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On simple groups which are homomorphic images
of multiplicative subgroups of simple
algebras of degree 2
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Let M,(D) be the full matrix algebra of degree 2 over a division algebra D
of characteristic 0. In we proved that if G is a finite multiplicative subgroup
of MyD) with abelian Sylow 2-subgroups, then G is a solvable group. More
generally, in this paper we will determine the non-abelian simple groups S which
are homomorphic images of multiplicative subgroups G of My(D). In we
remarked that abelian subgroups of the Sylow 2-subgroups of G are generated
by at most 2 elements. In particular, the Sylow 2-subgroups possess no abelian
normal subgroups of rank 3, which implies that these 2-groups are generated by
at most 4 elements (see MacWilliams [14]). All simple groups whose Sylow
2-subgroups are generated by at most 4 elements have been determined in
Gorenstein-Harada [7] Using their theorem, we will determine the simple
groups S.

Our main result is as follows.

THEOREM. Let S be a simple group. If there exists a division algebra D of
characteristic 0, a finite multiplicative subgroup G of My(D) and a normal subgroup
N of G satisfying G/N=S, then S is isomorphic to PSL(2, 5) or PSL(2, 9) and N+1.

In the theorem N#1 means the following:

COROLLARY. Let G be a finite group and let K be a field of characteristic
0. If one of the simple components of the group ring KG is the full matrix
algebra of degree 2 over a division algebra, then G is not simple.

The corollary can not be generalized to the full matrix algebra of degree
=3. In fact,

QLPSL(2, 5]=QDM,(Q( 5)DM(QDMQ)
QLA 1=QDM,-,(@Q)D -, n=5.

and

1. Preliminaries.

All division algebras considered in this paper are of characteristic 0. As
usual @ and C denote respectively the rational number field and the complex



564 M. HikARI

number field. By a subgroup of M.(D) we mean a finite multiplicative subgroup
of M,(D). Let D be a division algebra and let K be a field contained in the
center of D. Let G be a subgroup of M,(D). We define Vg(G)=
Saigila;eK, gi=G} as a K-subalgebra of M,(D). Then there is a natural
epimorphism KG—V x(G). Hence Vg(G) is a semi-simple K-subalgebra of M(D).
Let Vx(G)=M, (D)@ --- ©M,,(D,) be the decomposition of Vx(G) into simple
algebras M, (D;). Since V x(G)S My(D), there exist at most 2 orthogonal idem-

potents in V x(G). Thus we have éniéz This means that V x(G)=D,, D,&D,
or My(D,).

(1.1) [(II]). Let D be a division algebra and let K be a subfield of the center
of D. Let G be a subgroup of M,yD). Then we have V x(G)=D,, D,DD, or
My(D,) where Dy, D, are some division algebras.

Now we recall the following results on p-groups.

(1.2) ([10], [A1]). Let p be a prime number. Let P be a p-group which is a
subgroup of My(D).

(1) If P is abelian, then P is generated by at most 2 elements.

(2) If p+2, then P is abelian.

(3) If p=2, then P/[ P, P] is generated by at most 4 elements.

Amitsur proved the following result.

(1.3) 2. Let G be a finite multiplicative subgroup of a division algebra and
let N be a normal subgroup of G. If G/N is simple, then G/N=PSL(2, 5).

We recall the following result.

(1.4) ([(OT]). Let D be a division algebra and let K be a subfield of the center of
D. Let G be a subgroup of My(D) satisfying V xg(G)=My(D) and let N be a normal
subgroup of G. If |N| is odd, then one of the following conditions is satisfied:

(1) G has a subgroup of index 2.

(2) Vk(G) is a division algebra.

Let S be a non-abelian simple group. We define

m(S)={(D, G, N) | D is a division algebra of characteristic 0,

G is a finite multiplicative subgroup of M,(D)
and N is a normal subgroup of G such that G/N=S}.

We assume m(S)#=@. Let (D, G, N) be an element of m(S). By (1.2) the
2-rank of G (the maximal rank of an abelian 2-subgroup) is =2. By MacWilliams
the Sylow 2-subgroups of G are generated by at most 4 elements. Hence
S is one of the simple groups which were listed in Gorenstein-Harada [7].

