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1. Introduction.

In this paper, we will investigate equational theories and universal theories
of fields. To begin with, we will explain how to deal with problems connected
with the multiplicative inverse in field theory. The multiplicative inverse $x^{-1}$

on a given field is defined for all $x$ but zero element $0$, so the function $-1$ will
be regarded as a partial function. On the other hand, in the customary treat-
ment in logic, every function symbol is interpreted as a total function on a
given structure. Thus, the language $\mathcal{L}$ for ring theory which consists of
$\{+, -, \cdot, 0,1\}$ will be usually employed when we formulate the theory of fields.
In this language, the existence of the inverse will be represented as

(1) $\forall x\exists z(\neg(x=0)arrow xz=1)$ .
But, if we will restrict our attention only to universal theories of fields, then
we will have to deal with not only the class of fields but also some broader
class of algebraic structures, since (1) can not be expressed by a universal
formula, $i$ . $e.$ , a formula of the form $\forall x_{1}\cdots\forall x_{n}\varphi(x_{1}, \cdots , x_{n})$ for some open formula
$\varphi(x_{1}, \cdots , x_{n})$ . In the above case, we can take the class of integral domains for
this, because the axioms of integral domains, which we denote by $\Theta$ in the follow-
ing, can be expressed by universal formulas and moreover it can be shown that
the set of universal formulas of $\mathcal{L}$ valid in all fields (of characteristic p) is equal
to the set of universal formulas valid in all integral domains (of characteristic $p$ ).

On the other hand, it will be possible to treat equational theories of fields,
if we determine the value of $0^{-1}$ in any way. In this way, Komori intrcduced
in [9] the notion of Pseudo-fields and proved that for any equation if it holds in
every skew field then it holds also in every pseudo-field and vice versa. In
particular, he introduced the notion of desirable fields, the skew fields in which
$0^{-1}=0$ holds. Following his idea, we will introduce an axiom system $\Sigma$ for the
equational theory of commutative regular rings in the language $\mathcal{L}’=$

$\{+, -, \cdot, 0,1, -1\}$ . Thus, we will study equational theories of (commutative)
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fields over $\Sigma$ and universal theories of (commutative) fields over $\Theta$ in this paper.
It turns out in \S 3 that if restricting only to fields these equational theories and
universal theories are essentially equivalent. More precisely, there exists a one-
to-one correspondence between equational theories and universal theories of fields,
by which both the decidability and the recursive axiomatizability are preserved.
In \S 4, the axiomatization of equational and universal theories of some special
fields will be given explicitly. Then, some decidability results will be obtained.
In \S 5, we will give a classification of the whole class of equational and uni-
versal theories of fields, by means of absolute number fields, following the results
due to Ax [2] and Wheeler [21]. Then we will show that there always exists
the smallest equational (or universal) theory among equational (or universal)

theories determined by fields having a fixed absolute number field. Further-
more, it will be shown that any two equational (or universal) theories of fields
having an isomorphic infinite absolute number field of characteristic $p>0$ are
equal, by using Riemann hypothesis for curves proved by Weil.

2. Preliminaries.

We will introduce the axiom system $\Sigma$ of commutative regular rings in the
following. Recall that a commutative ring $R$ is regular if $x^{2}$ divides $x$ for each
$x\in R$ . Let $\mathcal{L}’$ be the language obtained from the language $\mathcal{L}$ for ring theory
by adding a unary function symbol $-1$ for multiplicative inverse. We define $\Sigma$

to be the axiom system consisting of
1) usual axioms of commutative rings,
$2a)$ $x^{2}x^{-1}=x$ ,
$2b)$ $(x^{-1})^{2}x=x^{-1}$ .

It can be easily verified that $\Sigma$ is logically equivalent to the axiom system of
desirable Pseudo-fields by Komori [9], if we add the axiom of commutativity to
the latter (see also [10]). It is easy to see the following.

LEMMA 2.1. 1) Any integral domain which is a model of $\Sigma$ is a field. (In
general, any integral domain which is also a commutative regular ring is a field.)

2) $A$ field $F$ is a model of $\Sigma$ if and only if $0^{-1}=0$ holds in $F,$ $i.e.,$ $F$ is a
desirable commutative field in [9].

Our claim $0^{-1}=0$ is not so special, because the theory of fields with the
axiom $0^{-1}=0$ in the language $\mathcal{L}’$ is a conservative extension of the usual theory
of fields in $\mathcal{L}$ , since the former can be considered to be an extension by de-
finitions of the latter in the sense of [18] \S 4.6.

An equation of $\mathcal{L}’$ is a formula of the form $t=s$ , where $t$ and $s$ are terms
of $\mathcal{L}’$ . An equation $\epsilon$ is said to hold in a model $R$ of $\Sigma$ if $\epsilon$ holds for every
assignment of values in $R$ to variables appearing in $\epsilon$ . Define Eq $(R)$ to be the
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set of all equations which hold in $R$ . Let $U$ be any class of models of $\Sigma$ . By
abuse of symbol, we write Eq $(U)$ for the set of all equations which hold in
every ring in $U$ . Thus, Eq $(U)= \bigcap_{R\in U}$Eq $(R)$ holds. We call Eq $(R)$ (or Eq $(U)$ ) the

equational theory determined by a ring $R$ (or a class $U$ of rings, respectively).

As for the general aspect of equational theories, see Gr\"atzer [6] Appendix 4.
For any set $\Gamma$ of equations including $\Sigma$, we define mod $\Gamma$ to be the class of all
models of $\Gamma$ and $mod^{*}\Gamma$ to be the class of all fields in mod $\Gamma$ We call a ring
$R$ a subdirect product of a class of rings $\{S_{i}\}_{i}$ if there exists a monomorphism
$h:R arrow S=\prod_{i}S_{i}$ such that $\pi_{i}\circ h$ is an epimorphism for each $i$, where $\pi_{i}$ is a

canonical mapping from $S$ to $S_{i}$ . The first part of the following proposition is
a version of Birkhoff’s theorem (see e.g. [12] Corollary 1 in \S 2.1 and Proposition
4 in \S 2.2).

PROPOSITION 2.2. Let $\Gamma$ be any set of equations such that $\Sigma\subset\Gamma$ Then every
commutative regular ring $R$ in mod $\Gamma$ is a subdirect product of some fields $\{F_{i}\}_{i}$

$in$ mod $\Gamma$ Moreover, Eq $(R)= \bigcap_{i}$ Eq $(F_{i})$ holds.

We can take $\{R/p;p\in I(R)\}$ for $\{F_{i}\}_{i}$ in the above proposition, where $I(R)$

denotes the set of all prime ideals of $R$ . In this case, the monomorphism $h$ :
$R arrow\prod_{p\in I(R)}$

$R/p$ is called the canonical representation of $R$ . By Proposition 2.2, the

following result by Komori [9] (Theorem 3.1 and Corollary 3.3) can be derived.
COROLLARY 2.3. Let $\Gamma$ be any set of equations such that $\Sigma\subset\Gamma$ Then

Eq $(mod \Gamma)=Eq(mod^{*}\Gamma)$ holds. Hence, the class mod $\Gamma$ is the minimum equational
class including $mod^{*}\Gamma$

Clearly, any direct product of rings in mod $\Gamma$ is also in mod $\Gamma$ So, we have
the following.

