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Abstract. We consider Schrödinger equations with variable coefficients, which
are long-range type perturbations of the flat Laplacian on Rn. We characterize the
wave front set of solutions to Schrödinger equations in terms of the initial state. Then
it is shown that the singularities propagates along the classical flow, and results are
formulated in a semiclassical setting. Methods analogous to the long-range scattering
theory, in particular a modified free propagator, are employed.

1. Introduction.

Let H be a Schrödinger operator with variable coefficients:

H = −1
2

n∑

j,k=1

∂xj ajk(x)∂xk
+ V (x) on L2(Rn),

where n ≥ 1 is the space dimension. Throughout this paper, we always assume
ajk(x) and V (x) are real-valued C∞-class functions. Moreover, we assume:

Assumption A. For each x ∈ Rn, (ajk(x))j,k is a positive symmetric ma-
trix. There is µ > 0 such that for any multi-index α ∈ Zn

+, there is Cα such
that

∣∣∂α
x

(
ajk(x)− δjk

)∣∣ ≤ Cα〈x〉−µ−|α|, x ∈ Rn,
∣∣∂α

x V (x)
∣∣ ≤ Cα〈x〉2−µ−|α|, x ∈ Rn.

Then it is well-known that H is essentially self-adjoint on C∞0 (Rn), and we
denote the unique self-adjoint extension by the same symbol H. We let u(t) =
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e−itHu0 be the solution to the time-dependent Schrödinger equation:

i
∂

∂t
u(t) = Hu(t), u(0) = u0, u0 ∈ L2(Rn).

We study the microlocal singularity of u(t). In particular, we characterize the wave
front set of u(t) in the nontrapping region, in terms of u0. In order to describe our
main result, we introduce several notations of the classical flow corresponding to
H. Let k(x, ξ) be the classical kinetic energy, and let p(x, ξ) be the full Hamiltonian
(modulo lower order terms):

k(x, ξ) =
1
2

n∑

j,k=1

ajk(x)ξjξk, p(x, ξ) = k(x, ξ) + V (x), x, ξ ∈ Rn.

Let exp tHq denote the Hamilton flow generated by a symbol q, i.e., if (x(t), ξ(t)) =
exp tHq(x0, ξ0), then (x(t), ξ(t)) is the solution to the Hamilton equation:

d

dx
x(t) =

∂q

∂ξ
(x(t), ξ(t)),

d

dx
ξ(t) = − ∂q

∂x
(x(t), ξ(t)), t ∈ R

with x(0) = x0, ξ(0) = ξ0.

Definition 1. For (x0, ξ0) ∈ Rn × Rn, we denote (ỹ(t), η̃(t)) =
exp tHk(x0, ξ0). (x0, ξ0) is called backward nontrapping if |ỹ(t)| → ∞ as t → −∞.

For a ∈ C∞(R2n), we denote the Weyl quantization by a(x, Dx):

a(x,Dx)u(x) = (2π)−n

∫
ei(x−y)·ξa

(
x + y

2
, ξ

)
u(y) dy dξ,

where u ∈ S (Rn) (see, e.g., Hörmander [10]). We recall (x0, ξ0) /∈ WF (u), the
wave front set of u, if and only if there exists a ∈ C∞0 (R2n) such that a(x0, ξ0) 6= 0
and

‖ah(x,Dx)u‖ = O(h∞) as h → 0,

where ah(x, ξ) = a(x, hξ) (see, e.g., Martinez [14], Dimassi and Sjöstand [5]).

Theorem 1.1. Suppose H satisfies Assumption A, and let u(t) = e−itHu0,
u0 ∈ L2(Rn). Suppose, moreover, (x0, ξ0) is backward nontrapping, and let t0 > 0.
Then (x0, ξ0) /∈ WF (u(t0)) if and only if there exists a ∈ C∞0 (R2n) such that
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a(x0, ξ0) 6= 0 and

‖(ah ◦ exp t0Hp)(x,Dx)u0‖ = O(h∞) as h → 0.

The main idea of the proof is very simple. Let a ∈ C∞0 (R2n) such that
a(x0, ξ0) 6= 0 and supported in a small neighborhood of (x0, ξ0). We note

‖ah(x,Dx)u(t0)‖ =
∥∥eit0Hah(x, Dx)e−it0Hu0

∥∥.

If we formally apply the semiclassical Egorov theorem, we learn that the principal
symbol of eit0Hah(x,Dx)e−it0Hu0 is given by ah ◦ exp t0Hp, and we can obtain
an asymptotic expansion of the symbol, where all the terms are supported in
exp(−t0Hp)(supp ah). If this argument is justified, Theorem 1 follows immedi-
ately. However, in order to justify this argument in this framework, we need to
find a suitable symbol class, which might be time-dependent. Instead of introduc-
ing time-dependent symbol class, we employ a scattering theoretical technique,
which is an extension of the method used in [17].

Let W (t, ξ) be a solution to the momentum space Hamilton-Jacobi equation:
∂W
∂t (t, ξ) = p(∂W

∂ξ (t, ξ), ξ), which is constructed in Section 2. We study

Ω(t) := eiW (t,Dx)e−itH

instead of e−itH itself. Let

(y(t; x0, ξ0), η(t; x0, ξ0)) = exp tHp(x0, ξ0).

If (x0, ξ0) is backward nontrapping, then it is shown in Section 2 that

ξ−(−t0; x0, ξ0) := lim
λ→+∞

λ−1η(−t0; x0, λξ0),

z−(−t0; x0, ξ0) := lim
λ→+∞

(
y(−t0;x0, λξ0)− ∂W

∂ξ
(−t0, η(−t0; x0, λξ0))

)

exist. We will see that actually ξ− and z− are independent of t0. We will show:

Theorem 1.2. Suppose H satisfies Assumption A, and let u(t), (x0, ξ0),
t0 > 0 be as in Theorem 1.1. Then (x0, ξ0) ∈ WF (u(t0)) if and only if

(z−(−t0; x0, ξ0), ξ−(−t0;x0, ξ0)) ∈ WF
(
eiW (−t0,Dx)u0

)
.
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Since the symbol of

eiW (−t0,Dx)
(
ah ◦ exp t0Hp

)
(x, Dx)e−iW (−t0,Dx)

is essentially supported in a small neighborhood of (z−, ξ−), Theorem 1.1 follows
from Theorem 1.2 (see Subsection 3.4 for the detail). Theorem 1.2 is proved using
an Egorov-type theorem for Ω(t)ah(x,Dx)Ω(t)−1. We note, at least formally,

d

dt
Ω(t) = i

∂W

∂t
(t,Dx)Ω(t)− ieiW (t,Dx)He−itH

= −i

{
eiW (t,Dx)He−iW (t,Dx) − ∂W

∂t
(t,Dx)

}
Ω(t)

=: −iL(t)Ω(t).

Namely, Ω(t) is the evolution operator generated by the time-dependent self-
adjoint operator L(t). The principal symbol of L(t) is given by

p

(
x +

∂W

∂ξ
(t, ξ), ξ

)
− ∂W

∂t
(t, ξ) = p

(
x +

∂W

∂ξ
(t, ξ), ξ

)
− p

(
∂W

∂ξ
(t, ξ), ξ

)

by virtue of the Hamilton-Jacobi equation. This symbol is O(〈ξ〉1−µ) if t 6= 0,
and hence the speed of the propagation of singularity for L(t) is 0 away from
t = 0. However, at t = 0, L(0) has infinite propagation speed, and we observe a
jump of the singularity. This propagation of singularity is described by the flow:
t 7→ (z−(t; x0, ξ0), ξ−(t; x0, ξ0)), and we can conclude Theorem 1.2.

The study of microlocal singularities of solutions to Schrödinger equation goes
back at least to a work by Boutet de Monvel [2] (see also Lascar [13], Yamazaki
[25], Zelditch [26]). Investigation to characterize the wave front set of u(t) in terms
of the initial state u0 for variable coefficients Schrödinger equation was started by
a work of Craig, Kappeler and Strauss [4]. They showed that the solution is mi-
crolocally smooth along a nontrapping geodesic if the initial state decays rapidly
in a conic neighborhood of −ξ = − limt→−∞ ξ(t). This property is called the mi-
crolocal smoothing property, and it was generalized and refined by Wunsch [23],
Nakamura [16] and Ito [11]. The microlocal smoothing property in the analytic
category was studied by Robbiano and Zuily [19], [20] and Martinez, Nakamura
and Sordoni [15]. Results in this paper may be considered as refinements of these
works, and the microlocal smoothing property (in the C∞-category) follows imme-
diately from Theorem 1.1. Similar characterization of wave front set for solutions
to Schrödinger equation is recently obtained by Hassel and Wunsch [8]. They con-
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sidered the problem in the framework of scattering metric, and the assumptions
and the proof are quite different from ours. In a previous paper, Nakamura [17]
considered the case of short-range perturbations, i.e., µ > 1, and the results in
this paper are its generalizations.

