
J. Math. Soc. Japan
Vol. 35, No. 3, 1983

On simple groups which are homomorphic images
of multiplicative subgroups of simple

algebras of degree 2

By Michitaka HIKARI

(Received July 12, 1982)

Let $M_{2}(D)$ be the full matrix algebra of degree 2 over a division algebra $D$

of characteristic $0$ . In [11] we proved that if $G$ is a finite multiplicative subgroup
of $M_{2}(D)$ with abelian Sylow 2-subgroups, then $G$ is a solvable group. More
generally, in this paper we will determine the non-abelian simple groups $S$ which
are homomorphic images of multiplicative subgroups $G$ of $M_{2}(D)$ . In [10] we
remarked that abelian subgroups of the Sylow 2-subgroups of $G$ are generated
by at most 2 elements. In particular, the Sylow 2-subgroups possess no abelian
normal subgroups of rank 3, which implies that these 2-groups are generated by
at most 4 elements (see MacWilliams [14]). All simple groups whose Sylow
2-subgroups are generated by at most 4 elements have been determined in
Gorenstein-Harada [7]. Using their theorem, we will determine the simple
groups $S$ .

Our main result is as follows.
THEOREM. Let $S$ be a $\alpha mple$ group. If there exists $a$ &vision algebra $D$ of

characteristic $0$, a finite multipljcatjve subgroup $G$ of $M_{2}(D)$ and a normal subgroup
$N$ of $G$ satisfying $G/N\cong S$ , then $S$ is isomorphic to $PSL(2,5)$ or $PSL(2,9)$ and $N\neq 1$ .

In the theorem $N\neq 1$ means the following:
COROLLARY. Let $G$ be a finite group and let $K$ be a field of charactenstic

$0$ . If one of the $\alpha mple$ components of the group nng $KG$ is the full matnx
algebra of degree 2 over a diviston algebra, then $G$ is not $\alpha mple$ .

The corollary can not be generalized to the full matrix algebra of degree
$\geqq 3$ . In fact,

$Q[PSL(2,5)]\cong Q\oplus M_{3}(Q(\sqrt{5}))\oplus M_{4}(Q)\oplus M_{5}(Q)$

and
$Q[A_{n}]\cong Q\oplus\Lambda f_{n-1}(Q)\oplus\cdots$ , $n\geqq 5$ .

1. Preliminaries.

All division algebras considered in this paper are of characteristic $0$ . As
usual $Q$ and $C$ denote respectively the rational number field and the complex
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number field. By a subgroup of $M_{2}(D)$ we mean a finite multiplicative subgroup
of $M_{2}(D)$ . Let $D$ be a division algebra and let $K$ be a field contained in the
center of $D$ . Let $G$ be a subgroup of $M_{2}(D)$ . We define $V_{K}(G)=$

$\{\sum\alpha_{i}g_{i}|\alpha_{t}\in K, g_{i}\in G\}$ as a K-subalgebra of $M_{2}(D)$ . Then there is a natural
epimorphism $KGarrow V_{K}(G)$ . Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{2}(D)$ .
Let $V_{K}(G)\cong M_{n_{1}}(D_{1})\oplus\cdots\oplus M_{n_{t}}(D_{t})$ be the decomposition of $V_{K}(G)$ into simple
algebras $M_{n_{i}}(D_{i})$ . Since $V_{K}(G)\subseteqq M_{2}(D)$ , there exist at most 2 orthogonal idem-

potents in $V_{K}(G)$ . Thus we have $\sum_{i=1}^{t}n_{i}\leqq 2$ . This means that $V_{K}(G)\cong D_{1},$ $D_{1}\oplus D_{2}$

or $M_{2}(D_{1})$ .
(1.1) ([11]). Let $D$ be a division algebra and let $K$ be a subfield of the center

of D. Let $G$ be a subgroup of $M_{2}(D)$ . Then we have $V_{K}(G)\cong D_{1},$ $D_{1}\oplus D_{2}$ or
$M_{2}(D_{1})$ where $D_{1},$ $D_{2}$ are some division algebras.