LEMMA 2.4. For each set of rings $\{R_{i}\}_{i}$ in mod $\Gamma$ there exists a ring $R$ in
mod $\Gamma$ such that

$\bigcap_{i}$ Eq $(R_{i})=Eq(R)$ ,

where $\Gamma$ is a set of equations such that $\Sigma\subset\Gamma$

For each integral domain $G$ , define Th $(G)$ (or $T_{\forall}(G)$ ) to be the set of all
formulas (or, of all universal formulas, respectively) in the language $\mathcal{L}$ which
hold in $G$ . We say Th $(G)$ (or $T_{\forall}(G)$ ) the first-order theory (or the universal
theory) determined by $G$ . Similarly as the case for equational theories, Th $(U)$

and $T_{\forall}(U)$ can be defined also for a class $U$ of integral domains. The usual
axiom system of integral domains, consisting of finitely many universal formulas,
will be denoted by $\Theta$ . We can not show the corresponding result to the second
part of $\mathbb{P}roposition2.2$ for universal theories. But, we can show easily the fol-
lowing lemma, which plays an alternative role of Corollary 2.3.

LEMMA 2.5. Let $\Psi$ be a set of formulas including $\Theta$ . If for any $G\in mod \Psi$
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there exists a field $F\in mod \Psi$ such that $G\subset F$, then $T_{\forall}(mod \Psi)=T_{\forall}(mod^{*}\Psi):holds$ .

3. Relations between equational theories and universal theories.

Hereafter, we sometimes say a member of mcd $\Sigma$ (or of $mod^{*}\Sigma$ ) merely a
commutative regular ring (or a field, respectively) when no confusions will occur.
Conversely, we suppose that each field is a member of $mod^{*}\Sigma$ by claiming $0^{-1}$

$=0$ . In this section, we will show that universal theories of fields in the lan-
guage $X$ are essentially equivalent to equational theories of fields in $X’$ .

LEMMA 3.1. Let $t=t(x_{1}, \cdots , x_{n})$ be any term in $\mathcal{L}’$ and $y$ be a variable not
appean $ng$ in $t$ . Then there exists an effective way of getting an open formula
$\varphi_{t}(x_{1}, \cdots , x_{n}, y)$ such that

1) every atomic formula of $\varphi_{t}(x_{1}, \cdots , x_{n}, y)$ is of the form either $s=0$ or
$y_{1}=s-$

or $y=s_{1}s_{2}^{-1}$ , where $s,$ $s_{1}$ and $s_{2}$ are terms having neither any occurrence of
nor of $y$ ,

2) in any field of $mod^{*}\Sigma$ , it holds that

$y=t-\varphi_{t}(x_{1}, \cdots x_{n}, y)$ .
PROOF. Our lemma can be shown by using induction. Since it will be

tedious to give a complete proof, we will show this only for the case where
$t=x_{1}x_{2}^{-1}x_{3}^{-1}+(x_{3}^{-1})^{-1}x_{1}^{-1}$ , as an example. Since $(xy)^{-1}=x^{-1}y^{-1}$ and

$(x^{-1})^{-1}=x-1$

hold in every field in $mod^{*}\Sigma$ (see [9] p. 14), $t$ is equal to $x_{1}(x_{2}x_{3})^{-1}+x_{3}x_{1}$ .
So, by using $0^{-1}=0,$ $y=t$ holds if and only if the following holds;

$(x_{2}x_{3}=0\Lambda x_{1}=0\Lambda y=0)\vee$ ( $x_{2}x_{3}=0\wedge\neg(x_{1}=0)$ A $y=x_{3}x_{1}^{-1}$ )

$\vee(\neg(x_{2}x_{3}=0)\wedge x_{1}=0\Lambda y=x_{1}(x_{2}x_{3})^{-1})$

$\vee(\neg(x_{2}x_{3}=0)\Lambda\neg(x_{1}=0)\wedge y=(x_{1}^{2}+x_{2}x_{3}^{2})(x_{1}x_{2}x_{3})^{-1})$ .

Now let $\varphi_{t}(x_{1}, \cdots , x_{n}, y)$ be the right side of the above equivalence. Then we
have our lemma.

COROLLARY 3.2. For any equation $t_{1}=t_{2}$ in $\mathcal{L}’$ , there exists an effective way
of getting an open fomula $\psi_{t_{1}=t_{2}}$ in $\mathcal{L}$ such that $t_{1}=t_{2}rightarrow\psi_{t_{1}=t_{2}}$ hol& in any field
in $mod^{*}\Sigma$ .

PROOF. By Lemma 3.1, there exists an effective way of getting an open
formula $\varphi_{t_{1}-t_{2}}(x, y)$ such that

$y=t_{1}-t_{2}-\varphi_{t_{1}-t_{2}}(x, y)$

holds. Let $\psi_{t_{1}=t_{2}}$ be the formula obtained from $\varphi_{c_{1}-t_{2}}(x, y)$ by replacing each
atomic formula of the form $y=s$ by $s=0$ and $y=s_{1}s_{2}^{-1}$ by $s_{1}=0\vee s_{2}=0$ . Then
it is obvious that this formula $\psi_{t_{1}=t_{2}}$ satisfies the condition in our corollary.

From the above corollary it follows that for any equation $t=s,$ $t=s\in Eq(F)$
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if and only if $\forall x\psi_{t=s}(x)\in T_{\forall}(F)$ for every field $F$. Conversely, let $\varphi$ be any
universal formula in $\mathcal{L}$ . By Wheeler [21] Lemma 6.1, $\varphi$ is equivalent to a con-
junction of formulas of the form

(1) $\forall y\neg(p_{1}(y)=0\wedge\cdots\wedge p_{n}(y)=0)$ ,

where each $p_{i}(y)$ is a polynomial in $Z[y]$ . Moreover, there exists an effective
way of getting these formulas of the form (1) from a given $\varphi$ . But each formula
of the form (1) is also equivalent to an equation

(2) $(p_{1}(y)p_{1}(y)^{-1}-1)\cdot$ $(p_{n}(y)p_{n}(y)^{-1}-1)=0$ ,

in any field other than zero field, i.e,, the field satisfying $0=1$ . For, $xx^{-1}=1$

means $\neg(x=0)$ in any field other than zero field. Thus, we have the following.
LEMMA 3.3. For each universal formula $\varphi$ in $X$ , there exists an effective

way of getting a finite set of equations $\{t_{i}=s_{i} ; i=1, \cdots , k\}$ such that
$\varphi\in T_{\forall}(F)$ if and only if $t_{i}=s_{i}\in Eq(F)$ for each $i=1,$ $\cdots$ , $k$ ,

for any field $F$ other than zero field.
By Corollary 3.2 and Lemma 3.3, we can show the following theorem im-

mediately.
THEOREM 3.4. For all fields $F$ and $F’$ other than zero field,

Eq $(F)\subset Eq(F’)$ if and only if $T_{\forall}(F)\subset T_{\forall}(F’)$ .
Hence, Eq $(F)=Eq(F’)$ if and only if $T_{\forall}(F)=T_{\forall}(F’)$ .

Let $\Gamma_{0}$ and $\Gamma$ be two sets of equations (or universal formulas). If $\Gamma=$

Eq $(mod \Gamma_{0})$ (or, $\Gamma=T_{\forall}(mod \Gamma_{0})$ , respectively) holds, we say $\Gamma_{0}$ is a set of axioms
for $\Gamma$ If there exists a finite (or recursive) set $\Gamma_{0}$ of axioms for an equational
or a universal theory $\Gamma$, we say that $\Gamma$ is finitely (or recursively) axiomatized.

THEOREM 3.5. Let $F$ be any field.
1) The equational theory Eq $(F)$ is decidable if and only if the universal

theory $T_{\forall}(F)$ is decidable.
2) If $T_{\forall}(F)$ is finitely (or recurszvely) axiomatized then Eq $(F)$ is also finitely

(or recursrvely) axiomatized. Conversely, if Eq $(F)$ is recursrvely axiomatized then
so is $T_{\forall}(F)$ .