On the other hand, the singularity of solutions to perturbed harmonic oscil-
lator Schrödinger equation was studied by Zelditch [26], Yajima [24], Kapitanski,
Rodnianskiand Yajima [12] and Doi [6], [7]. The idea of these papers, especially
those by Doi, is closely related to our proof.

Recently, Strichartz estimates for variable coefficient Schrödinger operator
were studied by several authors, e.g., Staffilani and Tataru [22], Robbiano and
Zuily [21], Burq, Gérard and Tzvetkov [3], Bouclet and Tzvetkov [1]. The
Strichartz estimate is another expression of the smoothing property of Schrödinger
equations, and there should be implicit relationship with our results. In partic-
ular, Bouclet and Tzvetkov used the Isozaki-Kitada modifier to treat long-range
perturbations, and it is analogous to our modified free propagator, though the
formulation and the construction are completely different.

The paper is organized as follows: In Section 2, we consider the classical
motions generated by the kinetic energy and the total Hamiltonian. In particular,
we construct a solution to the momentum space Hamilton-Jacobi equation and
show the existence of the modified classical wave operator. We prove Theorems 1.2
and then Theorem 1.1 in Section 3.

Throughout this paper, we use the following notation: S(m, g) denotes the
Hörmander symbol class (cf. Hörmander [10], Chapter 18). For a compact set K ⊂
Rn, SK(m, g) denotes the same symbol class restricted to functions on K ×Rn.
For a symbol a(x, ξ), a(x,Dx) denotes the Weyl quantization of a.

Acknowledgments. The author would like to thank the referee for point-
ing out numerous errors in the first version, and for providing valuable suggestions.
He also thanks Kenji Yajima, André Martinez, Shin-ichi Doi and Ken-ichi Ito for
valuable discussions and comments.

2. Hamilton flows and solution to the Hamilton-Jacobi equation.

2.1. Properties of nontrapping geodesic flow.
Here we consider the Hamilton flow for the kinetic energy: k(x, ξ) =

1
2

∑
ajk(x)ξjξk. We always suppose Assumption A is satisfied.

Proposition 2.1. Let (x0, ξ0) ∈ R2n and suppose (x0, ξ0) is backward non-
trapping. Then there exists C > 0 such that

|ỹ(t)| ≥ C−1|t| − C, t ≤ 0,
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where

(ỹ(t), η̃(t)) = (ỹ(t;x0, ξ0), η̃(t; x0, ξ0)) = exp tHk(x0, ξ0).

Moreover, C may be taken locally uniformly with respect to (x0, ξ0)

Proof. At first we recall the conservation of the energy:

k(ỹ(t), η̃(t)) =
1
2

∑

j,k

ajk(ỹ(t))η̃j(t)η̃k(t) = k(x0, ξ0).

By the uniform ellipticity of k(x, ξ), we learn that there exists C1 > 0 such that

C−1
1 ≤ |η̃(t)| ≤ C1, t ∈ R.

We compute

d2

dt2
|ỹ(t)|2 = 2

d

dt

(
ỹ(t) · dỹ

dt
(t)

)
= 2

d

dt

(∑

j,k

ajk(ỹ(t))ỹj(t)η̃k(t)
)

= 4k(ỹ(t), η̃(t)) + Ũ(ỹ(t), η̃(t)),

where

Ũ(x, ξ) = 2
∑

j,k,`

ajk(x)
(
aj`(x)− δj`

)
ξ`ξk

−
∑

j,k,`,m

ajk(x)
∂a`m

∂xk
(x)xjξ`ξm + 2

∑

j,k,`,m

∂ajk

∂x`
(x)a`m(x)xjξkξm.

By Assumption A, it is easy to see

|Ũ(x, ξ)| ≤ C〈x〉−µ|ξ|2,

and this implies

d2

dt2
|ỹ(t)|2 ≥ 4k(x0, ξ0)− C〈ỹ(t)〉−µ|η̃(t)|2.

We can choose R > 0 so large that
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4k(x0, ξ0)− CR−µC2
1 ≥ ε > 0.

Since (x0, ξ0) is backward nontrapping, there exists t0 < 0 such that

|ỹ(t0)| > R,
d

dt
|ỹ(t0)| < 0,

and hence

d2

dt2
|ỹ(t)|2 ≥ ε, t ≤ t0.

Then by the convexity of |ỹ(t)|2, we conclude

|ỹ(t)|2 ≥ R2 +
ε(t0 − t)2

2
, t ≤ t0,

and the assertion follows immediately. Since ỹ(t; x0, ξ0) depends continuously on
(t; x0, ξ0), the constants C may be taken locally uniformly. ¤

Proposition 2.2. Suppose (x0, ξ0) is backward nontrapping. Then

ξ− := lim
t→−∞

η̃(t; x0, ξ0)

exists.

Proof. By Proposition 2.1 and Assumption A, we learn

d

dt
η̃j(t) = −1

2

∑

k,`

(∂xj ak`)(ỹ(t))η̃k(t)η̃`(t)

= O(|ỹ(t)|−1−µ) = O(〈t〉−1−µ)

as t → −∞. Hence

ξ− = lim
t→−∞

η̃(t) = ξ0 −
∫ 0

−∞

d

dt
η̃(t)dt

exists. ¤

By the above proof, we also observe
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|ξ− − η̃(t)| ≤ C〈t〉−µ, t → −∞,

and C can be taken locally uniformly in (x0, ξ0). Let 0 < δ1 < 1, R > 0, and we
set

ΩR,δ1 =
{

(x, ξ) ∈ R2n

∣∣∣∣ R− 1 < |x| < R + 1,
1
2

< |ξ| < 2, x · ξ ≤ −δ1|x| |ξ|
}

be a neighborhood of {(x,−x/|x|) ∈ R2n | |x| = R}. We fix δ1 > 0. If R is
sufficiently large, we have

d

dt
|ỹ(t)|2

∣∣∣
t=0

= 2
∑

j,k

ajk(x)xjξk

= 2x · ξ + 2
∑

j,k

(ajk(x)− δjk)xjξk

≤ −2δ1|x| |ξ|+ δ1|x| |ξ| = −δ1|x| |ξ|

for (x, ξ) ∈ ΩR,δ1 where ỹ(t) = ỹ(t;x, ξ). Hence, in particular, (x, ξ) is backward
nontrapping and

|ỹ(t)|2 ≥ |x|2 +
δ1

4
|x| |t|+ ε|t|2 for t ≤ 0.

Thus we have proved the following assertion:

Proposition 2.3. Let 0 < δ1 < 1. There exist R0 > 0 and δ2 > 0 such that
if R ≥ R0 then

|ỹ(t; x, ξ)| ≥ |x|+ δ2|t|, t ≤ 0, (x, ξ) ∈ ΩR,δ1 .

We note that since k(x, ξ) is homogeneous in ξ, the flow also has the following
homogeneity: for λ > 0,

ỹ(t; x, λξ) = ỹ(λt; x, ξ),

η̃(t; x, λξ) = λη̃(λt;x, ξ).

Thus we learn the following property concerning the high energy asymptotics of
the geodesic flow:
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Proposition 2.4.

(i) Suppose (x0, ξ0) is backward nontrapping. Then for any t < 0, λ > 0,

|ỹ(t;x0, λξ0)| ≥ C−1λ|t| − C,

and

ξ−(x0, ξ0) = lim
λ→+∞

λ−1η̃(t; x0, λξ0)

exists. ξ− is independent of t < 0 which appears in the previous formula.
(ii) Let 0 < δ1 < 1. Then there exist R0 > 0 and δ2 > 0 such that if R ≥ R0

then

|ỹ(t;x, ξ)| ≥ |x|+ δ2|t| |ξ|

for t ≤ 0 and

(x, ξ) ∈ {
(x, ξ) ∈ R2n

∣∣ R− 1 < |x| < R + 1, x · ξ ≤ −δ1|x| |ξ|
}
.

In particular,

ξ−(x, ξ) = lim
λ→+∞

λ−1η̃(t;x, λξ), (x, ξ) ∈ ΩR,δ1 ,

converges uniformly in ΩR,δ1 .

2.2. High energy asymptotics of the Hamilton flow.
Now we consider the Hamilton flow:

(y(t; x, ξ), η(t; x, ξ)) = exp tHp(x, ξ).