Now we recall the following results on $p$-groups.
(1.2) ([10], [11]). Let $p$ be a prime number. Let $P$ be a p-group which is a

subgroup of $M_{2}(D)$ .
(1) If $P$ is abelian, then $P$ is generated by at most 2 elements.
(2) If $p\neq 2$, then $P$ is abelian.
(3) If $p=2$, then $P/[P, P]$ is generated by at most 4 elements.
Amitsur proved the following result.
(1.3) ([2]). Let $G$ be a finite multiplicative subgroup of a diviston algebra and

let $N$ be a normal subgroup of G. If $G/N$ is srmple, then $G/N\cong PSL(2,5)$ .
We recall the following result.
(1.4) ([11]). Let $D$ be $a$ &vision algebra and let $K$ be a subfield of the center of

D. Let $G$ be a subgroup of $M_{2}(D)$ satisfying $V_{K}(G)=M_{2}(D)$ and let $N$ be a normal
subgroup of G. If $|N|$ is odd, then one of the following conditions is satisfied:

(1) $G$ has a subgroup of index 2.
(2) $V_{K}(G)$ is $a$ $\ vi_{\Omega}on$ algebra.
Let $S$ be a non-abelian simple group. We define
$m(S)=\{(D, G, N)|D$ is a division algebra of characteristic $0$ ,

$G$ is a finite multiplicative subgroup of $M_{2}(D)$

and $N$ is a normal subgroup of $G$ such that $G/N\cong S$}.

We assume $m(S)\neq\emptyset$ . Let $(D, G, N)$ be an element of $m(S)$ . By (1.2) the
2-rank of $G$ (the maximal rank of an abelian 2-subgroup) is $\leqq 2$ . By MacWilliams
[14] the Sylow 2-subgroups of $G$ are generated by at most 4 elements. Hence
$S$ is one of the simple groups which were listed in Gorenstein-Harada [7].

2. Basic lemma.

Assume $S\neq PSL(2,5)$ and $m(S)\neq\emptyset$ . Let $(D_{0}, G, N)$ be an element of $m(S)$

satisfying $|G|\leqq|G’|$ for any element $(D’, G’, N’)\in m(S)$ . Since $Q\subseteqq the$ center
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of $D_{0},$ $V_{Q}(G)\cong D_{1},$ $D_{1}\oplus D_{2}$ or $M_{2}(D_{1})$ for some division algebras $D_{1},$ $D_{2}$ . By (1.3)

if $V_{Q}(G)\cong D_{1}$ or $D_{1}\oplus D_{2}$ , then $S\cong PSL(2,5)$ . Therefore $V_{Q}(G)\cong M_{2}(D_{1})$ . We put
$D=D_{1}$ . Then $(D, G, N)$ is an element of $m(S)$ such that $M_{2}(D)=V_{Q}(G)$ and
$|G|\leqq|G’|$ for any element $(D’, G’, N’)\in m(S)$ . In this section we will prove the
following basic lemma.

LEMMA 2.1. Assume $S\neq PSL(2,5)$ and $m(S)\neq\emptyset$ .
(1) There exists an element $(D, G, N)$ in $m(S)$ such that $V_{Q}(G)=M_{2}(D)$ and

$|G|\leqq|G’|$ for any element $(D’, G’, N’)\in m(S)$ .
For $(D, G, N)$ in (1) we have
(2) $[G, G]=G$ .
(3) $N$ is a 2-group.
(4) If $S\neq PSL(2,7),$ $PSL(2,9),$ $A_{7}$ nor $A_{8}$ , then $N$ is cyclic and $N=Z(G)$ .
To show the lemma we will use the following lemma.
LEMMA 2.2. Let $S$ be a $\alpha mple$ group. If $S$ is a homomorphic image of a

subgroup of $GL(4,2)$ , then $S$ is isomorphjc to one of the following groups:
$PSL(2,5),$ $PSL(2,7),$ $PSL(2,9),$ $A_{7}$ or $A_{8}$ .
PROOF. This may be well known. Here we give a proof. Since