PROOF. It is easy to see that 1) follows from Corollary 3.2 and Lemma 3.3,
since every construction has been done effectively. So, we will show 2). We
have only to show this for the case where $F$ is a field other than zero field.
Suppose that $T_{\forall}(F)$ is axiomatized by a set $\Gamma$ of universal formulas. Of course,
we can assume that $\Theta\subset\Gamma$ For each $\varphi\in\Gamma-\Theta$ , there exists a finite set $\Delta(\varphi)$ of
equations, for which Lemma 3.3 holds. Now define a set $\Delta$ of equations by
$\Delta=\Sigma\cup\bigcup_{\varphi}\Delta(\varphi)$ , where $\varphi$ ranges over formulas in $\Gamma-\Theta$ and $\Sigma$ denotes the axiom

system of commutative regular rings. We will show that $\Delta$ is a set of axioms
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for Eq $(F)$ . Let $\tilde{\Delta}=Eq(mod \Delta)$ . Clearly, $\tilde{\Delta}\subset Eq(F)$ since $F$ is a model of $\Delta$ .
By Lemma 2.4, there exists a model $R$ of $\Delta$ such that $\tilde{\Delta}=Eq(R)$ . By Proposi-
tion 2.2, there exists a set of fields $\{F_{i}\}_{i}$ in $mod^{*}\Delta$ such that $\tilde{\Delta}=Eq(R)=\bigcap_{i}$ Eq $(F_{i})$ .
Here we can suppose that each $F_{i}$ is not a zero field. Since each equation in
$\Delta(\varphi)$ is valid in $F_{i},$

$\varphi$ is also valid in $F_{i}$ , for each $\varphi\in\Gamma-\Theta$ . Thus, $F_{i}$ is a
model of $\Gamma,$ $i$ . $e.,$ $T_{\forall}(F)\subset T_{\forall}(F_{i})$ . By Theorem 3.4, Eq $(F)\subset Eq(F_{i})$ for each $i$ .
Hence, Eq $(F) \subset\bigcap_{i}$ Eq $(F_{i})=\tilde{\Delta}$ . Thus, $\tilde{\Delta}=Eq(F)$ . So, $\Delta$ is a set of axioms for

Eq $(F)$ . When $\Gamma$ is finite (or recursive), $\Delta$ is also finite (or recursive). Conversely,
suppose that Eq $(F)$ has a recursive $set\Delta$ of axioms. $Let\Gamma$ be the axiom system
obtained from $\Theta$ by adding axioms

1) $\forall x\exists z(\neg(x=0)arrow xz=1)$ ,

2) $\psi_{\epsilon}$ for each equation $\epsilon$ in $\Delta$ ,

where $\psi_{\epsilon}$ denotes the open formula corresponding to $\epsilon$ , which is defined in
Corollary 3.2. Let $\Phi=Th(mod \Gamma)$ . Since $\Gamma$ is recursive, $\Phi$ is recursively enumer-
able and hence $\Phi_{\forall}$ , the set of all universal formulas in $\Phi$ , is also recursively
enumerable. So, $\Phi_{\forall}$ is recursively axiomatized (cf. $e$ . $g$ . [18] p. 138). Now we
will show that $T_{\forall}(F)=\Phi_{\forall}$ . Since the field $F$ is a model of $\Gamma,$ $\Phi\subset Th(F)$] and
therefore $\Phi_{\forall}\subset T_{\forall}(F)$ . On the other hand, we can suppose that $\Phi_{\forall}$ is of the
form $\bigcap_{j}T_{\forall}(F_{j})$ , where $\{F_{j}\}_{j}$ is a set of models of $\Gamma$, since $\Phi=Th(mod \Gamma)$ holds.

So, every $F_{j}$ is a field satisfying both $\psi_{\epsilon}$ and $\epsilon$ . Hence, Eq $(F)=\tilde{\Delta}\subset Eq(F_{j})$ for
each $j$ . By Theorem 3.4, $T_{\forall}(F)\subset T_{\forall}(F_{j})$ holds. Thus $T_{\forall}(F)\subset\bigcap_{j}T_{\forall}(F_{j})=\Phi_{\forall}$ .
Hence, $T_{\forall}(F)(=\Phi_{\forall})$ is recursively axiomatized.

Let $\Gamma_{0}$ be the axiom system obtained from $\Gamma$ in the above proof by deleting
the axiom 1). In general, $\Gamma_{0}$ can not be a set of axioms for $T_{\forall}(F)$ . We will
show this when $F$ is the field $R$ of real numbers, as an example. By Tarski’s
result on the completeness of the first-order theory of real closed fields, Eq $(R)$

$=Eq(F)$ and $T_{\forall}(R)=T_{\forall}(F)$ hold for each real closed field $F$. Due to Artin-
Schreier, formally real fields are characterized as fields in which

$\neg(1+x_{1}^{2}+\cdots+x_{n}^{2}=0)$

holds for each $n$ . By using the fact that any formally real field can be embedded
in a real closed field, we have the following theorem.

THEOREM 3.6. The equational theory Eq $(R)$ is axiomatized by $\Sigma$ with axioms

$(1^{n}+ \sum_{i=1}x_{i}^{2})(1+\sum_{i=1}^{n}x_{i}^{2})^{-1}=1$

for any natural number $n$ .
On the other hand, the axiom system $\Theta$ with axioms
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(1) $\neg$ ( $1+ \sum_{i=1}^{n}$ x\S =0) for each natural number $n$

can not characterize $T_{\forall}(R)$ , since an integral domain satisfying the condition (1)

need not be ordered. But, we can give explicitly an axiom system for $T_{\forall}(R)$

by using the following two propositions.
PROPOSITION 3.7 (see [5] Chapter VII \S 2 Corollary 8). A ring $R$ with 1

and without zero &visors can be ordered if and only if no sum of even pr0ducts
vanishes, more precisely, for every finite set of elements $a_{1},$

$\cdots$ , $a_{n}$ of $R(a_{i}\neq 0)$,
no sum of pr0ducts containing each $a_{i}$ an even number of times is equal to $0$ .

PROPOSITION 3.8 (see [5] Chapter VI \S 3 Corollary 5). Every total ordering
of an integral domain can be uniquely extended to a total ordenng of its field of
quotients.

THEOREM 3.9. The universal theory $T_{\forall}(R)$ is axiomatized by $\Theta$ with an
infinite set $\Delta$ of universal formulas which says that no sum of even pr0ducts
vanishes.

PROOF. It is obvious that $R$ satisfies every axiom in $\Theta\cup\Delta$ . For the com-
pleteness, we will show that for each universal formula $\varphi$ in $T_{\forall}(R),$

$\varphi$ is valid
in every model of $\Theta\cup\Delta$ . Let $G$ be an arbitrary integral domain in which every
formula in $\Delta$ is valid. Then by Proposition 3.7, $G$ can be ordered. Thus $G$ can be
embedded in a formally real field $F$ by Proposition 3.8. Then $F$ can be in turn
embedded in a real closed field $\tilde{F}$ . Since both $R$ and $\tilde{F}$ are real closed, $\varphi$ is
also valid in $\tilde{F}$ by the completeness of the first-order theory of real closed fields.
But $\varphi$ is a universal formula and $G$ is a substructure of $\tilde{F}$ . Hence $\varphi$ is also
valid in $G$ .

We don’t know whether the finite axiomatizability of Eq $(F)$ implies that of
$T_{\forall}(F)$ for any field $F$.

4. Axiom systems for some equational theories.

To begin with, we will give a finite set of axioms for each equational theory
determined by a finite commutative regular ring. We remark that Kruse proved
in [11] that every equational theory (in $\mathcal{L}$ ) determined by a finite ring can be
finitely axiomatized.