We recall (y(t), η(t)) satisfies the Hamilton equation:

d

dt
yj(t) =

n∑

k=1

ajk(y(t)) ηk(t),

d

dt
ηj(t) = −1

2

n∑

j,k=1

∂ak`

∂xj
(y(t)) ηk(t) η`(t)− ∂V

∂xj
(y(t)).

At first we prepare an a priori estimate:
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Proposition 2.5. Let T > 0. Then there exists C > 0 such that

|y(t; x, ξ)|+ |η(t;x, ξ)| ≤ C(〈x〉+ 〈ξ〉), −T ≤ t ≤ T.

In particular, if |x| ≤ γ|ξ| with some γ > 0, then

|y(t; x, ξ)| ≤ C ′〈ξ〉, |η(t; x, ξ)| ≤ C ′〈ξ〉

for −T ≤ t ≤ T , with C ′ > 0.

Proof. We note

p(x, ξ) = k(x, ξ) + V (x) ≤ c1(〈x〉2 + 〈ξ〉2)

with some c1 > 0. Then by the conservation of energy, we learn

|η(t; x, ξ)| ≤ c2

√
k(y, η) = c2

√
p(y, η)− V (y) ≤ c3(〈ξ〉+ 〈y〉).

Hence we have
∣∣∣∣
d

dt
y(t; x, ξ)

∣∣∣∣ ≤ c3(〈ξ〉+ 〈y〉).

By using the Duhamel formula, we obtain

|y(t)| ≤ ec3t|x|+
∫ t

0

ec3(t−s)c3〈ξ〉ds ≤ c4(〈x〉+ 〈ξ〉)

if 0 ≤ t ≤ T . Then we also have

|η(t)| ≤ c3(〈ξ〉+ 〈y(t)〉) ≤ c5(〈x〉+ 〈ξ〉).

The case −T ≤ t ≤ 0 is similar, and we omit the detail. ¤

If we denote

yλ(t; x, ξ) = y

(
t

λ
;x, λξ

)
,

ηλ(t; x, ξ) =
1
λ

η

(
t

λ
; x, λξ

)
,
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for λ > 0, then (yλ(t), ηλ(t)) satisfies

d

dt
yλ

j (t) =
∑

k

ajk(yλ) ηλ
k ,

d

dt
ηλ

j (t) = −1
2

∑

k,`

∂ak`

∂xj
(yλ) ηλ

k ηλ
` −

1
λ2

∂V

∂xj
(yλ),

with the initial condition: yλ(0) = x, ηλ(0) = ξ. By the continuity of the solutions
to ODE’s in the coefficients, we learn

yλ(t) → ỹ(t), ηλ(t) → η̃(t) as λ → +∞,

locally uniformly in t ∈ R. In particular, if (x, ξ) is nontrapping, then for any
R > 0, |yλ(t)| > R for t ¿ 0 and λ À 0. In fact, we have the following stronger
assertion:

Proposition 2.6. Suppose (x, ξ) is backward nontrapping, and let t0 < 0.
Then there exist C > 0 and λ0 > 0 such that

|yλ(t)| ≥ C−1|t| − C, for λt0 ≤ t ≤ 0, λ ≥ λ0,

where yλ(t) = yλ(t; x, ξ). Moreover, C can be taken locally uniformly with respect
to (x, ξ).

Proof. The proof is analogous to that of Proposition 2.1. By Proposi-
tion 2.5, we have

|yλ(t)| ≤ α λ|ξ| for λt0 ≤ t ≤ 0,

if λ is sufficiently large (so that |x| ≤ β λ|ξ|). As in the proof of Proposition 2.1,
we have

d2

dt2
|yλ(t)|2 = 4pλ(yλ(t), ηλ(t)) + U(yλ(t), ηλ(t)),

where

pλ(x, ξ) =
1
2

n∑

j,k=1

ajk(x) ξj ξk +
1
λ2

V (x),
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U(x, ξ) = Ũ(x, ξ)− 4
λ2

V (x)− 2
λ2

∑

j,k

ajk(x)xj
∂V

∂xk
(x).

These imply

d2

dt2
|yλ(t)|2 ≥ 4k(x, ξ)− Cλ−µ − C〈yλ(t)〉−µ.

Then, by noting the above remark that yλ(t) → ỹ(t) as λ → +∞, the same
argument as in the proof of Proposition 2.1 applies, and we conclude the assertion.

¤

Corollary 2.7. Let (x, ξ), t0, C and λ0 be as in Proposition 2.6. Then

|y(t; x, λξ)| ≥ C−1 λ|t| − C for t0 ≤ t ≤ 0, λ ≥ λ0.

As well as Proposition 2.4, we also have the following proposition:

Proposition 2.8. Let 0 < δ1 < 1 and t0 < 0. Then there exist R0 > 0,
δ2 > 0 and λ0 > 0 such that if R ≥ R0 then

|y(t;x, ξ)| ≥ |x|+ δ2 |t| |ξ|, t0 ≤ t ≤ 0,

for (x, ξ) ∈ {(x, ξ) | R− 1 < |x| < R + 1, |ξ| ≥ λ0R, x · ξ ≤ −δ1|x| |ξ|}.

Proposition 2.9. Suppose (x, ξ) is backward nontrapping. Then for any
t0 < 0, there exists C > 0 such that

|η(t;x, λξ)− η̃(t;x, λξ)| ≤ Cλ1−µ|t|2−µ,

|y(t; x, λξ)− ỹ(t;x, λξ)| ≤ Cλ1−µ|t|3−µ

for t ∈ [t0,−1/λ] and λ > 1.

Proof. It suffices to show the equivalent assertion:

∣∣ηλ(t; x, ξ)− η̃(t; x, ξ)
∣∣ ≤ Cλ−2|t|2−µ,

∣∣yλ(t; x, ξ)− ỹ(t; x, ξ)
∣∣ ≤ Cλ−2|t|3−µ

for t ∈ [λt0,−1]. By the Hamilton equation, we have
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d

dt

(
ηλ

j (t)− η̃j

)
= −1

2

∑

k,`

(
∂ak`

∂xj
(yλ) ηλ

k ηλ
` −

∂ak`

∂xj
(ỹ) η̃k η̃`

)
− 1

λ2

∂V

∂xj
(yλ),

d

dt

(
yλ

j (t)− ỹj(t)
)

=
∑

k

(
ajk(yλ) ηλ

k − ajk(ỹ) η̃k

)
.

These imply

∣∣∣∣
d

dt

(
ηλ − η̃

)∣∣∣∣ ≤ c1

(|t|−1−µ|ηλ − η̃|+ |t|−2−µ|yλ − ỹ|+ λ−2|t|1−µ
)
,

∣∣∣∣
d

dt

(
yλ − ỹ

)∣∣∣∣ ≤ c1

∣∣ηλ − η̃
∣∣ + c1|t|−1−µ

∣∣yλ − ỹ
∣∣,

for t ≤ −1 with some c1 > 0 (cf. Lemma A.1 in Appendix). If t ≤ −T < 0, we
have

∣∣∣∣
d

dt

(
ηλ − η̃

)∣∣∣∣ ≤ c1

(
T−µ|t|−1|ηλ − η̃|+ T−µ|t|−2|yλ − ỹ|+ λ−2|t|1−µ

)
,

∣∣∣∣
d

dt

(
yλ − ỹ

)∣∣∣∣ ≤ c1

∣∣ηλ − η̃
∣∣ + c1T

−µ|t|−1
∣∣yλ − ỹ

∣∣.

Thus, for t < −T , |ηλ − η̃| and |yλ − ỹ| are majorized by a solution to

−Z ′ ≥ c1

(
T−µ|t|−1Z + T−µ|t|−2Y + λ−2|t|1−µ

)
,

−Y ′ ≥ Z + c1T
−µ|t|−1Y

with

Z(−T ) ≥
∣∣ηλ(−T )− η̃(−T )

∣∣, Y (−T ) ≥
∣∣yλ(−T )− ỹ(−T )

∣∣.

If we set

Y (t) = c2λ
−2|t|3−µ, Z(t) = c3λ

−2|t|2−µ,

then the differential inequalities are satisfied if

c3(2− µ) ≥ c1

(
c3T

−µ + c2T
−µ + 1

)
;

c2(3− µ) ≥ c1c3 + c1c2T
−µ.
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In other words, if

c3((2− µ)− c1T
−µ) ≥ c1c2T

−µ + c1;

c2((3− µ)− c1T
−µ) ≥ c1c3.

We choose T so large that

((2− µ)− c1T
−µ)−1 × c2

1T
−µ((3− µ)− c1T

−µ)−1 < 1,

and set c3 = ((3−µ)−c1T
−µ)c−1

1 c2. If c2 is sufficiently large, the above inequalities
are satisfied.

