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The mapping cone method and the
Hattori-Villamayor-Zelinsky sequences
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The mapping cone method, which is originally due to MacLane [8], is fully
developed in Hattori [4]. Let U be the multiplicative group and let Pic be the
Picard group functor. Assume we have an exact sequence of abelian group
functors on commutative rings:

f
o)) 0—> U—> A—> B—> Pic —> 0.

(Amitsur case). Let S/R be an extension of commutative rings, and let
S?*=S®pr - ®rS (n terms) for n=1, 2, ---. Applying (1) to the Amitsur semi-
simplicial complex

—_—
_>
S—rSE=3X S —> ...
we get an exact sequence of complexes

/
2) 0— U(S) —> A(S) —> B(S") —> Pic(S") —= 0
which yields, in view of [4, Theorem 1.3], a long exact sequence
@) - —>H™S/R,U)—>H"(M(f))—>H""S/R, Pic)—>H"*(S/R,U)—> -
where M(f) is the mapping cone of (2) (with degree lowered by one) and
H'(S/R, —) means the Amitsur cohomology.
(Galois case). Let G be a group acting as automorphisms of a commutative
ring R. (1) gives an exact sequence of G-modules
I
4) 0— U(R) —> A(R) —> B(R) —> Pic(R) —> 0.
Applying [4, Proposition 2.1] to (4), we get a long exact sequence
6) - —HYG,UR)—>H"G, /)—>H" G, Pic(R))—>H"*{(G,U(R))—> -

where H'(G, U(R)) and H'(G, Pic(R)) are the Galois cohomology groups.
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(H™(G, f) here means H* G, f) of [4].)
On the other hand, we have the Amitsur Pic-U sequence [12],
6) - —> H™S/R,U)—> H"(J)—> H""¥S/R, Pic)—> H"*(S/R, U)—> -
in the Amitsur case, and the Galois Pic-U sequence [2]
@ o —HYG,UR)—>H"(R, G)—> H" (G, Pic(R))—>H"*Y(G, U(R))—> --

in the Galois case. The above sequences are generalizations of the Chase-
Rosenberg seven term exact sequences.

The purpose of this paper is to show that there is an exact sequence (1)
such that there are isomorphisms of sequences

@) - —>H"(S/R, U)—H"(M(f))—>H""X(S/R, Pic)—>H"*Y(S/R, U)—> -

H 2 H H

6) -+ —>H"(S/R,U)—> H™(J) —>H""Y(S/R, Pic)—>H"*S/R, U)—> ---

for any ring extension S/R, and

(5) +—>H™G, UR)—>H™G, f)—>H""'(G, Pic(R)—>H™(G, U(R))—> -

| : H |

7 - —>HYG, UR)—> H*R,G)—H"" (G, Pic(R))—> H"*(G, U(R))—> -+

for any pair (G, R) with group G acting on ring R.

Similar results are proved by Hattori [4, 5] in some arithmetic cases, and
used to give many applications in algebraic number theory. Our method is
based on the coherence theorem in categories with abelian group structure due
to Ulbrich [11]. The article was prepared while K.-H. Ulbrich visited Princeton
in March, 1981. I am grateful to him for many useful comments.

§1. Construction.

Fix an infinite set 2. For a commutative ring R, let R2 be the free R-
module with basis £. Let I be the set of all direct summand R-submodules
MCRQ which are invertible, i.e., projective of rank one. Let @ic(R) be the
category of all invertible R-modules and isomorphisms.

1.1. DEFINITION. A group-like set is a quadruple (G, 4+, —, 0) where G is
a set, 0=G, and

+:GXG— G, —:G—>G
are maps.

Homomorphisms of group-like sets are defined in an obvious manner. For
each set I, there is a group-like set F(I) containing I such that for any group-
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like set G, any map [—G extends uniquely to a homomorphism F(I)—G. F()
is called the free group-like set on I.

For a commutative ring R, Pic(R) has an abelian group structure [10]. We
denote the structure functors by

+ 1 Pue(R)X Pic(R) —> Puc(R),
— 1 Piec(R) —> Pic(R)

where M+N=M®XzN and —M=Homgz(M, R). Thus Ob(®Pic(R)) is a group-like
class with R as 0. Let

e: F(Ip) —> Ob(Qic(R))

be the homomorphism where ¢|/g is the inclusion. We will use map ¢ to define
a new category Pic(R).
Take F(Iz) as the set of objects in Pic(R). For u, v in F(Ig), let

Pic(R)(u, v)=Pic(R)(e(u), e®)).