It is obvious that the equational theory of the zero ring can be characterized
by $\Sigma$ with a single axiom $0=1$ . So in the following we will consider only nonzero
rings, $i$ . $e$ . rings in which $\neg(0=1)$ holds. Suppose that a finite commutative
regular ring $R$ in mod $\Sigma$ is given. Let $h:R arrow\prod_{i\in I}F_{i}$ be the canonical representa-

tion of $R$ . Since $R$ is finite, all fields $F_{i}$ and the index set $I$ are both finite.
Define
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Ch $(R)=\{char(F_{i});i\in I\}$ ,

where char $(F)$ means the characteristic of a field $F$. Clearly, each element $p$

in Ch $(R)$ is positive. We assume that

Ch $(R)=\{p_{1}, \cdots p_{m}\}$ ,

where $p_{i}\neq p_{j}$ if $i\neq j$ . We define $p_{R}= \prod_{j=1}^{m}p_{j}$ . For each $p_{j}\in Ch(R)$ , let $F_{j1},$
$\cdots,$

$F_{jk}$

be an enumeration of all fields in $\{F_{i} ; i\in I\}$ whose characteristic are equal to
$p_{j}$ . Moreover, we suppose that each $F_{ji}$ is the finite field $F_{p_{j^{n_{i}}}}$ with $p_{J^{n_{i}}}$ ele-
ments. Let $f_{d}^{(j)}(x)$ be the product of all irreducible monics of degree $d$ in the
polynomial ring $F_{p_{j}}[x]$ . We define

$g_{j}(x)= \prod_{d}f_{d}^{(j)}(x)$ ,

where $d$ ranges over every divisor of $n_{i}$ for $i=1,$ $\cdots$ , $k$ . By using Chinese
remainder theorem, we can construct a polynomial $g_{R}(x)\in Z[x]$ such that

$g_{R}(x)\equiv g_{j}(x)$ $(mod p_{j})$ fcr each $j=1,$ $\cdots$ , $m$ .
Now the axiom system $\Sigma_{0}(R)$ is defined to be the axiom system $\Sigma$ with the
following two axioms;

1) $p_{R}=0$,
2) $g_{R}(x)=0$ .
THEOREM 4.1. For any finite commutative regular ring $R$ in mod $\Sigma,$ $\Sigma_{0}(R)$

is a set of axioms for Eq $(R)$ .
PROOF. Let $h:R arrow\prod_{i\in I}F_{i}$ be the canonical representation of $R$ . By Proposi-

tion 2.2, Eq $(R)= \bigcap_{i\in I}$ Eq $(F_{i})$ . Using the same notations as those in the above

definition, we suppose that a given field $F_{i}$ is of the form $F_{p_{j^{n}}}$ for some $j=1$ ,
... , $m$ . Since $p_{j}=char(F_{i})\in Ch(R)$ and $p_{j}|p_{R},$ $p_{R}=0$ holds in $F_{i}$ . By the dePni-
tion of $g_{R}(x),$ $g_{R}(x)=0\in Eq(F_{i})$ if and only if $g_{j}(x)=0\in Eq(F_{i})$ . On the other
hand, since

$x^{p}J^{n}-x= \prod_{d|n}f_{a^{(j)}}(x)$

holds in $F_{i}$ (see $e$ . $g$ . $[7]$ p. 61), it holds that

$x^{p_{j^{n}}}-x|g_{j}(x)$

by the definition of $g_{j}(x)$ . Mcreover, since $x^{p_{j^{n}}}-x=0\in Eq(F_{i}),$ $g_{j}(x)=0\in Eq(F_{i})$

and hence $g_{R}(x)=0\in Eq(F_{i})$ . Thus, $\Sigma_{0}(R)\subset Eq(F_{i})$ fcr each $i\in I$ . Therefore
$\Sigma_{0}(R)\subset Eq(R)$ , or equivalently,

(1) Eq $(mod \Sigma_{0}(R))\subset Eq(R)$ .
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Next, by Lemma 2.4, there exists a commutative regular ring $R’$ such that
Eq (mcd $\Sigma_{0}(R)$ ) $=Eq(R’)$ . Then there exists a set of fields $\{K_{h}\}_{h\in H}$ such that
Eq $(R’)= \bigcap_{h\in H}Eq$

$(K_{h})$ . Now suppose that $\epsilon$ is an equation valid in $R$ . Since

$g_{R}(x)=0\in\Sigma_{0}(R)\subset Eq(K_{h})$ , every element of $K_{h}$ must be a root of $g_{R}(x)$ , so $K_{h}$

is finite for each $h\in H$. On the other hand, since $p_{R}=0\in Eq(K_{h})$ , char $(K_{h})\in$

Ch $(R)$ . Let $p_{j}=char(K_{h})$ . Then, $g_{R}(x)=0\in Eq(K_{h})$ implies $g_{j}(x)=0\in Eq(K_{h})$ .
Now let us suppose that $K_{h}=F_{p_{j^{n}}}$ for some $n>0$ . Since in $K_{h},$

$x^{p_{j^{n}}}-x= \prod_{d|n}f_{d}^{(j)}(x)$

holds, every element of $K_{h}$ is a root of some $f_{d}^{(j)}(x)$ for $d|n$ , and vice versa.
Take an arbitrary number $d$ such that $d|n$ and take any irreducible monic $p(x)$

of degree $d$ . Then, $p(a)=0$ for some $a\in K_{h}$ . In this case, $p(x)$ is the minimum
polynomial of $a$ . Hence, $p(x)|g_{j}(x)$ . If we let $p(x)$ range over all irreducible
monics of degree $d$ in $F_{p_{j}}[x]$ , then we have $thatf_{d}^{(j)}(x)|g_{j}(x)$ . Let $F_{p_{j^{n_{1}}}},$ $\cdots$ ,
$F_{p_{j^{n}}k}$ be an enumeration of all fields in $\{F_{\ell}\}_{i\in I}$ whose characteristics are equal
to $p_{j}$ . By the definition of the polynomial $g_{j}(x),$ $d$ is a divisor of some $n_{s}$ for
$s=1,$ $\cdots$ , $k$ . In particular, if we take $n$ for $d$ , then there must be some $s\in$

$\{1, \cdots , k\}$ such that $n|n_{s}$ . This means that $K_{h}=F_{p_{j^{n}}}$ is a subfield of some
$F_{p_{j^{n_{S}}}}$ . Since $\epsilon$ is an equation valid in $R$ and Eq $(R)\subset Eq(F_{p_{j^{n_{S}}}}),$ $\epsilon$ is valid in
$F_{p_{j^{n_{S}}}}$ and hence it is also valid in $K_{h}$ . This holds fcr all $h\in H$. Since Eq $(R’)$

$= \bigcap_{h\in H}Eq(K_{h}),$
$\epsilon\in Eq(R’)=Eq(mod \Sigma_{0}(R))$ . Hence,

(2) Eq $(R)\subset Eq(mod \Sigma_{0}(R))$ .

By (1) and (2), $\Sigma_{0}(R)$ is a set of axioms for Eq $(R)$ .
As for the axiomatization of universal theories of finite integral domains,

we remark that every finite integral domain is a field. So, we can get im-
mediately an axiom system of a universal theory of each finite integral domain,
by using Theorem 4.1.