Since |yλ(−T )− ỹ(−T )|, |ηλ(−T )− η̃(−T )| = O(λ−2) as λ → +∞, the initial
condition is also satisfied if c2 is taken sufficiently large. Thus we conclude the
assertion for t ∈ [λt0,−T ]. The estimate for t ∈ [−T,−1] is obvious. ¤

Proposition 2.9 together with Proposition 2.2 implies, in particular,

lim
λ→+∞

λ−1η(t; x, λξ) = lim
λ→+∞

λ−1η̃(t; x, λξ) = ξ−(x, ξ).

2.3. Construction of a solution to the Hamilton-Jacobi equation.
In order to construct a solution to the momentum space Hamilton-Jacobi

equation, we prepare one more lemma about the classical flow:

Proposition 2.10. Let δ1 > 0 and t0 < 0. There exist R0 > 0, c0 > 0 and
C > 0 such that

∣∣∣∣
∂

∂x
η(t; x, ξ)

∣∣∣∣ ≤ CR−1−µ|ξ|,
∣∣∣∣

∂

∂ξ
(η(t;x, ξ)− ξ)

∣∣∣∣ ≤ CR−µ

for t0 ≤ t ≤ 0,

(x, ξ) ∈ Ω :=
{
(x, ξ) ∈ R2n

∣∣ ∣∣|x| −R
∣∣ ≤ 1, |ξ| ≥ λ, x · ξ ≤ −δ1|x| · |ξ|

}

with R ≥ R0 and λ ≥ c0R. Moreover, for any α, β ∈ Zn
+, there is Cαβ > 0 such

that
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∣∣∣∣
(

∂

∂x

)α(
∂

∂ξ

)β(
y(t; x, ξ)− x

)∣∣∣∣ ≤ Cαβ |t| 〈ξ〉1−|β|,
∣∣∣∣
(

∂

∂x

)α(
∂

∂ξ

)β(
η(t; x, ξ)− ξ

)∣∣∣∣ ≤ Cαβ 〈ξ〉1−|β|,

for (x, ξ) ∈ Ω and t ∈ [t0, 0].

Proof. We set λ = |ξ| and consider

yλ(t;x, ξ) = y

(
t

λ
; x, λξ

)
,

ηλ(t;x, ξ) =
1
λ

η

(
t

λ
;x, λξ

)
.

Then it suffices to show the above estimates for ηλ and yλ with |ξ| = 1,
λ ≥ c0R and t ∈ [λt0, 0].

We mimic the argument of Hörmander [9] Lemma 3.7. Let s denote the
variable xj or ξj , j = 1, . . . , n. By the Hamilton equation, we have

d

dt

(
∂yλ

j

∂s

)
=

∑

k,`

∂ajk

∂x`
(yλ)

∂yλ
`

∂s
ηλ

k +
∑

k

ajk(yλ)
∂ηλ

k

∂s
, (2.1)

d

dt

(
∂ηλ

j

∂s

)
= −1

2

∑

k,`,m

∂2ak`

∂xj∂xm
(yλ) ηλ

k ηλ
`

∂yλ
m

∂s

−
∑

k,`

∂ak`

∂xj
(yλ) ηλ

k

∂ηλ
`

∂s
− 1

λ2

∑

k

∂2V

∂xk∂xj
(yλ)

∂yλ
k

∂s
. (2.2)

Then |∂yλ/∂s| and |∂ηλ/∂s| are majorized by the solution to

− d

dt
Y ≥ c1(R + δ|t|)−1−µY + c1Z,

− d

dt
Z ≥ c1(R + δ|t|)−2−µY + c1(R + δ|t|)−1−µZ +

c1

λ2
(R + δ|t|)−µY,

with Y (0) ≥ 0 and Z(0) ≥ 1 if s = ξj , Y (0) ≥ 1 and Z(0) ≥ 0 if s = xj . Here we
suppose R ≥ R0 and δ = δ2 in Proposition 2.8. Note we consider the inequality
in t < 0.
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We set

Y = c2(R− δt), Z = c3(1− (R− δt)−µ′), λt0 ≤ t ≤ 0

with 0 < µ′ < µ. Then the differential inequalities for the majorants are satisfied
if

c2δ ≥ c1c2R
−µ + c1c3, (2.3)

c3δµ
′ ≥ R−(µ−µ′)

(
c1c2 + c1c3 + c1c2

(
R− δλt0

λ

)2)
, (2.4)

and R−µ′ ≤ 1/2 so that Z > 0. We note

∣∣∣∣
R− δλt0

λ

∣∣∣∣ =
∣∣∣∣
R

λ
− δt0

∣∣∣∣ ≤ c−1
0 + δ|t0|

since λ > c0R. Now we choose c2/c3 = γ > 2c1/δ, and choose R0 so that

R0 > max
{

21/µ′ ,

(
2c1

δ

)1/µ

,

(
γc1

δµ′
[
1 + γ−1 + (c−1

0 + δ|t0|)2
])1/(µ−µ′)}

,

then the above conditions are satisfied. Thus we learn

∣∣∣∣
∂yλ

j

∂s
(t)

∣∣∣∣ ≤ c2(R− δt),
∣∣∣∣
∂ηλ

j

∂s
(t)

∣∣∣∣ ≤
c2

γ
,

for R ≥ R0, λ ≥ c0R and t ∈ [λt0, 0], provided

∣∣∣∣
∂yλ

j

∂s
(0)

∣∣∣∣ ≤ c2R,

∣∣∣∣
∂ηλ

j

∂s
(0)

∣∣∣∣ ≤
c2

2γ
.

We now consider the case s = xk. Then we may set c2 = R−1 and we have

∣∣∣∣
∂yλ

j

∂xk
(t)

∣∣∣∣ ≤ 1− δt

R
,

∣∣∣∣
∂ηλ

j

∂xk
(t)

∣∣∣∣ ≤
1

γR
.

We integrate the equation (2.2) again to obtain
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∣∣∣∣
∂ηλ

j

∂xk
(t)

∣∣∣∣ ≤
c1

R

∫ 0

t

(R− δr)−1−µdr +
c1

γR

∫ 0

t

(R− δr)−1−µdr

+
c1

Rλ2

∫ 0

t

(R− δr)1−µdr

≤ 1
δ

(
c1

µ
+

c1

γµ

)
R−1−µ +

c1

δ

(
R− δt

λ

)2

R−1−µ

≤ CR−1−µ

if t ∈ [λt0, 0] and λ ≥ c0R. Similarly, if s = ξk, we may set c2 = 2γ and we have

∣∣∣∣
∂yλ

j

∂ξk
(t)

∣∣∣∣ ≤ 2γ(R− δt),
∣∣∣∣
∂ηλ

j

∂ξk
(t)

∣∣∣∣ ≤ 2.

By integrating the equation (2.2), we conclude

∣∣∣∣
∂ηλ

j

∂ξk
(t)− δjk

∣∣∣∣ ≤ C ′R−µ.

For higher derivatives, we prove the estimates by induction. It suffices to
show

∣∣∂α
x ∂β

ξ (yλ(t; x, ξ)− x)
∣∣ ≤ Cαβ |t|,

∣∣∂α
x ∂β

ξ (ηλ(t;x, ξ)− ξ)
∣∣ ≤ Cαβ

for t ∈ [λt0, 0]. We suppose these hold for |α + β| < k, and let

Y (t) = ∂α
x ∂β

ξ (yλ(t; x, ξ)− x), Z(t) = ∂α
x ∂β

ξ (ηλ(t;x, ξ)− ξ)

with |α +β| = k. Then by the induction hypothesis, we can show Y and Z satisfy

Y ′ = A11Y + A12Z + A13,

Z ′ = A21Y + A22Z + A23 + λ−2(A31Y + A33),

Y (0) = Z(0) = 0,

where
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A11 = O(〈t〉−1−µ), A12 = O(1), A13 = O(〈t〉−µ),

A21 = O(〈t〉−2−µ), A22 = O(〈t〉−1−µ), A23 = O(〈t〉−1−µ),

A31 = O(〈t〉−µ), A32 = O(〈t〉1−µ),

which itself is proved by induction. Then for t ∈ [λt0,−1], we have

∣∣Y ′∣∣ ≤ c1(〈t〉−1−µ|Y |+ |Z|+ 〈t〉−µ),
∣∣Z ′

∣∣ ≤ c1(〈t〉−2−µ|Y |+ 〈t〉−1−µ|Z|+ 〈t〉−1−µ).