$|S|||GL(4,2)|=2^{6}\cdot 3^{2}\cdot 5\cdot 7$ , by [3] we have that $S\cong PSL(2,5),$ $PSL(2,7),$ $PSL(2,8)$ ,
$PSL(2,9),$ $A_{7},$ $A_{8}$ or $PSL(3,4)$ . But $S\neq PSL(3,4)$ , because $|PSL(3,4)|=|GL(4,2)|$

and $PSL(3,4)\neq GL(4,2)$ . Let $\mathcal{L}=$ { $(G,$ $N)|GL(4,2)\supseteqq G\triangleright N$ and $G/N\cong PSL(2,8)$}.
We show that $x=\emptyset$ . Suppose that $X\neq\emptyset$ . Let $(G, N)$ be an element of $X$

satisfying $|G|\leqq|G’|$ for any $(G’, N’)\in X$ . Since $G\subseteqq GL(4,2)\cong A_{8}$ , we may
regard $G$ as a permutation group on $\mathfrak{X}=\{1,2, \cdots , 8\}$ . We decompose $\mathfrak{X}$ into
the orbits of $G;\mathfrak{X}=\mathfrak{X}_{1}\cup \mathfrak{X}_{2}\cup\cdots\cup \mathfrak{X}_{n}$ . And we may assume $|\mathfrak{X}_{1}|\neq 1$ . Let $a$

be an element of $\mathfrak{X}_{1}$ . We put $G_{a}=\{g\in G|g(a)=a\}$ . Then $G_{a}$ is a proper sub-
group of $G$ and $1<|G:G_{a}|=|\mathfrak{X}_{1}|\leqq 8$ . If $G/N=G_{a}/G_{a}\cap N$, then $(G_{a}, G_{a}\cap N)\in \mathcal{L}$ .
But it is impossible. Therefore $8\geqq|G:G_{a}|\geqq|G/N:G_{a}/G_{a}\cap N|>1$ . This shows
that $PSL(2,8)$ has a proper subgroup of index $\leqq 8$ . But the minimal index of
a proper subgroup of $PSL(2,8)$ is 9 (see [12] (8.28)). Thus we conclude that
$S\neq PSL(2,8)$ .

PROOF OF LEMMA 2.1. Step 1. We show first that $G=[G, G]$ . Since
$G/[G, G]$ is an abelian group, $(D, [G, G], [G, G]\cap N)\in m(S)$ . The assumption
on $(D, G, N)$ implies $G=[G, G]$ .

Step 2. Let $P$ be a Sylow $P$-subgrouP of $N$ for a prime $p$ . We show that
$P$ is a normal subgroup of $G$ . Since $N_{G}(P)N=G$ , we have $N_{G}(P)/N_{G}(P)\cap N\cong$

$N_{G}(P)N/N=G/N\cong S$ . Then $(D, N_{G}(P),$ $N_{G}(P)\cap N)\in m(S)$ , which implies $G=N_{G}(P)$ .
Thus $P\triangleleft G$ .

Step 3. Next we show that $N$ is a 2-group. Let $P$ be an odd prime and let
$P$ be a Sylow $P$-subgroup of $N$. If $G$ has a subgroup $H$ of index 2, then $H/H\cap N\cong S$.
This means $(D, H, H\cap N)\in m(S)$ , which contradicts the assumption on $(D, G, N)$ .
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Then it follows from (1.4) that $V_{Q}(P)$ is a division algebra. Since a p-subgroup
of a division algebra is cyclic, $P$ is cyclic. On the other hand $C_{G}(P)\triangleleft G$ , because
$P\triangleleft G$ . Since $G/C_{G}(P)$ is isomorphic to a subgroup of the automorphism group of
the cyclic group $P$, we have $(D, C_{G}(P),$ $C_{G}(P)\cap N)\in m(S)$ . Hence $G=C_{G}(P)$ , which
implies $P\subseteqq Z(G)$ . Now let $Q$ be a Sylow $P$-subgroup of $G$ . Put $R=Q\cap Z(N_{G}(Q))$ .
By (1.2) $Q$ is abelian, and by ([5], (20.12)) there exists a normal subgroup $G_{0}$ of
$G$ such that $G/G_{0}\cong R$ . Since $G/G_{0}\neq S$, we have $G=G_{0}$ , and $R=1$ . Hence $P=1$ ,
because $R\supseteqq P$.