REMARK. A set of equations $\Gamma$ is called to be strictly consistent if there
exists an algebra $A\in mcd\Gamma$ such that $|A|>1$ . For a strictly consistent set of
equations $\Gamma$, we say $\Gamma$ is equationally complete, if whenever $\Gamma\subset\Gamma’$ , where $\Gamma’$ is
strictly consistent, then $\Gamma=\Gamma’$ (see [6] \S 27). An algebra $A$ is equationally
complete, if the equational theory Eq $(A)$ is equationally complete. Given a posi-
tive integer $p$ , a ccmmutative ring $R$ is called a p-ring if $p\cdot x=0$ and $x^{p}=x$

for every element $x$ , and $R$ is called a p-zero-ring if $p\cdot x=0$ and $x\cdot y=0$ hold
for all elements $x$ and $y$ . In [20], Tarski proved that a ring $R$ with more than
one element is equationally complete if and only if $R$ is either a $p$-ring or a p-
zero-ring for scme prime number $p$ . We can show easily the ccrresponding
result as follows:

A commutative regular ?7 $ng$ with more than one element is equationally com-
plete if and only if it is a pnme field.
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Let $S_{1}$ and $S_{2}$ be classes of structures. We say that $S_{1}$ and $S_{2}$ are mutually
model consistent, if every structure in $S_{1}$ is embeddable in a structure in $S_{2}$ and
vice versa. We can show easily the following lemma.

LEMMA 4.2. If two classes of structures (defined in the same language) $S_{1}$

and $S_{2}$ are mutually model conststent, then Eq $(S_{1})=Eq(S_{2})$ and $T_{\forall}(S_{1})=T_{\forall}(S_{2})$

hold. In such a case, moreover if Eq $(S_{2})$ (or $T_{\forall}(S_{2})$ ) is decidable, then so is
Eq $(S_{1})$ (or $T_{\forall}(S_{1})$ , respectively).

By using this lemma, we can derive some decidability results on equational
and universal theories.

THEOREM 4.3. The equational theory Eq $(mod \Sigma)$ of commutative regular rings

and the universal theory $T_{\forall}(mod \Theta)$ of integral domains are both decidable.
PROOF. Let $U^{*}$ be the class of all algebraically closed fields. Then, by us-

ing Lemma 4.2,

Eq $(mod \Sigma)=Eq(U^{*})$ and $T_{\forall}(mod \Theta)=T_{\forall}(U^{*})$ .
Morecver, the first-order theory Th $(U^{*})$ of algebraically closed fields is decidable.
Thus we have our theorem.

By using Corollary 2.3 and Lemma 2.5, it follows from Theorem 4.3 that
both the equational theory and the universal theory of fields are decidable. Com-
pare these with the undecidability of the Prst-order theory of integral domains
in [19] p. 71 or, of fields in [16] Theorem 4.3. In Theorem 6.2 of [9], Komori
proved that the equational theory of (noncommutative) desirable pseudo-fields,
$i$ . $e.$ , the equational theory of rings satisfying the axioms $\Sigma$ without the axiom
of commutativity, can not be characterized by any class of finite desirable
pseudo-fields. In contrast with this, it can be shown that the equational theory
determined by $\Sigma$ can be characterized by the set of all Pnite fields. In the fol-
lowing, $P$ denotes the set of all prime numbers.

LEMMA 4.4. For any pnme number $p$, let $F_{p}$ be the algebraic closure of the
pnme field $F_{p}$ and $U_{p^{f}}$ be the set of all finite fields of charactenstic $p$ . Then,

Eq $(\tilde{F}_{p})=Eq(U_{p^{f}})$ and $T_{\forall}(\tilde{F}_{p})=T_{\forall}(U_{p^{f}})$ hold.

PROOF. Clearly, Eq $(F_{p})\subset Eq(U_{p^{f}})$ . Suppose an equation $\epsilon(=\epsilon(x_{1}, \cdots , x_{n}))$

does not belong to Eq $(\tilde{F}_{p})$ . Then, there exist $a_{1},$
$\cdots$ , $a_{n}$ in $\tilde{F}_{p}$ such that

$\epsilon(a_{1}, \cdots , a_{n})$ is false in $\tilde{F}_{p}$ . Of course, $\epsilon(a_{1}, \cdots , a_{n})$ is also false in $F_{p}(a_{1}, \cdots, a_{n})$ ,

which is a finite algebraic extension of $F_{p}$ . Thus, $\epsilon$ does not belong to an equa-
tional theory of some finite field in $U_{p^{f}}$ . Quite similarly, we can show that
$T_{\forall}(\tilde{F}_{p})=T_{\forall}(U_{p^{f}})$ .

Let $U^{num}$ be the set of all number fields, $i$ . $e.$ , finite algebraic extensions of
$Q$ , and $\tilde{Q}$ be the algebraic closure of $Q$ . Then, similarly as the above, we can
show that Eq $(\tilde{Q})=Eq(U^{num})$ and $T_{\forall}(\tilde{Q})=T_{\forall}(U^{num})$ .

By using compactness theorem and the fact that the first-order theory of
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algebraically closed fields of a given characteristic is ccmplete, we have the
following.

LEMMA 4.5. Let $\varphi$ be any first-order formula and $S$ be any infinite subset
of the set $P$ of pmme numbers. If for each prime number $q\in S$ there exists an
algebraically closed field of charactenstic $q$ in which $\varphi$ is true, then $\varphi$ is also true
in any algebraically closed field of charactenstic $0$ .

THEOREM 4.6. Let $U^{f}$ be the set of all finite fields. Then, Eq $(mod \Sigma)=$

Eq $(U^{f})$ and $T_{\forall}(mod \Theta)=T_{\forall}(U^{f})$ .
PROOF. As shown in the procf of Thecrem 4.3, Eq $(mod \Sigma)=Eq(U^{*})$ . Clearly

Eq $(U^{*})= \bigcap_{p\in P}Eq(ff_{p})\cap Eq(\tilde{Q})$ . By Lemma 4.5, $\bigcap_{p\in P}Eq(F_{p})\subset Eq(\tilde{Q})$ . Hence,

Eq $( mod \Sigma)=\bigcap_{p\in P}$Eq $( \tilde{F}_{p})=\bigcap_{p\in P}$Eq $(U_{p^{f}})=Eq(U^{f})$ , by Lemma 4.4. Similarly, we have

$T_{\forall}(mod \Theta)=T_{\forall}(U^{f})$ .
We define the axiom system $\Sigma_{p}$ for the equational theory of fields of charac-

teristic $p$ as follows.
1) If $p$ is a prime number, then $\Sigma_{p}$ consists of $\Sigma$ with an axiom $p=0$ .
2) If $p$ is equal to $0$, then $\Sigma_{p}$ consists of $\Sigma$ with axioms $q\cdot q^{-1}=1$ for every

prime number $q$ .
Similarly, the axiom system $\Theta_{p}$ for the universal theory of fields of character-

istic $p$ can be defined by replacing $\Sigma$ by $0$ and $q\cdot q^{-1}=1$ by $\neg(q=0)$ , in the above
definition. Let $U_{p}$ (or $U_{p}^{*}$ ) be the class of all fields (or, all algebraically closed
fields) of characteristic $p$ . Similarly as the above, we can show the following.

THEOREM 4.7. 1) Let $F$ be any algebraically closed field of charactenstic $p$

$(\geqq 0)$ . Then,

Eq $(mod \Sigma_{p})=Eq(U_{p})=Eq(U_{p^{*}})=Eq(F)$ and

$T_{\forall}(mod \Theta_{p})=T_{\forall}(U_{p})=T_{\forall}(U_{p}^{*})=T_{\forall}(F)$ hold.