These imply Y and Z are majorized by M〈t〉 and M , respectively, with sufficiently
large M (the proof is analogous to the above argument). By integrating the
differential equation again, we conclude the assertion for |α + β| = k. ¤

We note the above proof for the derivatives works for (ỹ(t; x, ξ), η̃(t;x, ξ)) (t <

0) if (x, ξ) is backward nontrapping. In particular, we learn that ∂t∂
α
x ∂β

ξ η̃(t; x, ξ)
is integrable with respect to t in (−∞, 0], and hence we conclude ∂α

x ∂β
ξ η̃(t; x, ξ)

converges as t → −∞, and the estimate is locally uniform. Thus we have

Corollary 2.11. Suppose (x, ξ) is backward nontrapping. Then

(x, ξ) 7→ ξ−(x, ξ)

is a C∞ map, and η̃(t;x, ξ) converges to ξ−(x, ξ) locally uniformly with all the
derivatives as t → −∞.

Now we consider for t0 ≤ t ≤ 0 the map:

Λ : ξ 7−→ η

(
t;−R

ξ

|ξ| , ξ
)

.

Proposition 2.10 implies
∥∥∂Λ

∂ξ − I
∥∥ = O(R−µ) uniformly for |ξ| ≥ c0R. We choose

R so large that ∂Λ
∂ξ is invertible for |ξ| ≥ c0R. It is also easy to see that |Λ− ξ| =

O(R−µ|ξ|) for |ξ| ≥ c0R, and hence Ran Λ ⊃ {
ξ ∈ Rn

∣∣ |ξ| ≥ c4R
}

with some
c4 > 0. Then we set

ζ(t, ·) = Λ(t, ·)−1 :
{
ξ

∣∣ |ξ| ≥ c4R
} −→ Rn,

i.e.,
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η

(
t;−R

ζ(t, ξ)
|ζ(t, ξ)| , ζ(t, ξ)

)
= ξ for |ξ| ≥ c4R.

By Proposition 2.10, we learn

∣∣∣∣
(

∂

∂ξ

)α

ζ(t, ξ)
∣∣∣∣ ≤ Cα〈ξ〉1−|α|, t ∈ [t0, 0], |ξ| ≥ c4R. (2.5)

Then we set

W1(t, ξ) =
∫ t

0

p(y(s, ξ), ξ)ds−R|ξ|, |ξ| ≥ c4R,

where

y(s, ξ) = y

(
s;−R

ξ

|ξ| , ζ(s; ξ)
)

.

It is well-known that W1(t, ξ) satisfies the Hamilton-Jacobi equation (cf. Reed-
Simon [18], Section XI.9):

∂

∂t
W1(t, ξ) = p

(
∂W1

∂ξ
(t, ξ), ξ

)
, |ξ| ≥ c4R.

By the construction we have

∂ξW1(t, ξ) = y

(
t;−R

ζ(t, ξ)
|ζ(t, ξ)| , ζ(t; ξ)

)
,

and

∣∣∂α
ξ W1(t, ξ)

∣∣ ≤ Cα〈ξ〉2−|α|, t ∈ [t0, 0], |ξ| ≥ c4R. (2.6)

We use a partition of unity to construct W (t, ξ) so that

W (t, ξ) =

{
W1(t, ξ), |ξ| ≥ c4R + 1,

−R|ξ|+ t|ξ|2
2 , |ξ| ≤ c4R.

Clearly W satisfies (2.6) as well.
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2.4. Modified free motion and asymptotic trajectories.
Proposition 2.12. Suppose (x0, ξ0) is backward nontrapping, and let t0 <

0. Then there exists a neighborhood U of (x0, ξ0) in R2n such that

ξ−(x, ξ) = lim
λ→+∞

λ−1η(t0;x, λξ),

z−(x, ξ) = lim
λ→+∞

{
y(t0; x, λξ)− ∂ξW (t0, η(t0; x, λξ))

}

exist for (x, ξ) ∈ U . ξ−(x, ξ) and z−(x, ξ) are independent of t0 < 0. Moreover,
the convergence is uniform in U with its derivatives, and

S− : (x, ξ) 7→ (z−, ξ−)

is a local diffeomorphism.

Remark 2.13. We have already seen ξ− depends only on (ajk(x)), and is
independent of V (x). As we will see in the proof, z− is also independent of V (x),
though W (t, ξ) does depend on V (x).

Proof. The convergence of ξ− is already shown in Proposition 2.9 and its
remark. At first, we show

zλ(t;x, ξ) = yλ(t; x, ξ)− ∂ξW
λ(t; ηλ(t; x, ξ))

converges as λ →∞, where Wλ(t, ξ) = λ−1W (t/λ, λξ) and t = λt0.
For (x, ξ) near (x0, ξ0), we choose ζλ ∈ Rn such that

ηλ(t; x, ξ) = ηλ

(
t;−R

ζλ

|ζλ| , ζ
λ

)
,

and we set

vλ(s) = yλ

(
s;−R

ζλ

|ζλ| , ζ
λ

)
, wλ(s) = ηλ

(
s;−R

ζλ

|ζλ| , ζ
λ

)

for s ∈ [t, 0]. Note that ζλ is a function of x, ξ and t = λt0, and ∂x∂ξζ
λ is uniformly

bounded by virtue of Proposition 2.10 and discussion after it. We also set

a(s) = yλ(s; x, ξ)− vλ(s),

b(s) = ηλ(s; x, ξ)− wλ(s).
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We note

|a(0)| =
∣∣∣∣x + R

ζ

|ζ|

∣∣∣∣ ≤ |x|+ R, b(t) = 0.

a and b satisfy differential equations:

d

ds
a(s) =

∂pλ

∂ξ
(yλ, ηλ)− ∂pλ

∂ξ
(vλ, wλ),

d

ds
b(s) = −

(
∂pλ

∂x
(yλ, ηλ)− ∂pλ

∂x
(vλ, wλ)

)
,

where pλ(x, ξ) = 1
2

∑
j,k ajk(x)ξjξk + λ−2V (x). Since λ ≥ |s/t0|, these imply

|a′(s)| ≤ c1〈s〉−1−µ|a(s)|+ c1|b(s)|, (2.7)

|b′(s)| ≤ c1〈s〉−2−µ|a(s)|+ c1〈s〉−1−µ|b(s)| (2.8)

for s ∈ [t, 0] with some c1 > 0. We note a(s) = O(〈s〉) and b(s) = O(1) by
Proposition 2.5. Hence by (2.8), we have

|b(s)| =
∣∣∣∣
∫ s

t

b′(u)du

∣∣∣∣ ≤ c2〈s〉−µ = O(〈s〉−µ).

Then we substitute this to (2.7) to obtain

|a(s)| =
∣∣∣∣a(0)−

∫ 0

s

a′(u)du

∣∣∣∣ ≤ |x|+ R + c3〈s〉1−µ = O(〈s〉1−µ).

Repeating these, we have |b(s)| = O(〈s〉−2µ) and then |a(s)| = O(〈s〉1−2µ) provided
2µ ≤ 1. Iterating this procedure, we arrive at |a(s)| ≤ C and |b(s)| ≤ C〈s〉−1−µ.
Moreover, we also have

|a′(s)| ≤ c4〈s〉−1−µ.

We recall that yλ(s; x, ξ) → ỹ(s; x, ξ) as λ →∞ for each s, and ηλ(t; x, ξ) converges
to ξ−(x, ξ) as λ → ∞ since t = λt0 with t0 < 0. By the uniform continuity of
the inverse of Λ(t, ·), ζλ converges to ζ̃ as λ →∞, where ζ̃ is given by ξ−(x, ξ) =
ξ−(−Rζ̃/|ζ̃|, ζ̃). Hence, in particular, vλ(s) converges to ỹ(s;−Rζ̃/|ζ̃|, ζ̃) for each
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s. Then by the dominated convergence theorem, we learn

lim
λ→∞

{
y(t0; x, λξ)− ∂ξW (t0, η(t0; x, λξ))

}
= lim

λ→∞
{
yλ(t;x, ξ)− vλ(s)

}

= lim
λ→∞

[
x + R

ζλ

|ζλ| −
∫ 0

t

d

ds
(yλ(s; x, ξ)− vλ(s))ds

]

= x + R
ζ̃

|ζ̃| −
∫ 0

−∞

d

ds

(
ỹ(s;x, ξ)− ỹ

(
s;−R

ζ̃

|ζ̃| , ζ̃
))

ds.

Note the right hand side is independent of the potential V (x).
Next we consider the convergence of the derivatives. As in the proof of Propo-

sition 2.10, for any α, β ∈ Zn
+, we have

∣∣∂s ∂α
x ∂β

ξ ηλ(s;x, ξ)
∣∣ ≤ C〈s〉−1−µ, λt0 ≤ s ≤ 0.