Step 4. Finally we show that if $S\not\cong PSL(2,5),$ $PSL(2,7),$ $PSL(2,9),$ $A_{7}$ nor
$A_{8}$ , then $N$ is a cyclic 2-group and $N=Z(G)$ . If $N=Z(G)$ , then $N\subseteqq the$ center
of $V_{Q}(G)=the$ center of $M_{2}(D)=the$ center of $D$ . Since any finite multiplicative
subgroup of a field is cyclic, $N$ is cyclic. Hence it suffices to show that $N\subseteqq Z(G)$

(the converse $N\supseteqq Z(G)$ can be easily checked). Let us consider a chain of sub-
groups of $N,$ $N=N_{s}\supseteqq N_{s-1}\supseteqq\ldots\supseteqq N_{1}\supseteqq N_{0}=1$ such that $N_{i}\triangleleft G$ and $N_{i}/N_{i-1}$ is an
elementary abelian 2-group for any $i,$ $1\leqq i\leqq s$ . By the induction on $i$ we will
prove that $N_{i}\subseteqq Z(G)$ . We assume that $N_{i-1}\subseteqq Z(G)$ . By (1.2) $N_{i}/N_{i-1}$ is generated
by at most 4 elements. We can regard $Aut(N_{i}/N_{i-1})$ as a subgroup of $GL(4,2)$ .
By (2.2) and by our assumption on $S$ it is easy to see that $S\cong C_{G}(N_{i}/N_{i-1})$

$/C_{G}(N_{i}/N_{i-1})\cap N$. Then we get $G=C_{G}(N_{i}/N_{i-1})$ . We now put $|N_{i-1}|=2^{t}$ . Let
$g\in G$ and $x\in N_{i}$ . Since $G=C_{G}(N_{i}/N_{i-1}),$ $x^{-1}g^{-1}xg\in N_{i-1}$ . We set $y=x^{-1}g^{-1}xg$ .
Then $g^{-2^{t}}xg^{2^{t}}=xy^{2}=x\iota$ because $y\in N_{i-1}\subseteqq Z(G)$ and $|N_{i-1}|=2^{t}$ . Thus we have
$g^{2^{t}}\in C_{G}(N_{i})$ for any $g\in G$ . This shows that $G/C_{G}(N_{i})$ is a 2-group. Hence $S\cong$

$C_{G}(N_{i})/C_{G}(N_{i})\cap N$ and $(D, C_{G}(N_{i}),$ $C_{G}(N_{i})\cap N)\in m(S)$ . By the assumption on $G$

we conclude that $G=C_{G}(N_{i}),$ $i$ . $e$ . $N_{i}\subseteqq Z(G)$ . The proof of the lemma is completed.

3. Quasisimple group of 2-rank $\leqq 2$ .
Let $S$ be a simple group. In this section we assume that $m(S)\neq\emptyset$ and

$S\neq PSL(2,5),$ $PSL(2,7),$ $PSL(2,9),$ $A_{7}$ nor $A_{8}$ . By (2.1) there exists an element
$(D, G, N)$ in $m(S)$ such that $G=[G, G],$ $N=Z(G)$ and $N$ is a cyclic 2-group.
Therefore $O(G)$ (the largest normal subgroup of $G$ of odd order) $=1$ and $G$ is a
quasisimple group ( $i.e$ . $G=[G,$ $G]$ and $G/Z(G)$ is simple) of 2-rank $\leqq 2$ (cf. (1.2)).

These groups $G$ have been studied by Alperin, Brauer, Gorenstein and Harada.
We recall their theorems.
(3.1) (Alperin-Brauer-Gooenstein [1]). If $S$ is a finite szmple group of 2-rank

2, then one of the following holds:
(1) $S$ has dihedral Sylow 2-subgroups, and $S\cong PSL(2, q),$ $q$ odd, or $A_{7}$ ;
(2) $S$ has quasi-dihedral Sylow 2-subgroups, and $S\cong PSL(3, q),$ $q\equiv-1(mod 4)$ ,

$PSU(3, q^{2}),$ $q\equiv 1$ (mod4), or $M_{11}$ ;
(3) $S$ has wreathed Sylow 2-subgroups, and $S\cong PSL(3, q),$ $q\equiv 1(mod 4)$ or

$PSU(3, q^{2}),$ $q\equiv-1(mod 4)$ ; or
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(4) $S\cong PSU(3,4^{2})$ .
(3.2) (Gorenstein-Harada [7]). If $G$ is a quasisimple group of 2-rank 2 with