2. Basic lemma.

Assume S%PSL(2,5) and m(S)=@. Let (Dy, G, N) be an element of m(S)
satisfying |G| <|G’| for any element (D', G’, N')em(S). Since QSthe center
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of Dy, Vo(G)=D,, DiPD, or My(D,) for some division algebras D,, D,. By (1.3)
if Vo(G)=D, or D\@BD,, then S=PSL(2, 5). Therefore Vo(G)=MyD;). We put
D=D, Then (D, G, N) is an element of m(S) such that M,(D)=V¢(G) and
|G| =|G’| for any element (D’, G’, N")em(S). In this section we will prove the
following basic lemma.

LEMMA 2.1. Assume S#PSL2,5) and m(S)# @.

(1) There exists an element (D, G, N) in m(S) such that Veo(G)=MyD) and
|GI=Z |G| for any element (D', G', N)em(S).

For (D, G, N) in (1) we have

(2) [G, G]=G.

(3) N is a 2-group.

4) If SEPSLQ2,7), PSL(2,9), A; nor As, then N is cyclic and N=Z(G).

To show the lemma we will use the following lemma.

LEMMA 2.2. Let S be a simple group. If S is a homomorphic image of a
subgroup of GL(4, 2), then S is isomorphic to one of the following groups:

PSL(2,5), PSL(2,7), PSL(2,9), A; or As.

PrRooF. This may be well known. Here we give a proof. Since
|SIIIGLA, 2)| =2°-32-5-7, by we have that S=PSL(2, 5), PSL(2, 7), PSL(2, 8),
PSL2, 9), A,, Agor PSL(3, 4). But S# PSL(3, 4), because | PSL(3, 4)|=|GL4, 2)|
and PSL(3, )#GL(4, 2). Let £L={(G, N)|GL4, 2)2G>N and G/N=PSL(2, 8)}.
We show that .£.=@. Suppose that L#@. Let (G, N) be an element of L
satisfying |G|=|G’| for any (G’, N)e.L. Since GESGL{, 2)=A,, we may
regard G as a permutation group on X=/{1, 2, ---, 8. We decompose X into
the orbits of G: Xx=x,VUx,\J .- Ux,. And we may assume |2,|#1. Let a
be an element of ¥,. We put G,={geG|gla)=a}. Then G, is a proper sub-
group of G and 1< |G: Go|l=|%,|=<8. If G/N=G./GoNN, then (G,, Gan\N)E.L.
But it is impossible. Therefore 8= |G: Go|=|G/N: Go/Ga\N|>1. This shows
that PSL(2, 8) has a proper subgroup of index =8. But the minimal index of
a proper subgroup of PSL(2,8) is 9 (see (8.28)). Thus we conclude that
S PSL(2, 8).

PrROOF OF LEMMA 2.1. Step 1. We show first that G=[G, G]. Since
G/[G, G] is an abelian group, (D, [G, G], [G, GIn\N)=m(S). The assumption
on (D, G, N) implies G=[G, GJ.

Step 2. Let P be a Sylow p-subgroup of N for a prime p. We show that
P is a normal subgroup of G. Since Ng(P)N=G, we have Ng(P)/Ng(P)NN=
Ng(P)N/N=G/N=S. Then (D, Ng(P), Ne(P)"\N)=m(S), which implies G=Ng(P).
Thus P<G.

Step 3. Next we show that N is a 2-group. Let p be an odd prime and let
P be a Sylow p-subgroup of N. If G has a subgroup H of index 2, then H/HN\N=S.
This means (D, H, HN\N)=m(S), which contradicts the assumption on (D, G, N).
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Then it follows from (1.4) that Vo(P) is a division algebra. Since a p-subgroup
of a division algebra is cyclic, P is cyclic. On the other hand C4(P) <G, because
PJG. Since G/Cgq(P) is isomorphic to a subgroup of the automorphism group of
the cyclic group P, we have (D, Cg(P), Ca(P)N\N)=m(S). Hence G=Cq(P), which
implies PEZ(G). Now let Q be a Sylow p-subgroup of G. Put R=QNZ(N(Q)).
By (1.2) Q is abelian, and by ([5], (20.12)) there exists a normal subgroup G, of
G such that G/G,=R. Since G/G,#S, we have G=G,, and R=1. Hence P=1,
because R2P.