Moreover, if $p\neq 0$ then Eq $(mod \Sigma_{p})=Eq(U_{p^{f}})$ and $T_{\forall}(mod \Theta_{p})=T_{\forall}(U_{p^{f}})$ hold.
2) Both Eq $(mod \Sigma_{p})$ and $T_{\forall}(mod \Theta_{p})$ are decidable.
We can extend Theorem 4.7 to more general cases. Suppose that $S$ is a

subset of $P\cup\{0\}$ . Then we define an axiom system $\Sigma_{S}$ to be the system ob-
tained from $\Sigma$ by adding $\Delta_{s}$ , where $\Delta_{S}$ is a set of equations defined as follows.

$\Delta_{S}=\{\begin{array}{ll}\{q\cdot q^{-1}=1;q\in P-S\} if either S is infinite or O\in S,\{\Pi p_{i}=0\}k if S is a finite subset \{p_{1}, \cdots p_{k}\} of P.i=1 \end{array}$

Let $U_{s^{*}}$ be the class of all commutative regular rings which are models of $\Sigma_{s}$

and which are integrally closed rings without minimal idempotents. Then the
theory Th $(U_{s^{*}})$ is a complete model companion of $\Sigma_{s}$ (as a first-order theory
in $\mathcal{L}’$ ) by Lipshitz-Saracino [15] (see especially Remark in [15]).
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THEOREM 4.8. For any subset $S$ of $P\cup\{0\}$ and any nng $R$ in $U_{s^{*}}$ ,
Eq $(mod \Sigma_{s})=Eq(U_{S^{*}})=Eq(R)$ . Hence, if $S$ is recursive then Eq $(mod \Sigma_{s})$ is
decidable.

By Corollary 2.3 and Lemma 4.5, we can show the following.
THEOREM 4.9. Let $S$ be a subset of $P\cup\{0\}$ . Then, there exists a set $U$

of finite fields such that Eq $(mod \Sigma_{s})=Eq(U)$ if and only if either $S$ is infinite
or $0\not\in S$ .

In Corollary 4 of [17], Rumely showed that there exists a formula which is
true in all function fields and false in all number fields. Here, a function field
means a finite algebraic extension of some field of rational functions $F(t)$ over
a finite field $F$. By using the similar technique used in the above, we can show
the following.

THEOREM 4.10. For each universal formula $\varphi$ in $x$ , if $\varphi$ is true in all func-
tion fields then it is also $ime$ in all number fields.

5. A classification of equational and universal theories of fields.

In this section, we will try to classify the whole class of equational and
universal theories of fields by means of absolute number fields. A field is an
absolute number field, if it is algebraic over its prime field. For each field $F$,
let Abs $(F)$ denotes the set of all elements of $F$ which are algebraic over the
prime field of $F$. Of course, Abs $(F)$ is a subfield of $F$. Clearly, for each absolute
number field $E$ and for each field $F$, Abs $(F)=E$ if and only if $E$ is algebraically
closed in $F$. Let $[F]$ be the set of all polynomials in $Z[x]$ having a root in $F$.
Hereafter, we will consider only fields satisfying $\neg(0=1)$ . By Ax [1] Lemma
5, we have the following.

PROPOSITION 5.1. Supp0se that two fields $F$ and $F’$ have the same charac-
teristic. Then, Abs $(F)$ is isomorphic to Abs $(F’)$ if and only if $[F]=[F’]$ .

COROLLARY 5.2. If Eq $(F)=Eq(F’)$ , or equivalently, $T_{\forall}(F)=T_{\forall}(F’)$ then
Abs $(F)$ is isomorphic to Abs $(F’)$ .

This corollary suggests us that absolute number fields will play an important
role in classifying equational or universal theories. We remark here that the
converse of Corollary 5.2 does not always hold. Let $R_{0}$ be the field of real
algebraic numbers. Then, there exists a field $K$ such that Abs $(K)=R_{0}$ but $K$

is not a formally real field (see [21] p. 225). Indeed, $K$ contains a zero of
$1+x^{2}+y^{2}$ . On the other hand, since $R_{0}$ is a formally real feld, $\neg(1+x^{2}+y^{2}=0)$

holds in $R_{0}$ (cf. Theorem 3.6).

Let $E$ be an absolute number field of characteristic $p$ . Define a set $\epsilon(E)$

of equations and a set $\omega(E)$ of universal formulas as follows;

$\epsilon(E)=\{f(x)f(x)^{-1}=1;f(x)\in Z[x]-[E]\}$ ,
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$\omega(E)=\{\forall x\neg(f(x)=0);f(x)\in Z[x]-[E]\}$ .
Now let $\Sigma(E)$ be an axiom system $\Sigma_{p}\cup\epsilon(E)$ , where $\Sigma_{p}$ is an axiom system for
the equational theory of fields of characteristic $p$ (see Theorem 4.7). We define
$\Phi(E)$ to be the first-order theory of fields in $\mathcal{L}$ with the set of axioms $\omega(E)$ .
Then, $\Theta^{*}(E)$ denotes the set of all universal consequences of $\Phi(E)$ . (The theory
$\Theta^{*}(E)$ is equivalent to the theory $S_{E}$ in [21].)

An extension field $K$ of a field $F$ is called a totally transcendental extension
of $F$ if $F$ is algebraically closed in $K$. The class of totally transcendental exten-
sions of $F$ will be denoted by $\mathcal{U}(F)$ . For each absolute number field $E$ , define

$\mathcal{T}(E)=\{Eq(F);F\in \mathcal{U}(E)\}$ ,

$\mathcal{T}^{*}(E)=\{T_{v}(F);F\in \mathcal{U}(E)\}$ .

Clearly, each member of $\mathcal{T}(E)$ (or $\mathcal{T}^{*}(E)$ ) contains $\Sigma(E)$ (or $\Theta^{*}(E)$ , respectively).
By Theorem 3.4, $\mathcal{T}^{*}(E)$ is order-isomorphic to $\mathcal{T}(E)$ . We will study the struc-
ture of $\mathcal{T}(E)$ and $\mathcal{T}^{*}(E)$ for each absolute number field $E$ , in the following.
Clearly, Eq $(E)$ (or $T_{\forall}(E)$ ) is the largest member (concerning the set inclusion)

of $\mathcal{T}(E)$ (or $\mathcal{T}^{*}(E)$ , respectively).

THEOREM 5.3. Let $E$ be an absolute number field. Then,
1) if $E$ is finite then Eq $(E(t))$ is the second largest member of $\mathcal{T}(E)$ ,
2) if $E$ is infinite then Eq $(E(t))=Eq(E)$ holds,

where $E(t)$ denotes the field of rational functions over E. The similar result
holds also for universal theones.

PROOF. 1) Let $E$ be a field with $q$ elements. Since $E\subset E(t)$ , Eq $(E(t))\subset$

Eq $(E)$ . Moreover, the equation $x^{q}-x=0$ holds in $E$ but not in $E(t)$ . Thus the
inclusion is proper. Next, let $F$ be any member of $\mathcal{U}(E)$ , other than $E$ . Then
$F$ contains $E$ as its absolute number field and $F$ must be a transcendental exten-
sion of $E$ . Hence, $F$ contains a subfield which is isomorphic to $E(t)$ . Thus,
Eq $(F)\subset Eq(E(t))$ . Therefore, Eq $(E(t))$ is the second largest among $\mathcal{T}(E)$ . The
second part of our theorem follows immediately from the following stronger
result.