$O(G)=1$ , then either $G$ is simple or $G$ is isomorphic to $sp(4, q),$ $q$ odd.
In the case where 2-rank of $G$ is 1, it is known that a Sylow 2-subgroup $P$

of $G$ is cyclic or generalized quaternion. Since $S\cong G/N$ is simple, $P/N$ is dihedral.
Then by (3.1) $S\cong PSL(2, q),$ $q$ odd. In the case where 2-rank of $G$ is 2, by (3.2),

and by (3.1), $G\cong PSL(2, q),$ $PSL(3, q),$ PS $U(3, q^{2}),$ $q$ odd, $M_{11},$ $PSU(3,4^{2})$ or
$sp(4, q),$ $q$ odd. If $q$ is a power of an odd prime $p$, the Sylow $P$-subgroups of
$PSL(3, q),$ $PSU(3, q^{2})$ and $SP(4, q)$ are not abelian. Therefore by (1.2) $G\neq PSL(3, q)$ ,
$PSU(3, q^{2})$ nor $Sp(4, q)$ . Hence we have

PROPOSITION 3.3. Let $S$ be a simple group. Assume that $m(S)\neq\emptyset$ . Then
we have

(1) $S\cong PSL(2, q),$ $q$ odd, PS $U(3,4^{2}),$ $A_{7},$ $A_{8}$ or $M_{11}$ .
(2) If $S\cong PSU(3,4^{2})$ or $M_{11}$ , then there exists a division algebra $D$ such that

$(D, S, 1)\in m(S)$ and $V_{Q}(S)=M_{2}(D)$ .

4. Proof of theorem.

Let $\chi$ be an irreducible character of a finite group $G$ . By $m(\chi)$ we denote
the Schur index of $\chi$ over $Q$ .

LEMMA 4.1. Let $G$ be a finite group. Then the following conditions are
equivalent:

(1) There exzst a division algebra $D$ and a normal subgroup $N$ of $G$ such
that $G/N\subseteqq M_{2}(D)$ and $V_{Q}(G/N)=M_{2}(D)$ .

(2) There exists an irreducible character $\chi$ of $G$ satisfying $\chi(1)=2m(\chi)$ .
PROOF. Let $M_{n}(D)$ be a simple component of $QG$ and let $\chi$ be an irreducible

character of $G$ corresponding to $M_{n}(D)$ . Then $\chi(1)=nm(\chi)$ . From this relation
we can easily see that the conditions (1) and (2) are equivalent.

The character table of $SL(2, q),$ $q$ odd, is well known (see [4], \S 38), and
the Schur indices of $SL(2, q)$ have been determined in Janusz [13].

We use the same notation as in Dornhoff [4], \S 38.
(4.2) ([13]). The degrees and the Schur indices of the irreducible character

of $SL(2, q),$ $q$ odd, are as follows;

(1) $1(1)=1$ , $m(1)=1$ ,
(2) $\psi(1)=q$, $m(\psi)=1$ ,
(3) $\chi_{i}(1)=q+1$ , $m(\chi_{i})=1$ if $i$ is even,

$m(\chi_{i})=2$ if $i$ is odd,
(4) $\theta_{j}(1)=q-1$ , $m(\theta_{j})=1$ if $j$ is even,

$m(\theta_{j})=2$ if $j$ is odd,
(5) $\xi_{k}(1)=(q+1)/2$ , $m(\xi_{k})=1$ ,
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(6) $\eta_{k}(1)=(q-1)/2$, $m(\eta_{k})=1$ if $q\equiv-1(mod 4)$ ,
$m(\eta_{k})=2$ if $q\equiv 1(mod 4)$ ,

where $1\leqq t\leqq(q-3)/2,1\leqq j\leqq(q-1)/2,1\leqq k\leqq 2$ .
By (4.2) we can easily find all irreducible characters of $SL(2, q)$ satisfying

$\chi(1)=2m(\chi)$ .
COROLLARY 4.3. Let $\chi$ be an irreducible character of $SL(2, q),$ $q$ odd, satisfy-

ing $\chi(1)=2m(\chi)$ . Then $\chi$ is one of the following;

(1) $x=\xi_{k}$ and $q=3,1\leqq k\leqq 2$ ,
(2) $x=\theta_{1}$ and $q=5$,
(3) $x=\eta_{k}$ and $q=9,1\leqq k\leqq 2$ .
PROPOSITION 4.4. If $m(PSL(2, q))\neq\emptyset,$ $q$ odd, then $q=5,7$ or 9.
PROOF. We assume $m(PSL(2, q))\neq\emptyset$ and $q\neq 5,7$ nor 9. Let $(D, G, N)$ be

an element of $m(PSL(2, q))$ . By (2.1) we may assume that $V_{Q}(G)=M_{2}(D)$ and
$G$ is a central extension of $PSL(2, q)$ with $G=[G, G]$ . It is well known that
there exists an epimorphism from $SL(2, q)$ onto G. (See [12] (25.7).) Therefore
$V_{Q}(G)=M_{2}(D)$ is a simple component of $Q[SL(2, q)]$ . By (4.1) and (4.3) $q=5$ or
9 (cf. $PSL(2,3)$ is not simple), which is a contradiction.

