpha})^{-p} dr
= C_{n,\alpha} \frac{(1+c_{1}^{n+\alpha})^{1-p}}{(n+\alpha)(p-1)}.$$

Thus, by (3.3) and (3.1), we have

$$\|\Pi_{\alpha} f_0\|_{L^p_{\alpha}}^p \ge \frac{C_{n,\alpha}^p}{(n+\alpha)(p-1)} \|f_0\|_{L^p_{\alpha}}^p.$$

Note that for 1 ,

$$\left(\frac{1}{p-1}\right)^{\frac{1}{p}} = \left(\frac{1}{p-1}\right) \left(\frac{1}{p-1}\right)^{\frac{1}{p}-1} \ge \frac{C}{p-1}.$$

Consequently, we have

$$\sup_{\|f\|_{L^{p}_{\alpha}} = 1} \|\Pi_{\alpha} f\|_{L^{p}_{\alpha}} \ge \frac{\|\Pi_{\alpha} f_{0}\|_{L^{p}_{\alpha}}}{\|f_{0}\|_{L^{p}_{\alpha}}} \ge \frac{C_{n,\alpha}}{p-1} \quad \text{for} \quad 1 (3.4)$$

Also, by the duality and (3.4), we have

$$\sup_{\|f\|_{L^{p}_{\alpha}}=1} \|\Pi_{\alpha}f\|_{L^{p}_{\alpha}} \ge C_{n,\alpha}p \quad \text{for} \quad p > 2.$$
 (3.5)

In fact, with 1/p+1/q=1, the duality property of the weighted harmonic Bergman space(See [2]) and (3.4) imply

$$\sup_{\|f\|_{L^{p}_{\alpha}}=1} \|\Pi_{\alpha}f\|_{L^{p}_{\alpha}} \geq \sup_{\|f\|_{L^{p}_{\alpha}}=1} \left| \left\langle \Pi_{\alpha}f, \frac{f_{0}}{\|f_{0}\|_{L^{q}_{\alpha}}} \right\rangle \right|$$

$$= \sup_{\|f\|_{L^{p}_{\alpha}}=1} \left| \left\langle f, \Pi_{\alpha} \frac{f_{0}}{\|f_{0}\|_{L^{q}_{\alpha}}} \right\rangle \right|$$

$$= \frac{\|\Pi_{\alpha}f_{0}\|_{L^{q}_{\alpha}}}{\|f_{0}\|_{L^{q}_{\alpha}}}$$

$$\geq \frac{C_{n,\alpha}}{q-1}$$

$$\geq C_{n,\alpha} p$$

for p > 2. Therefore, we have from (3.4) and (3.5),

$$\|\Pi_{\alpha}\| \ge C_{n,\alpha} \max \left\{ \frac{1}{p-1}, p \right\}.$$

Now, let's estimate upper bound. (1.3) and Hölder's inequality imply

$$\begin{aligned} |\Pi_{\alpha}f(z)|^{p} &\leq C_{n,\alpha}^{p} \left(\int_{\boldsymbol{H}} \frac{|f(w)|w_{n}^{\alpha}}{|z - \overline{w}|^{n+\alpha}} \ dw \right)^{p} \\ &\leq C_{n,\alpha}^{p} \left(\int_{\boldsymbol{H}} \frac{w_{n}^{\alpha - \frac{\alpha+1}{p}}}{|z - \overline{w}|^{n+\alpha}} \ dw \right)^{p/q} \int_{\boldsymbol{H}} \frac{|f(w)|^{p} w_{n}^{\alpha + \frac{\alpha+1}{q}}}{|z - \overline{w}|^{n+\alpha}} \ dw \\ &= C_{n,\alpha}^{p} \left(C_{n,\alpha} \Gamma\left(\frac{\alpha+1}{p}\right) \Gamma\left(\frac{\alpha+1}{q}\right) \right)^{p/q} z_{n}^{-\frac{\alpha+1}{q}} \int_{\boldsymbol{H}} \frac{|f(w)|^{p} w_{n}^{\alpha + \frac{\alpha+1}{q}}}{|z - \overline{w}|^{n+\alpha}} \ dw \end{aligned}$$

where the last equality holds by Lemma 2.2. Thus by Fubini's theorem and Lemma 2.2, we have