Step 4. Finally we show that if S PSL(2, 5), PSL(2, 7), PSL(2,9), A; nor
Ag, then N is a cyclic 2-group and N=Z(G). If N=Z(G), then NSthe center
of Vo(G)=the center of M(D)=the center of D. Since any finite multiplicative
subgroup of a field is cyclic, N is cyclic. Hence it suffices to show that NEZ(G)
(the converse N2Z(G) can be easily checked). Let us consider a chain of sub-
groups of N, N=N;2N;_;=2 -+ 2N,;2N,=1 such that N;<G and N,;/N;., is an
elementary abelian 2-group for any 7, 1=/=<s. By the induction on 7 we will
prove that N;SZ(G). We assume that N,_,SZ(G). By (1.2) N;/N;., is generated
by at most 4 elements. We can regard Aut(N;/N,_,) as a subgroup of GL(4, 2).
By (2.2) and by our assumption on S it is easy to see that S=Cg(N,;/N;-y)
/Ce(N;/N;-1)N\N. Then we get G=Cg(N;/N;-;). We now put |N;.,|=2!. Let
g€G and xeN,;. Since G=Cg(N;/N;-y), x'g'xgeN,;-;. We set y=x"'g 'xg.
Then g~*xg**=xy*=x because yeN,.,SZ(G) and |N,,|=2! Thus we have
gZ‘ECG(Ni) for any geG. This shows that G/Cg(N,;) is a 2-group. Hence S=
Co(N)/Ca(NINN and (D, Ce(N;), Ca(NIONN)em(S). By the assumption on G
we conclude that G=C4(N,), i.e. N;SZ(G). The proof of the lemma is completed.

3. Quasisimple group of 2-rank =<2.

Let S be a simple group. In this section we assume that m(S)#@ and
S« PSL(2, 5), PSL(2,7), PSL(2,9), A; nor A;. By (2.1) there exists an element
(D, G, N) in m(S) such that G=[G, G], N=Z(G) and N is a cyclic 2-group.
Therefore O(G) (the largest normal subgroup of G of odd order) =1 and G is a
quasisimple group (i.e. G=[G, G] and G/Z(G) is simple) of 2-rank =2 (cf. (1.2)).
These groups G have been studied by Alperin, Brauer, Gorenstein and Harada.

We recall their theorems.

(3.1) (Alperin-Brauer-Gorenstein [1]). If S is a finite simple group of 2-rank
2, then one of the following holds:

(1) S has dihedral Sylow 2-subgroups, and S=PSL(2, q), q odd, or As;

(2) S has quasi-dihedral Sylow 2-subgroups, and S=PSL(3, q), ¢=—1(mod 4),
PSU3, ¢%, g=1(mod 4), or M,;

(3) S has wreathed Sylow 2-subgroups, and S=PSL(3, q), g=1(mod4) or
PSUG, ¢®), g=—1(mod 4); or
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(4) S=PSU3, 4?).

(3.2) (Gorenstein-Harada [7)). If G is a quasisimple group of 2-rank 2 with
O(G)=1, then either G is simple or G is isomorphic to Sp(4, q), q odd.

In the case where 2-rank of G is 1, it is known that a Sylow 2-subgroup P
of G is cyclic or generalized quaternion. Since S=G/N is simple, P/N is dihedral.
Then by (3.1) S=PSL(2, q), q odd. In the case where 2-rank of G is 2, by (3.2),
and by (3.1), G=PSL(2, q), PSL(, q), PSUG, ¢*, q odd, M, PSU(@, 4% or
Sp(4, q), q odd. If ¢ is a power of an odd prime p, the Sylow p-subgroups of
PSL(3, q), PSU(S, ¢* and Sp(4, ¢q) are not abelian. Therefore by (1.2) G PSL(3, ¢),
PSU@3, ¢*) nor Sp(4, q). Hence we have

PROPOSITION 3.3. Let S be a simple group. Assume that m(S)#@D. Then
we have

(1) S=PSL(2, q), q odd, PSU(3, 4%, A,, As or M.

(2) If S=PSU, 4% or M,,, then there exists a division algebra D such that
(D, S, )em(S) and Vo(S)=M,y(D).

4. Proof of theorem.

Let X be an irreducible character of a finite group G. By m(X) we denote
the Schur index of X over Q.

LEMMA 4.1. Let G be a finite group. Then the following conditions are
equivalent :

(1) There exist a division algebra D and a normal subgroup N of G such
that G/INS My(D) and Ve(G/N)=M,yD).

(2) There exists an irreducible character X of G satisfying %(1)=2 m(X).

ProOF. Let M,(D) be a simple component of QG and let X be an irreducible
character of G corresponding to M,(D). Then X(1)=nm(X). From this relation
we can easily see that the conditions (1) and (2) are equivalent.