LEMMA 4.5. Let $H$ be a non-abelian group of order 21. Let $\epsilon_{n}$ be a primi-
tive n-th root of unity. Then

$QH\cong Q\oplus Q(\epsilon_{3})\oplus M_{3}(Q(\epsilon_{7}+\epsilon_{7}^{2}+\epsilon_{7}^{4}))$ .
In particular $H$ is not a subgroup of $M_{2}(D)$ for any division algebra $D$ .
PROOF. We put $H=$ \langle $a,$ $b|a^{7}=1,$ $b^{3}=1,$ bab $=a^{2}\rangle$ . Let $\sigma$ be the automorphism

of $Q(\epsilon_{7})$ over $Q$ dePned by $\sigma(\epsilon_{7})=\epsilon_{7}^{2}$ . Since there exists an epimorphism from
$QH$ to the cyclic algebra $(Q(\epsilon_{7}), \sigma, 1)$ determined by the mapping $aarrow\epsilon_{7}$ and
$barrow\sigma$ , we have

$QH\cong Q\oplus Q(\epsilon_{3})\oplus(Q(\epsilon_{7}), \sigma, 1)$

$\cong Q\oplus Q(\epsilon_{3})\oplus M_{3}(Q(\epsilon_{7}+\epsilon_{7}^{2}+\epsilon_{7}^{4}))$ .

Now we prove the theorem.
THEOREM. Let $S$ be a simple group. Then
(1) $m(S)\neq\emptyset$ if and only if $S\cong PSL(2,5)$ or $PSL(2,9)$ .
(2) If $(D, G, N)\in m(S)$ , then $N\neq 1$ .
PROOF. We assume that $m(S)\neq\emptyset$ . It follows from (3.3) and (4.4) that $S\cong$

$PSL(2,5),$ $PSL(2,7),$ $PSL(2,9),$ $PSU(3,4^{2}),$ $A_{7},$ $A_{8}$ or $M_{11}$ . First we suppose that
$S\cong PSL(2,7),$ $A_{7}$ or $A_{8}$ . Let $(D, G, N)\in m(S)$ . By (2.1) we may assume that $N$

is a 2-group. It is easily checked that $S$ contains a non-abelian group of order
21. Thus $G$ contains a non-abelian group of order 21, which contradicts (4.5).

Therefore $m(PSL(2,7))=m(A_{7})=m(A_{8})=\emptyset$ . Since $PSL(2,11)$ is isomorphic to a
subgroup of $M_{11}$ (see [6]) and $m(PSL(2,11))=\emptyset$ by (4.4), we obtain $m(M_{11})=\emptyset$ .
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Finally we assume that $m(PSU(3,4^{2}))\neq\emptyset$ . By (3.3) we can find a division
algebra $D$ such that $(D, PSU(3,4^{2}), 1)\in m(PSU(3,4^{2}))$ and $V_{Q}(PSU(3,4^{2}))=M_{2}(D)$ .
Let $\chi$ be an irreducible character of $PSU(3,4^{2})$ corresponding to $M_{2}(D)$ . Then,
as shown by Gow [8], $m(\chi)=1$ except only one character $\chi$ of degree 12 with
$m(\chi)=2$ . By (4.1) we have $m(\chi)=1$ , and $D$ is an algebraic number field. Hence
$PSU(3,4^{z})$ is a subgroup of $GL(2, C)$ , but it is impossible (see [4] (26.1)).

Therefore $m(PSU(3,4^{2}))=\emptyset$ . Thus we find that if $m(S)\neq\emptyset$ , then $S\cong PSL(2,5)$

or PS$L(2,9)$ .
The assertion (2) and the converse of (1) follow directly from (4.3).
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