$$\begin{split} &\|\Pi_{\alpha}f\|_{L_{\alpha}^{p}}^{p} \\ &\leq C_{n,\alpha}^{p} \left(C_{n,\alpha}\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)\right)^{p/q} \int_{\boldsymbol{H}} |f(w)|^{p} w_{n}^{\alpha+\frac{\alpha+1}{q}} \int_{\boldsymbol{H}} \frac{z_{n}^{\alpha-\frac{\alpha+1}{q}} dz}{|z-\overline{w}|^{n+\alpha}} dw \\ &= C_{n,\alpha}^{p} \left(C_{n,\alpha}\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)\right)^{p/q+1} \int_{\boldsymbol{H}} |f(w)|^{p} dV_{\alpha}(w). \end{split}$$

So we obtain

$$\|\Pi_{\alpha}f\|_{L^{p}_{\alpha}} \leq C_{n,\alpha}\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)\|f\|_{L^{p}_{\alpha}}.$$
(3.6)

In case $p \to \infty$, we know $\Gamma\left(\frac{\alpha+1}{q}\right) \approx C_{\alpha}$ and $\Gamma\left(\frac{\alpha+1}{p}\right) \approx p$. Also, if $p \to 1$, then $\Gamma\left(\frac{\alpha+1}{p}\right) \approx C_{\alpha}$ and $\Gamma\left(\frac{\alpha+1}{q}\right) \approx \frac{1}{p-1}$. Thus (3.6) means that

$$\|\Pi_{\alpha}\| \le C_{n,\alpha} \max\left\{\frac{1}{p-1}, p\right\}$$

as desired. The proof is complete.

When p is fixed, the same argument of the proof of Theorem 3.1 gives us the following.

Theorem 3.2. Let $1 . Then there exists a constant <math>C = C_{n,p} > 0$ such that

$$\|\Pi_{\alpha}\| \le \frac{C}{\alpha + 1}$$

as $\alpha \to -1^+$.

PROOF. Note that $\|\Pi_{\alpha}\| \geq 1$. If α is an integer, we have form (1.2)

$$|R_{\alpha}(z,w)| \le \frac{C_n 2^{\alpha} \Gamma(n+\alpha)}{\Gamma(\alpha+1)} \frac{1}{|z-\overline{w}|^{n+\alpha}}.$$

If α is not an integer, we have from (2.2),

$$\begin{split} |R_{\alpha}(z,w)| &\leq \frac{2^{\alpha+1}}{\Gamma(\alpha+1)\Gamma(\lceil\alpha\rceil-\alpha)} \int_{0}^{\infty} t^{\lceil\alpha\rceil-\alpha-1} |D^{\lceil\alpha\rceil+1}P_{z}(w',w_{n}+t)| \ dt \\ &\leq \frac{C_{n}2^{\alpha}\Gamma(n+\lceil\alpha\rceil)}{\Gamma(\alpha+1)\Gamma(\lceil\alpha\rceil-\alpha)} \int_{0}^{\infty} \frac{t^{\lceil\alpha\rceil-\alpha-1}}{(|z-\overline{w}|+t)^{n+\lceil\alpha\rceil}} \ dt \\ &= \frac{C_{n}2^{\alpha}\Gamma(n+\lceil\alpha\rceil)}{\Gamma(\alpha+1)\Gamma(\lceil\alpha\rceil-\alpha)} \frac{1}{|z-\overline{w}|^{n+\alpha}} \int_{0}^{\infty} \frac{t^{\lceil\alpha\rceil-\alpha-1}}{(1+t)^{n+\lceil\alpha\rceil}} \ dt \\ &= \frac{C_{n}2^{\alpha}\Gamma(n+\alpha)}{\Gamma(\alpha+1)} \frac{1}{|z-\overline{w}|^{n+\alpha}}. \end{split}$$