LEMMA 5.4. Let $F$ be an infinite field and $L$ be an extension of $F$, which is
also a subfield of a pure transcendental extenston $K$ of F. Then, Eq $(L)=Eq(F)$

and $T_{\forall}(L)=T_{\forall}(F)$ .
PROOF. Clearly, it suffices to show that Eq $(K)=Eq(F)$ . Suppose that the

transcendental degree of $K/F$ is $\kappa$ . By choosing an appropriate index set $I$ and
a nonprincipal ultrafilter $D$ over $I$, we have an ultrapower $\tilde{F}=\Pi_{D}F$ of $F$ whose
cardinality is greater than $\kappa$ (see $e$ . $g$ . $[3]$ Corollary 4.3.8). Since there exists
the canonical mapping from $F$ to $F,$ $F$ can be regarded as a subfield of a field
$F$ . Since $F$ is elementarily embedded in $F,$ $T_{\forall}(\hat{F})=T_{\forall}(F)$ . On the other hand,
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since $F$ contains an algebraically independent set of cardinality $\kappa,$

$F$ has a sub-
field isomorphic to $K$. Hence $T_{v}(F)cT_{\forall}(K)$ . Clearly, $T_{\forall}(K)\subset T_{\forall}(F)$ . Thus,
$T_{\forall}(K)=T_{\forall}(F)$ and Eq $(K)=Eq(F)$ hold.

As we have already mentioned, each field $F$ in $\mathcal{U}(E)$ is a model of $\Sigma(E)$

for each absolute number field $E$ . When there exists a field $F$ in $\mathcal{U}(E)$ such
that Eq $(F)=Eq(mod \Sigma(E))$ , Eq $(F)$ becomes the smallest member in $\mathcal{T}(E)$ . In
the next theorem, we will show that it always happens. We need some pre-
parations. The following lemma can be proved by using standard algebraic
technique (see Lang [13] Chapter III \S 1).

LEMMA 5.5. Supp0se that an absolute number field $E$ and a field $F$ are both
subfields of a certain field. If Abs $(F)\subset E$ then $E$ is algebraically closed in the
compostte field $FE$.

LEMMA 5.6. The class $\mathcal{U}(E)$ has the joint embedding property, $i.e$ . for all
$F_{1},$ $F_{2}\in \mathcal{U}(E)$ , there exists a joint extension $F$ of $F_{1}$ and $F_{2}$ in $\mathcal{U}(E)$ .

PROOF. Since any absolute number field is perfect, both $F_{1}$ and $F_{f}$ are
regular extensions of $E$ . So, the free composite $F$ of $F_{1}$ and $F_{2}$ is also a regular
extension of $E$ , so in particular, it is a totally transcendental extension of both
$F_{1}$ and $F_{2}$ (see [7] Chapter IV \S 11 and [13] Chapter III \S 1).

THEOREM 5.7. For each absolute number field $E$ , there exists a field $F$ in
$\mathcal{U}(E)$ such that Eq $(F)=Eq(mod \Sigma(E))$ . Thus, $\mathcal{T}(E)$ has the minimum element
Eq $(mod \Sigma(E))$ . Similarly, $\mathcal{T}^{*}(E)$ has the minimum element $\Theta^{*}(E)$ .

PROOF. By Corollary 2.3, there exists a set of fields $\{F_{i}\}_{i\in I}$ such that

(1) Eq $( mod \Sigma(E))=\bigcap_{i\in I}$ Eq $(F_{i})$ .

Since each $F_{i}$ is a model of $\Sigma(E)$ , Abs $(F_{i})\subset E$ . We can assume that both $F_{i}$

and $E$ are subfields of an algebraic closure of $F_{i}$ . So the composite field $F_{i}E$

belongs to $\mathcal{U}(E)$ by Lemma 5.5, and hence is a model of $\Sigma(E)$ . On the other
hand, Eq $(F_{i}E)\subset Eq(F_{i})$ , since $F_{i}$ is a subfield of $F_{\ell}E$ . Thus,

(2) Eq $( mod \Sigma(E))=\bigcap_{i\in I}$ Eq $(F_{i}E)$ .

Hence, we can suppose from the beginning that each $F_{i}$ in (1) belongs to $\mathcal{U}(E)$ .
Moreover, we can suppose also that the index set $I$ is countable, since the set of
all equations in $X’$ is countable. Thus, we can take the set $N$ of natural
numbers for $I$ . Now we will define a sequence of fields $\{L_{i}\}_{i\in N}$ inductively as
follows;

1) $L_{0}=F_{0}$ ,
2) $L_{i+1}$ is the free composite of $L_{i}$ and $F_{i+1}$ .

Then, it holds that
1) each $L_{i}$ is in $\mathcal{U}(E)$ , by Lemma 5.6,
2) each $L_{i+1}$ is an extension of $L_{i}$ .
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Let us define $L= \bigcup_{i\in N}L_{i}$ . By Chang-Lo -Suszko Theorem, $L$ is also a field whose

absolute number field is $E$ , since all axioms of the theory of fields with the
absolute number field $E$ can be expressed by $\forall\exists$ -sentences (see [3] Theorem
3.2.3). Hence, $L$ belongs to $\mathcal{U}(E)$ . On the other hand, $L$ is an extension of
each $L_{i}$ , which in turn is an extension of $F_{i}$ . Thus, Eq $(L)\subset Eq(F_{i})$ . So, Eq $(L)$

$\subset\bigcap_{i\in N}Eq$
$(F_{i})$ . Hence Eq $(L)=Eq(mod \Sigma(E))$ . From the similar argument the

second part of our theorem follows.
A field $F$ is called to be absolutely minimal if Eq $(F)$ is the minimum ele-

ment of $\mathcal{T}(Abs(F))$ . A field $F$ is called to be relatively minimal if Eq $(G)=Eq(F)$

for any totally transcendental extension $G$ of $F$. Due to [21], we say that a
field $K$ is a maximally totally transcendental extension of $F$, if $F$ is algebraically
closed in $K$ and $F$ is not algebraically closed in any proper algebraic extension
of $K$.

LEMMA 5.8. 1) If a field $F$ is absolutely minimal then it is relatively minimal.
2) Conversely, if a field $F$ is relatively minimal and is a maximally totally

transcendental extenston of Abs $(F)$ , then it is absolutely minimal. In particular,
if an absolute number field is relatively minimal then it is absolutely minimal.

PROOF. Trivially, 1) holds. Suppose that a field $F$ with the absolute num-
ber field $E$ is relatively minimal and is a maximally totally transcendental ex-
tension of $E$ . Let $K$ be any absolutely minimal field in $\mathcal{U}(E)$ . By Lemma 5.6,
there exists a field $L$ in $\mathcal{U}(E)$ which is an extension of both $F$ and $K$. Clearly,
$L$ is also absolutely minimal. Let $F’$ be the relative algebraic closure of $F$ in
$L$ . Then $F’$ must be a totally transcendental extension of $E$ , since $L\in \mathcal{U}(E)$ .
But the extension $F’/F$ is algebraic, so $F’=F$ by the maximality of $F$. Thus,
$F$ is algebraically closed in $L,$ $i$ . $e$ . $L\in \mathcal{U}(F)$ . Since $F$ is relatively minimal,
Eq $(F)=Eq(L)=Eq(mod \Sigma(E))$ . Hence $F$ is also absolutely minimal.

In [21], Wheeler introduced the important notion of pseudo-algebraically
closed fields. A field $F$ is pseudo-algebraically closed if whenever $I$ is a prime
ideal in a polynomial ring $F[x_{1}, \cdots , x_{m}]$ and $F$ is algebraically closed in the
quotient field of $F[x_{1}, \cdots , x_{m}]/I$, then there is a homomorphism from
$F[x_{1}, \cdots , x_{m}]/I$ into $F$ which is the identity on $F$. A field $F$ is weakly pseudo-
algebraically closed if each nonvoid, absolutely irreducible F-variety has an F-
rational point. A Peld is quasi-perfect if either it has characteristic $0$ or it has
at most one purely inseparable extension of degree $p$ where $p(>0)$ is its
characteristic. Of course, any perfect field is quasi-perfect. Wheeler proved the
following propositions (Theorems 2.2 and 2.3 in [21]).