Hence, by the dominated convergence theorem, we have

λ−1∂α
x ∂β

ξ η(t0; x, λξ) = ∂α
x ∂β

ξ ηλ(λt0;x, ξ)

= ∂α
x ∂β

ξ ξ −
∫ 0

λt0

∂s ∂α
x ∂β

ξ ηλ(s;x, ξ)ds

−→ ∂α
x ∂β

ξ ξ −
∫ 0

−∞
∂s∂

α
x ∂β

ξ η̃(s; x, ξ)ds = ∂α
x ∂β

ξ ξ−(x, ξ)

as λ →∞ (cf. Corollary 2.11).
For z(t;x, ξ), we prove the convergence by induction. Let a(s) and b(s) be as

above, and consider ∂α
x ∂β

ξ a(s) and ∂α
x ∂β

ξ b(s). We suppose

∣∣∂α
x ∂β

ξ a(s)
∣∣ ≤ C,

∣∣∂α
x ∂β

ξ b(s)
∣∣ ≤ C〈s〉−1−µ, s ∈ [−λt0, 0]

for |α + β| < k as our induction hypothesis. Let |α + β| = k, and set
A(s) = ∂α

x ∂β
ξ a(s) and B(s) = ∂α

x ∂β
ξ b(s). Then by inductive computations (from

the differential equation for a(s) and b(s)) that we can show (as in the proof of
Proposition 2.10), A(s) and B(s) satisfy

|A′(s)| ≤ c1〈s〉−1−µ|A(s)|+ c1|B(s)|+ c1〈s〉−1−µ,

|B′(s)| ≤ c1〈s〉−2−µ|A(s)|+ c1〈s〉−1−µ|B(s)|+ c1〈s〉−2−µ
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for s ∈ [λt0, 0]. Note we use a priori estimates: A(s) = O(〈s〉), B(s) = O(1),
which follow from Proposition 2.10. Since A(0) is bounded and B(λt0) = 0, we
can use the same argument as above (for a(s) and b(s)) to conclude A(s) = O(1)
and B(s) = O(〈s〉−1−µ), and the induction step is proved. Moreover, we have
A′(s) = O(〈s〉−1−µ), and the convergence of ∂α

x ∂β
ξ zλ(t, x, ξ) = ∂α

x ∂β
ξ a(t) is proved

similarly.
Finally, we prove that S− : (x, ξ) 7→ (z−, ξ−) is a local diffeomorphism. By

the intertwining property of the classical wave operators, we have

S− exp(THp) = exp(THp0)S−

for T < 0, where p0 = 1
2 |ξ|2 is the free Hamiltonian. If |T | is sufficiently large,

exp(THp) maps (x, ξ) to (x′, ξ′) such that |x′| >> 0 and x′ · ξ′ < −δ|x′| |ξ′| with
some δ > 0. We show S− is diffeomorphic in a neighborhood of (x′, ξ′) if |x′| is
sufficiently large.

We use the above argument for the trajectory starting from (x′, ξ′). Let ε > 0
be a small constant, which we will specify later. Let 0 < µ′ < µ. If |x′| is
sufficiently large, then A(s) and B(s) above (with a new initial condition) satisfy

|A′(s)| ≤ εc1〈s〉−1−µ′ |A(s)|+ c1|B(s)|+ εc1〈s〉−1−µ′ ,

|B′(s)| ≤ εc1〈s〉−2−µ′ |A(s)|+ εc1〈s〉−1−µ′ |B(s)|+ εc1〈s〉−2−µ′

for s ∈ [λt0, 0]. Then, by carrying out the same argument as above, we learn
|A(t)−A(0)| ≤ c2ε. In particular, since zλ(0) = x + Rζλ/|ζλ|, we have

∣∣∂x(zλ(t)− x)
∣∣ ≤ c3ε,

∣∣∂ξz
λ(t)

∣∣ ≤ c3,

where t = λt0. We recall, again by Proposition 2.10, we have

∣∣∂xηλ(t)
∣∣ ≤ c3ε,

∣∣∂ξ(ηλ(t)− ξ)
∣∣ ≤ c3ε

if |x′| is sufficiently large. Now if ε is sufficiently small (depending only on c3),

(x′, ξ′) 7→ (zλ(t), ηλ(t))

has the Jacobian bounded from below by, for example, 1/2. We now fix ε > 0, and
choose T (and hence (x′, ξ′)) accordingly. This Jacobian converges to that of S−
as λ →∞, and hence it is bounded from below by 1/2. Thus we learn that S− is
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diffeomorphic in a neighborhood of (x′, ξ′) by the inverse function theorem. Since
exp(THp) and exp(THp0) are diffeomorphic, this implies S− is diffeomorphic in a
neighborhood of (x, ξ). ¤

Note the above argument works for the scattering with exp tHk also. In fact,
the proof is simpler by virtue of the scaling property. For example, (zλ(s), ηλ(s))
is independent of λ, the convergence follows immediately from the integrability of
the derivative.

3. Proof of main theorems.

3.1. Asymptotic motion and solutions to transport equations.
We denote

z(t;x, ξ) = y(t; x, ξ)− ∂ξW (t, η(t;x, ξ)),

zλ(t; x, ξ) = z

(
t

λ
; x, λξ

)
, ηλ(t; x, ξ) =

1
λ

η

(
t

λ
; x, λξ

)
,

and also

St : (x, ξ) 7→ (z(t;x, ξ), η(t; x, ξ)),

Sλ
t : (x, ξ) 7→ (zλ(t;x, ξ), ηλ(t; x, ξ)).

St (resp. Sλ
t ) is the Hamilton flow generated by

`(t; x, ξ) = p(x + ∂ξW (t, ξ), ξ)− ∂tW (t, ξ)

(`λ(t; x, ξ) = λ−2`(t/λ, x, λξ), resp.) with the initial condition:

z(0; x, ξ) = x + R
ξ

|ξ| , η(0; x, ξ) = ξ

(zλ(0; x, ξ) = x + Rξ/|ξ|, ηλ(0; x, ξ) = ξ, resp.).
By virtue of the Hamilton-Jacobi equation, we have

`(t; x, ξ) = p(x + ∂ξW (t, ξ), ξ)− p(∂ξW (t, ξ), ξ)

for sufficiently large |ξ|.
Let f0(x, ξ) be a C∞0 -function supported in a small neighborhood of (x0 +



Propagation of singularities for Schrödinger equations 201

Rξ0/|ξ0|, ξ0). We set

fλ
0 (x, ξ) = f0

(
x,

ξ

λ

)
.

Then the solution to

∂

∂t
f(t; ·, ·) = −{`, f}, with f(0; x, ξ) = fλ

0 (x, ξ)

is given by

f(t; x, ξ) = fλ
0 ◦ S−1

t (x, ξ) for t ∈ [t0, 0].

Similarly, the solution to

∂

∂t
fλ(t; ·, ·) = −{`λ, fλ}, with fλ(0; x, ξ) = f0(x, ξ)

is given by

fλ(t;x, ξ) = f0 ◦ (Sλ
t )−1(x, ξ) for t ∈ [λt0, 0].

It is easy to see fλ(t;x, ξ) = f(t/λ;x, λξ). By Proposition 2.12, we learn

S−(x, ξ) = lim
λ→+∞

Sλ
λt(x, ξ)

exists, and that all the derivatives converge locally uniformly (cf. the proof of
Proposition 2.12). In particular, we have

f−(x, ξ) = lim
λ→+∞

f(t; x, λξ) = lim
λ→+∞

fλ(λt;x, ξ)

= f0 ◦ (S−)−1(x, ξ) ∈ C∞0 (R2n)

exists and it is independent of t ∈ [t0, 0). The convergence is locally uniform along
with its derivatives.

3.2. Proof of Theorem 1.2.
At first we consider
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v(t) = eiW (t,Dx)e−itHv0 for t ∈ [t0, 0]

with v0 ∈ L2(Rn). v(t) satisfies the evolution equation:

d

dt
v(t) = eiW (t,Dx)

{
i
∂W

∂t
(t,Dx)− iH

}
e−itHv0

= −i

{
eiW (t,Dx)He−iW (t,Dx) − ∂W

∂t
(t, Dx)

}
v(t).

Namely, v(t) is a solution to a Schrödinger equation with the time-dependent
Hamiltonian:

L(t) = eiW (t,Dx)He−iW (t,Dx) − ∂W

∂t
(t,Dx).

The next lemma is basic in the following analysis.

Lemma 3.1. Let ν, ρ > 0 and suppose a ∈ S
(〈x〉ν〈ξ〉ρ, dx2/〈x〉2 +dξ2/〈ξ〉2).