The character table of SL(2, q), g odd, is well known (see [4], §38), and
the Schur indices of SL(2, ¢) have been determined in Janusz [13].

We use the same notation as in Dornhoff [4], §38.

(4.2) ([(18]). The degrees and the Schur indices of the irreducible character
of SL(2, q), q odd, are as follows;

1 =1, m(l)=1,

2) ¢)=gq, m(g)=1,

3) X()=q+1, mX;)=1 if 1 is even,
m(X;)=2 if 7 is odd,

@) 6,1)=q—1, m(8;)=1 if j is even,

m(0,)=2 if j is odd,
6) &:)=(qg+D/2, mE,=1,
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6) 7:1)=(q—1)/2, m(nx)=1if g=—1 (mod4),
m(ne)=2 if ¢=1 (mod4),

where 1<i<(q—3)/2, 1=j<(¢—1)/2, 1Sk=2.

By (4.2) we can easily find all irreducible characters of SL(2, q) satisfying
2(1)=2m(X).

COROLLARY 4.3. Let X be an irreducible character of SL(2, q), q odd, satisfy-
ing X(1)=2m(X). Then X is one of the following;

(1) 2=&; and q=3, 1=k=2,

(2) X=46, and q=5,

(3) X=9; and ¢=9, 1=k=2.

PROPOSITION 4.4. If m(PSL(Z2, q))* @, q odd, then ¢=5, 7 or 9.

Proor. We assume m(PSL(2, ¢q))+ @ and ¢+5, 7 nor 9. Let (D, G, N) be
an element of m(PSL(2, q)). By (2.1) we may assume that Vo(G)=M,(D) and
G is a central extension of PSL(2, q) with G=[G, G]. It is well known that
there exists an epimorphism from SL(2, ¢) onto G. (See (25.7).) Therefore
Va(G)=M,(D) is a simple component of Q[SL(2, ¢q)]. By (4.1) and (4.3) ¢=5 or
9 (cf. PSL(2, 3) is not simple), which is a contradiction.

LEMMA 4.5. Let H be a non-abelian group of order 21. Let e, be a primi-
tive n-th root of unity. Then

QH=QDQ(eo)DM(Q(e+e7+¢7)) .

In particular H is not a subgroup of My (D) for any division algebra D.

PrROOF. We put H=<a, b|a"=1, b*=1, bab~*=a*>. Let ¢ be the automorphism
of Q(e;) over Q defined by o(e;)=¢% Since there exists an epimorphism from
QH to the cyclic algebra (Q(e;), o, 1) determined by the mapping a—e, and
b—a, we have

QH=QPDQ()D(Q(er), 0, 1)
=QDQ(ea) DM(Qe,+€5+¢?) .

Now we prove the theorem.

THEOREM. Let S be a simple group. Then

(1) m(S)=@ if and only if S=PSL(2,5) or PSL(2, 9).

(2) If (D, G, Nyem(S), then N+1.

PrROOF. We assume that m(S)#@. It follows from (3.3) and (4.4) that S=
PSL(2,5), PSL(2, 7), PSL(2, 9), PSU(3, 4%, A,, A; or M,;. First we suppose that
S=PSL2,7), A; or As. Let (D, G, N)em(S). By (2.1) we may assume that N
is a 2-group. It is easily checked that S contains a non-abelian group of order
21. Thus G contains a non-abelian group of order 21, which contradicts (4.5).
Therefore m(PSL(2, 7))=m(A,)=m(A)=@. Since PSL(2, 11) is isomorphic to a
subgroup of My, (see [6]) and m(PSL(2, 11))=@ by (4.4), we obtain m(M;)=0.
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Finally we assume that m(PSU(, 42))+@. By (3.3) we can find a division
algebra D such that (D, PSUG, 4%, )em(PSU(3, 4?) and V¢(PSU(3, 4%)= M,(D).
Let X be an irreducible character of PSU(3, 4% corresponding to M,(D). Then,
as shown by Gow [8], m(X)=1 except only one character X of degree 12 with
m(X)=2. By (4.1) we have m(X)=1, and D is an algebraic number field. Hence
PSU@, 4%) is a subgroup of GL(2, C), but it is impossible (see (26.1)).
Therefore m(PSU(3, 4*))=¢. Thus we find that if m(S)#@, then S=PSL({2, 5)
or PSL(2,9).

The assertion (2) and the converse of (1) follow directly from (4.3).
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