PROPOSITION 5.9. The following are equivalent for a field $K$ ;
1) $K$ is pseudo-algebraically closed,
2) $K$ is quasz-perfect and weakly pseudo-algebraically closed,
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3) $K$ is existentially complete in each totally transcendental extenston field.
PROPOSITION 5.10. $A$ field $K$ in $\mathcal{U}(F)$ is existentially complete in $\mathcal{U}(F)$ if

$K$ is pseudo-algebraically closed and is a maximally totally transcendental exten-
sion of $F$.

By using these propositions, the following can be proved immediately.

LEMMA 5.11. 1) Any pseudo-algebraically closed field is relatively minimal.
2) Any field $F$ which is existentially complete in $\mathcal{U}(Abs(F))$ is absolutely

minimal.
Since each field has a totally transcendental extension which is pseudo-

algebraically closed, it follows that each field has a totally transcendental exten-
sion which is relatively minimal. We can show that neither the converse of 1)

nor of 2) holds. For, any totally transcendental extension of a given relatively
minimal (or absolutely minimal) field is also relatively minimal (or absolutely
minimal, respectively), while there exists a totally transcendental extension of
a pseudo-algebraically closed (or an existentially complete) field which is not
pseudo-algebraically closed (or existentially complete, respectively).

The following is an important corollary of Weil’s Riemann hypothesis for
curves.

THEOREM 5.12. Let $E$ be any infinite absolute number field of charactenstic
$p>0$ . Then $\mathcal{U}(E)$ is a srngleton set, $i.e$ . $E$ is absolutely minimal. The srmilar
result holds also for universal theories.

PROOF. By using Weil’s theorem on Riemann hypothesis for curves, Ax
proved in [2] that for each inPnite algebraic extension $E$ of a finite field, every
absolutely irreducible E-variety has an E-rational point, $i.e$ . $E$ is weakly pseudo-
algebraically closed. It is obvious that $E$ is also perfect. Thus, $E$ is absolutely
minimal by Proposition 5.9 and Lemma 5.11. 2).

The following corollary says that for every field of characteristic $p>0$ hav-
ing an infinite absolute number field, the converse of Corollary 5.2 holds.

COROLLARY 5.13. For all fields $F$ and $F’$ having the same charactenstic
$p>0$ , if Abs $(F)$ is infinite and isomorphic to Abs $(F’)$ then Eq $(F)=Eq(F’)$ and
$T_{\forall}(F)=T_{\forall}(F’)$ hold.

Compare this with Theorem 4 in Ax [2], which says that Abs $(F)$ is iso-
morphic to Abs $(F’)$ if and only if $F$ is elementarily equivalent to $F’$ , for all
pseudo-finjte fields $F$ and $F’$ . Here, a pseudo-Pnite field means a perfect, pseudo-
algebraically closed field having precisely one extension of each degree. We can’

not expect that the similar result holds for other absolute number fields. But
we can see that a lot of absolute number fields of characteristic $0$ are absolutely
minimal, by using a theorem proved by Jarden [8]. For any field $F$, we denote
by $F_{s}$ the separable closure of $F$. For each n-tuple $(\sigma_{1}, \cdots , \sigma_{n})$ in $\mathcal{G}(F_{s}/F)^{n}$ , where
$\mathcal{G}(F_{s}/F)$ is the Galois group of $F_{s}$ over $F$, let $F_{S}(\sigma_{1}, \cdots , \sigma_{n})$ be the Pxed field in
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$F_{s}$ of automorphisms $\sigma_{1},$
$\cdots$ , $\sigma_{n}$ .

PROPOSITION 5.14 (Jarden). If $F$ is a countable Hilbertian field, then for
almost all $(\sigma_{1}, \cdots , \sigma_{n})\in \mathcal{G}(F_{s}/F)^{n}$ (in the sense of Haar measure $\mu$ on $\mathcal{G}(F_{s}/F)^{n}$

defined with respect to its Krull topology) the fixed field of $\{\sigma_{1}, \cdots , \sigma_{n}\}$ ,
$F_{s}(\sigma_{1}, \cdots , \sigma_{n})$ , is weakly pseudo-algebraically closed.

Recall that every global field is Hilbertian. (As for Hilbertian fields, see
Lang [14] Chapter VIII.) In particular, the field $Q$ of rational numbers is Hil-
bertian. Thus, we have the following.

COROLLARY 5.15. The absolute number field $\tilde{Q}(\sigma_{1}, \cdots , \sigma_{n})$ is absolutely minimal
for almost all $(\sigma_{1}, \cdots , \sigma_{n})\in \mathcal{G}(\tilde{Q}/Q)^{n}$ , where $\tilde{Q}$ denotes the algebraic closure of $Q$ .

A field $F$ has bounded corank if and only if it has only finitely many separa-
ble algebraic extensions of degree $n$ over $F$ for each integer $n\geqq 2$ . Remark
that any absolute number field of characteristic $p>0$ has bounded corank.

THEOREM 5.16. Let $E$ be an absolute number field having bounded corank
such that $[E]$ is recursrve. Then, both Eq $(mod \Sigma(E))$ and $\Theta^{*}(E)$ are decidable.

PROOF. Since $[E]$ is recursive, the theory $T_{E}^{*}$ introduced in [21] is recursively
axiomatized (see [21] \S 4). Moreover, $T_{E}^{*}$ is complete, since $E$ has bounded
corank (see Theorem 4.3 in [21]). Hence, $T_{E}^{*}$ is decidable. Let $F$ be any model
of $T_{E}^{*}$ . Then $F\in \mathcal{U}(E),$ $F$ is existentially complete in $\mathcal{U}(E)$ and Th $(F)=T_{E}^{*}$.
So, Eq $(mod \Sigma(E))=Eq(F)$ and $\Theta^{*}(E)=T_{\forall}(F)$ , and hence they are decidable.

By using Theorem 5.12, we can derive the following (cf. Er ov [4] Theo-
rem 2).

COROLLARY 5.17. Let $F$ be a field of charactemstic $p>0$ having an infinite
absolute number field. Then, the following three con&iions are equivalent;

1) $T_{\forall}(F)$ is decidable,
2) Eq $(F)$ is decrdable,
3) $[F]$ is recursrve.
REMARK. We don’t know whether Eq $(Q)$ , or equivalently $T_{\forall}(Q)$ , is decidable

or not. It should be noticed that the decidability of $T_{\forall}(Q)$ implies the recursive
solvability of the diophantine problem for $Q$ and vice versa. For, in $Q$ and in
fact in any formally real field, we can show that every existential formula (in
$\mathcal{L}),$

$i$ . $e$ . a formula of the form $\exists x_{1}\cdots\exists x_{n}\varphi(x_{1}, \cdots , x_{n})$ with an open fcrmula
$\varphi(x_{1}, \cdots , x_{n})$ , is logically equivalent to a formula of the form

$\exists y_{1}\cdots\exists y_{m}(f(y_{1}, \cdots y_{m})=0)$ ,

where $f(y_{1}, \cdots y_{m})$ is a polynomial with coefficients in $Z$. Now, let $F$ be any
formally real field. Then, the field $F(t)$ of rational functions over $F$ is also
formally real. Combining the above fact with Theorem 5.3, we can give a new
proof of the following result;

for any formally real field $F$, the diophantjne pr0blem for $F(t)$ with co-
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$eJficients$ in $Z$ is recursively solvable if and only if the diophantine pr0blem for
$F$ with coefficients in $Z$ is $recur\alpha vely$ solvable.
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