Let

Q = eiW (t,Dx)a(x,Dx)e−iW (t,Dx).

Then Q ∈ OPSK

(〈tξ〉ν〈ξ〉ρ, dx2/〈tξ〉2 + dξ2/〈ξ〉2) with any K ⊂⊂ Rn. Let
g(t; x, ξ) = σ(Q) be the Weyl symbol of Q. Then the principal symbol of Q is
given by a(x + ∂ξW (t, ξ), ξ) and

g(t; x, ξ)− a(x + ∂ξW (t, ξ), ξ) ∈ SK

(
〈tξ〉ν−2〈ξ〉ρ−2,

dx2

〈tξ〉2 +
dξ2

〈ξ〉2
)

,

where the remainder is locally bounded in t with respect to the seminorms of the
symbol class.

Proof. The proof is standard pseudodifferential operator calculus, but we
sketch it for the completeness. Since the Weyl quantization has the same symbol
representation in the Fourier space as in the configuration space, we may write

Âu := F (a(x, Dx)ǔ) = (2π)−n

∫∫
e−i(ξ−η)·xa

(
x,

ξ + η

2

)
u(η) dη dx

for u ∈ S (Rn). By direct computations, we have
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eiW (t,ξ)Âe−iW (t,ξ)u(ξ)

= (2π)−n

∫∫
ei(W (t,ξ)−W (t,η))−i(ξ−η)·xa

(
x,

ξ + η

2

)
u(η) dη dx

= (2π)−n

∫∫
e−i(ξ−η)·(x−W̃ (t,ξ,η))a

(
x,

ξ + η

2

)
u(η) dη dx

= (2π)−n

∫∫
e−i(ξ−η)·xa

(
x + W̃ (t, ξ, η),

ξ + η

2

)
u(η) dη dx,

where

W̃ (t, ξ, η) =
∫ 1

0

∂ξW (t, sξ + (1− s)η) ds.

We easily see

∣∣∂α
ξ ∂β

η W̃ (t, ξ, η)
∣∣ ≤ Cαβ

〈
ξ + η

2

〉1−|α+β|
〈ξ − η〉1+|α+β|,

for any α, β ∈ Zn
+, and W̃ (t, ξ, ξ) = ∂ξW (t, ξ). Moreover, if |α| ≥ 2, by the

definition of W (t, ξ) and Proposition 2.10, we have

∣∣∂α
ξ W (t, ξ)

∣∣ ≤ Cα

(〈ξ〉1−|α| + |t|〈ξ〉2−|α|), (3.1)

and hence

∣∣∂α
ξ ∂β

η W̃ (t, ξ, η)
∣∣

≤ Cαβ

(〈
ξ + η

2

〉−|α+β|
〈ξ − η〉|α+β| + |t|

〈
ξ + η

2

〉1−|α+β|
〈ξ − η〉1+|α+β|

)

≤ Cαβ

〈
t

(
ξ + η

2

)〉〈
ξ + η

2

〉−|α+β|
〈ξ − η〉1+|α+β|

if α + β 6= 0. We also note

∣∣W̃ (t, ξ, η)
∣∣ ≥ δ

〈
|t|ξ + η

2

〉
if ξ · η ≥ 1

2
|ξ| |η|

with some δ > 0. If ξ · η ≤ 1
2 |ξ| |η|, we have |ξ + η|2 ≤ 3|ξ − η|2, and hence
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∣∣∂α
ξ ∂β

η W̃ (t, ξ, η)
∣∣ ≤ Cαβ ≤ C ′αβ

〈
ξ + η

2

〉−|α+β|
〈ξ − η〉|α+β|

where α + β 6= 0. Combining these, we can show

∣∣∣∣∂α
x ∂β

ξ ∂γ
η a

(
x + W̃ (t, ξ, η),

ξ + η

2

)∣∣∣∣

≤ Cαβγ

〈
t

(
ξ + η

2

)〉ν−|α|〈
ξ + η

2

〉ρ−|β+γ|
〈ξ − η〉|ν|+|ρ|+|α+β+γ|

for x ∈ K ⊂⊂ Rn and ξ, η ∈ Rn. Then by the asymptotic expansion formula
for the simplified symbol, we learn that the principal symbol is given by a(x +
∂ξW (t, ξ), ξ). Moreover, we have

∣∣∂α
x ∂β

ξ g(t; x, ξ)
∣∣ ≤ Cαβ〈tξ〉ν−|α|〈ξ〉ρ−|β| for x ∈ K, ξ ∈ Rn,

and the other claims follow from the asymptotic expansion formula. ¤

By Lemma 3.1, we learn that the principal symbol of L(t) is given by `(t;x, ξ),
and the remainder symbol r(t; x, ξ) satisfies

∣∣∂α
x ∂β

ξ r(t; x, ξ)
∣∣ ≤ Cαβ

(〈tξ〉−µ−2−|α|〈ξ〉−|β| + 〈tξ〉−µ−|α|〈ξ〉−2−|β|)

for x ∈ K ⊂⊂ Rn, t ∈ [t0, 0]. Note that the subprincipal symbol vanishes by
virtue of the Weyl calculus.

In order to prove Theorem 1.2, we characterize the wave front set of u0 in
terms of u(t0) = e−it0Hu0 with t0 < 0. Let a ∈ C∞0 (R2n) such that a(x0, ξ0) 6= 0
and supported in a small neighborhood of (x0, ξ0), and set

aλ(x, ξ) = a

(
x,

ξ

λ

)
.

We also set

Aλ(t) = eiW (t,Dx)e−itHaλ(x, Dx)eitHe−iW (t,Dx)

for t ∈ [t0, 0]. Aλ satisfies the Heisenberg equation:
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d

dt
Aλ(t) = −i[L(t), Aλ(t)]. (3.2)

We now construct an asymptotic solution of (3.1) with the initial condition:

Aλ(0) = eiW (0,Dx)aλ(x,Dx)e−iW (0,Dx) = ãλ(x,Dx).

We note that the principal symbol of ãλ(x, ξ) is give by a(x−Rξ̂, ξ/λ), and ãλ(x, ξ)
is supported in a neighborhood of (x0 +Rξ̂0, λξ0) modulo O(λ−N )-terms with any
N > 0, where we denote ξ̂ = ξ/|ξ|.

We note that if Aλ(t) is a pseudodifferential operator, the principal symbol
of the right hand side of (3.2) is given by −{`, aλ}, where aλ(t; ·, ·) is the symbol
of Aλ(t). Then by the computation in Subsection 3.1, we learn that aλ ◦ S−1

t is
an approximate solution to the transport equation. Actually, we can construct an
asymptotic solution to (3.2):

Proposition 3.2. Let a ∈ C∞0 (R2n) supported in a sufficiently small neigh-
borhood of (x0, ξ0). Then there exists ψλ(t; ·, ·) ∈ C∞0 (R2n) such that

(i) We write Gλ(t) = ψλ(t;x,Dx). Then

Gλ(0) = eiW (0,Dx)aλ(x,Dx)e−iW (0,Dx)

modulo O(λ−∞)-terms.
(ii) ψλ(t; ·, ·) is supported in St[supp aλ].
(iii) For any α, β ∈ Zn

+, there is Cαβ > 0 such that

∣∣∂α
x ∂β

ξ ψλ(t; x, ξ)
∣∣ ≤ Cαβλ−|β|, t ∈ [t0, 0], x, ξ ∈ Rn, λ À 0.

(iv) The principal symbol of ψλ is given by aλ ◦ S−1
t , i.e.,

∣∣∂α
x ∂β

ξ

(
ψλ(t; x, ξ)− aλ ◦ S−1

t (x, ξ)
)∣∣ ≤ Cαβλ−1−|β|

for t ∈ [t0, 0], x, ξ ∈ Rn, λ À 0.
(v) For t ∈ [t0, 0],

∥∥∥∥
d

dt
Gλ(t) + i[L(t), Gλ(t)]

∥∥∥∥
L (L2(Rn))

= O(λ−∞) as λ → +∞.
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We postpone the proof of Proposition 3.2 to the next subsection, and we
complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By Proposition 3.2 and the construction of L(t),
we have

∥∥∥∥
d

dt

(
eitHe−iW (t,Dx)Gλ(t)eiW (t,Dx)e−itH

)∥∥∥∥ ≤ CNλ−N

with any N as λ → +∞. This implies

∥∥eit0He−iW (t0,Dx)Gλ(t0)eiW (t0,Dx)e−it0Hu0

− e−iW (0,Dx)Gλ(0)eiW (0,Dx)u0

∥∥ ≤ CNλ−N .