Thus we have

$$|R_{\alpha}(z,w)| \le \frac{C_n 2^{\alpha} \Gamma(n+\alpha)}{\Gamma(\alpha+1)} \frac{1}{|z-\overline{w}|^{n+\alpha}}$$
(3.7)

for $\alpha > -1$. Then Hölder's inequality give us that

$$\begin{aligned} |\Pi_{\alpha}f(z)|^{p} &\leq \left(\int_{\boldsymbol{H}} |f(w)||R_{\alpha}(z,w)| \ dV_{\alpha}(w)\right)^{p} \\ &\leq \left(\frac{C_{n}2^{\alpha}\Gamma(n+\alpha)}{\Gamma(\alpha+1)}\right)^{p} \left(\int_{\boldsymbol{H}} \frac{w_{n}^{\alpha-\frac{\alpha+1}{p}}}{|z-\overline{w}|^{n+\alpha}} \ dw\right)^{p/q} \int_{\boldsymbol{H}} \frac{|f(w)|^{p} w_{n}^{\alpha+\frac{\alpha+1}{q}}}{|z-\overline{w}|^{n+\alpha}} \ dw \\ &= \left(\frac{C_{n}2^{\alpha}\Gamma(n+\alpha)}{\Gamma(\alpha+1)}\right)^{p} \left(\frac{C_{n}\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)}{\Gamma(\alpha+1)\Gamma\left(\frac{n+\alpha}{2}\right)}\right)^{p/q} \\ &\times z_{n}^{-\frac{\alpha+1}{q}} \int_{\boldsymbol{H}} \frac{|f(w)|^{p} w_{n}^{\alpha+\frac{\alpha+1}{q}}}{|z-\overline{w}|^{n+\alpha}} \ dw \end{aligned}$$

where the last equality holds by Lemma 2.2. So we have

$$\begin{split} \|\Pi_{\alpha}f\|_{L_{\alpha}^{p}}^{p} &\leq \left(\frac{C_{n}2^{\alpha}\Gamma(n+\alpha)}{\Gamma(\alpha+1)}\right)^{p} \left(\frac{C_{n}\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)}{\Gamma(\alpha+1)\Gamma\left(\frac{n+\alpha}{2}\right)}\right)^{p/q} \\ &\times \int_{\boldsymbol{H}} |f(w)|^{p} w_{n}^{\alpha+\frac{\alpha+1}{q}} \int_{\boldsymbol{H}} \frac{z_{n}^{\alpha-\frac{\alpha+1}{q}}}{|z-\overline{w}|^{n+\alpha}} \, dz \, dw \\ &= \left(\frac{C_{n}2^{\alpha}\Gamma(n+\alpha)}{\Gamma(\alpha+1)}\right)^{p} \left(\frac{C_{n}\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)}{\Gamma(\alpha+1)\Gamma\left(\frac{n+\alpha}{2}\right)}\right)^{p/q+1} \|f\|_{L_{\alpha}^{p}}^{p}. \end{split}$$

Consequently,

$$\|\Pi_{\alpha}f\|_{L_{\alpha}^{p}} \leq \frac{C_{n}2^{\alpha}\Gamma(n+\alpha)\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\frac{\alpha+1}{p}\right)\Gamma\left(\frac{\alpha+1}{q}\right)}{\Gamma(\alpha+1)^{2}\Gamma\left(\frac{n+\alpha}{2}\right)} \|f\|_{L_{\alpha}^{p}}$$

$$\leq \frac{C_{n,p}}{\alpha+1} \|f\|_{L_{\alpha}^{p}}$$

as $\alpha \to -1^+$. The proof is complete.

References

- H. Koo, K. Nam and H. Yi, Weighted harmonic Bergman kernel on half-spaces, J. Math. Soc. Japan, 58 (2006), 351–362.
- [2] H. Koo, K. Nam and H. Yi, Weighted harmonic Bergman functions on half-spaces, J. Korean Math. Soc., 42 (2005), 975–1002.
- [3] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.
- [4] K. Zhu, A sharp norm estimate of the Bergman projection on L^p spaces, Contemporary Mathematics, 404 (2006), 199–205.

Hyungwoon Koo

Department of Mathematics Korea University Seoul 136-701, Korea

E-mail: koohw@math.korea.ac.kr

Kyesook Nam

Department of Mathematics Hanshin University Gyeonggi-do 447-791, Korea E-mail: ksnam@hanshin.ac.kr

HeungSu Yi

Department of Mathematics Kwangwoon University Seoul 139–701, Korea E-mail: hsyi@kwangwoon.ac.kr