By the condition (i) of Proposition 3.2, we have

∣∣∣
∥∥Gλ(t0)eiW (t0,Dx)u(t0)

∥∥− ∥∥aλ(x, Dx)u0

∥∥
∣∣∣ ≤ CNλ−N , (3.3)

where u(t) = e−itHu0. We note that ψλ(t0; x, ξ) is supported in St0 [supp aλ], and
the principal symbol is given by aλ ◦ S−1

t0 . Hence, in particular,

|ψλ(t0;x, ξ)| ≥ ε > 0 (3.4)

for |x− z−(x0, ξ0)| ≤ δ, |ξ − λξ−(x0, ξ0)| ≤ δλ and λ À 0with some δ, ε > 0.
Now we suppose (x0, ξ0) /∈ WF (u0). Then by choosing a supported in a

sufficiently small neighborhood of (x0, ξ0), we may suppose

‖aλ(x,Dx)u0‖ = O(λ−∞) as λ → +∞.

Then by (3.3) we have

∥∥Gλ(t0)eiW (t0,Dx)u(t0)
∥∥ = O(λ−∞) (3.5)

and this implies

(z−(x0, ξ0), ξ−(x0, ξ0)) /∈ WF
(
eiW (t0,Dx)u(t0)

)

by virtue of (3.4).
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Conversely, if (z−(x0, ξ0), ξ−(x0, ξ0)) /∈ WF (eiW (t0,Dx)u(t0)) then also by
taking a supported in a sufficiently small neighborhood of (x0, ξ0), we have
(3.5) since ψλ(t0; ·, ·) is supported in St0 [supp aλ] modulo O(λ−∞)-terms, and
it is very close to S−[supp aλ] if λ is large. Then again by (3.3), we have
‖aλ(x, Dx)u0‖ = O(λ−∞), and hence (x0, ξ0) /∈ WF (u0). ¤

3.3. Proof of Proposition 3.2.
We note

R + δ|tξ| ≤ |∂ξW (t, ξ)| ≤ R + C|tξ|

for t ∈ [t0, 0], ξ ∈ Rn with some δ, C > 0. Using this and (3.1), for any α, β ∈ Zn
+

and K ⊂⊂ Rn, we have

∣∣∂α
x ∂β

ξ `(t; x, ξ)
∣∣ ≤ CαβK

(〈tξ〉−1−µ−|α|〈ξ〉2−|β| + 〈tξ〉1−µ−|α|〈ξ〉−|β|)

for t ∈ [t0, 0], x ∈ K and ξ ∈ Rn.
Let aλ

0 ∈ C∞0 (R2n) such that

eiW (0,Dx)aλ(x,Dx)e−iW (0,Dx) = (aλ
0 ◦ S−1

0 )(x,Dx)

modulo O(λ−∞)-terms. It is easy to see that the principal symbol of aλ
0 is aλ(x, ξ),

and that aλ
0 ∈ S(1, dx2 + λ−2dξ2). We may suppose supp aλ

0 = supp aλ. We now
set

ψ0(t;x, ξ) = aλ
0 ◦ S−1

t (x, ξ).

Then as we observed in Subsection 3.1, ψλ satisfies

∂

∂t
ψ0(t; x, ξ) = −{`, ψ0}(t;x, ξ).

We set

r0(t; x, ξ) =
∂

∂t
ψ0(t; x,Dx) + i[L(t), ψ0(t;x,Dx)].

Then by the asymptotic expansion formula, r0 ∈ S(λ−1, dx2 + λ−2dξ2), and r0 is
supported essentially (i.e., modulo O(λ−∞)-terms) in St[supp aλ]. Next we solve
the transport equation:
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∂

∂t
ψ1(t; x, ξ) + {`, ψ1}(t; x, ξ) = −r0(t; x, ξ)

with the initial condition ψ1(0; x, ξ) = 0. It is easy to show that ψ1(t, ·, ·) ∈
S(λ−1, dx2 + λ−2dξ2) and it is bounded in t ∈ [t0, 0]. Moreover, ψ1 is supported
in St[supp aλ].

We set

r1(t;x, ξ) =
∂

∂t
ψ1(t; x, ξ) + i[L(t), ψ1(t; x,Dx)] + r0(t; x,Dx),

then r1(t; ·, ·) ∈ S(λ−2, dx2 + λ−2dξ2) and supp r1(t; ·, ·) ⊂ St[supp aλ] essentially
for t ∈ [t0, 0]. We iterate this procedure to obtain ψj ∈ S(λ−j , dx2 +λ−2dξ2) such
that supp ψj(t; ·, ·) ⊂ St[supp aλ] essentially for t ∈ [t0, 0]. Then we set

ψλ(t; x, ξ) ∼
∞∑

j=0

ψj(t; x, ξ) ∈ S(1, dx2 + λ−2dξ2)

in the sense of the asymptotic sum as λ → +∞. By the construction of the
asymptotic sum, we may suppose supp ψλ(t; ·, ·) ⊂ St[supp aλ] essentially for t ∈
[t0, 0]. Now it is straightforward to check ψ satisfies the required properties. ¤

3.4. Proof of Theorem 1.1.
We denote

Tt(x, ξ) = (x− ∂ξW (t, ξ), ξ)

so that

St = Tt ◦ exp tHp.

We also denote

bλ
t (x, ξ) = aλ ◦ exp(−tHp)(x, ξ).

Then, in order to prove Theorem 1.1, it suffices to show

∥∥bλ
t0(x,Dx)u(t0)

∥∥ = O(λ−∞) as λ → +∞

if and only if (x0, ξ0) /∈ WF (u0), where u(t) = e−itHu0, a is supported in a small
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neighborhood of (x0, ξ0) and t0 < 0. We note

bλ
t = aλ ◦ [exp tHp]−1 = aλ ◦ S−1

t ◦ Tt,

namely,

bλ
t (x, ξ) = (aλ ◦ S−1

t )(x− ∂ξW (t, ξ), ξ).

By direct computations as in the proof of Lemma 3.1, we can show

eiW (t,Dx)bλ
t (x,Dx)e−iW (t,Dx) = cλ

t (x,Dx)

where cλ
t ∈ C∞0 (Rn) modulo O(λ−∞), and as an h-pseudodifferential oper-

ator (with h = λ−1), the principal symbol is given by (aλ ◦ S−1
t )(x, ξ) =

(a ◦ (Sλ
λt)

−1)(x, ξ/λ). Moreover, if we write c̃λ
t (x, ξ) = cλ

t (x, λξ), then c̃λ
t is sup-

ported in an arbitrarily small neighborhood of S−[supp a] if λ is sufficiently large,
and the principal symbol is a ◦ (Sλ

λt)
−1. We can also show (as in Lemma 3.1) that

c̃λ
t is bounded in C∞0 (R2n) as λ →∞. Since

∥∥bλ
t0(x,Dx)u(t0)

∥∥ =
∥∥c̃λ

t (x, hDx)eiW (t,Dx)u(t0)
∥∥,

now Theorem 1.1 follows from Theorem 1.2 combined with the standard charac-
terization of the wave front set in terms of h-pseudodifferential operators. ¤

A. Appendix.

Lemma A.1. Suppose n ≥ 2, f ∈ C1(Rn) and suppose

∣∣∂xf(x)
∣∣ ≤ C〈x〉β , x ∈ Rn,

with some C > 0, β ∈ R. Then

|f(x)− f(y)| ≤ π

2
C max(〈x〉β , 〈y〉β)|x− y|.

The same estimate holds for n = 1 if x · y > 0.

Proof. The claim is obvious if β ≥ 0 or n = 1, and we suppose n ≥ 2 and
β < 0. Let |x| ≥ |y| ≥ 0 and let S =

{
z ∈ Rn

∣∣ |z| = |y|}be the sphere of radius
|y| with the center at the origin. Let ` be the (straight) line segment connecting
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x and y. If ` and S intersect only at y, then we can use the standard argument of
show

|f(x)− f(y)| =
∫

`

|∇f(z)| |dz| ≤ C〈y〉β |x− y|.

If ` and S intersect at y and y′, we denote the line segments connecting y and y′,
and y′ and x, by `′ and `′′, respectively. Then |x− y| = |`| = |`′|+ |`′′|. We note
the length of the shortest geodesic connecting y and y′ on S (which we denote by
γ1) is equal to or less than (π/2)|`′|. We set γ = γ1 + `′′, which is a piecewise
C1-path connecting y and x, and

|γ| ≤ π

2
|`′|+ |`′′| ≤ π

2
|x− y|.

Since γ is contained in {z | |z| ≥ |y|}, we have

|f(x)− f(y)| ≤
∫

γ

|∇f(z)| |dz| ≤ π

2
C〈y〉β |x− y|. ¤
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