With composite obviously defined, we have a small category Pic(R) together
with an equivalence functor

g: Pic(R) —> Pic(R)

where ¢(f)=/f for any morphism f in Pic(R).

@ic(R) inherits an abelian group structure from @ic(R) as follows: If
f:u—v and g: u’—v’ are maps in Pic(R), define f+g: utu'—v+v’ and —f:
—u——v by the rule e(f+g)=e(f)+e(g) and e(—f)=—e(f). This gives rise to
functors + : Pic(R) X Pic(R)—Pic(R) and — : Pic(R)—Pic(R). For u, v, weF(y),
the natural isomorphisms

Qu,vw: (U+0)+w —> ut+w),
Cuv: U+v—v+u,
ey U+0 — u,
Iyt ut+(—u)y—>0

are defined by €(@u. 0, w) =0, e, ewr, E(Cu.v)=Ceqwy,cm, €tC., by using the corre-
sponding natural isomorphisms ap,q,n, Cp g, €tc. in Pic(R). This gives Pic(R)
an abelian group structure, and e : Pic(R)—Pic(R) becomes a homomorphism [10]
whose structure natural transformations are identities. Such a homomorphism
is called strict.

1.2. DEFINITION. Let Pic(R)*¢ be the smallest subcategory of Pic(R) such
that Ob(Pic(R)*)=0b(Pic(R)) and Mor(Pic(R)™?) is closed under + and —
containing @y, v w, Cu.v Cu, fv together with their inverses for all u, v, weF{p).
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Morphisms in Pic(R)®? are called reduced.

The following is a special case of the coherence theorem due to Ulbrich [11].
For a simpler proof, see Laplaza [6] Ulbrich also has an improved proof (oral
communication). Different approaches to coherence are found in [1, pp. 246-247],
[12, §31.

1.3. THEOREM. For any u, veEF(ly), there is one reduced morphism u—v
at most.

We are now ready to define the sequence of abelian groups

ir fr TR .
(1.4) 0 U(R) A(R) B(R) Pic(R) — 0

for any commutative ring R.
Let B(R)=ZIy be the free abelian group on Iz and let 7z be the canonic

projection. We may view B(R) as the quotient set of F(Iz) by the equivalence
relation: wu~wv if there is a reduced morphism u—v. We denote by

ur——>[ul, F(g—> B(R)
the canonical surjection. '

Let A(R) be the quotient set of the set A(R) of all pairs (u, a) with uF([g)
and a: u—0 in Pwc(R) by the equivalence relation: (u, a)~(v, b) if there is a
reduced morphism ¢: u—v such that a=b-c. Let [u, a] denote the equivalence
class of (u, a). We make A(R) into an abelian group. For (u, a), (v, b) in A(R),
let

(u, a)+@, b)=(u+v, {-(a+b))

where {: 0+0—0 is the reduced map. If (, a)~(u’, a’) and (v, b)~(’, b’), then
(u, a)+@, by~w’, a’)+@’, b’). Hence addition on A(R)

Lu, a]+[v, b]=class of (u, a)+(, b)
is well-defined. It follows easily by the definition of Pic(R) 4 that A(R) becomes
an abelian group. The unit is [0, id].

We will define homomorphisms fr and 7z For [u, a¢] in A(R), and » in
U(R), we put

frlu, al=[u],  i=(r)=[0, »]

where we use the usual identification
Pic(R)(0, 0)=Pic(R)(0, 0)=U(R).

Maps fr and 7r are well-defined, and seen to be homomorphisms.
It is easy to show that is exact.

Next, we make A and B into group functors on commutative rings so that
ir, fr, mr are natural in R.
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Let ¢: R—S be a homomorphism of commutative rings. Extend it to the
semilinear map

$: RQ —> SQ

which is the identity on Q. If M&lg, then S-¢(M)els since SQrM=S-¢(M).
Put
¢: M— S-¢p(M), Ip—>Ig

and extend it to the homomorphism of group-like sets
é: F(p) —> F(y).
We have a homomorphism [10, p. 137]

¢: M—> SReM,  Pic(R) —> Pic(S).
Let

ar.q: $(P+Q) —> $(P)+4(Q),
Br: $(—P) —> —§(P),
7: ¢0g) —> Og (where 0p=R, 05=2S)
denote the structure of @, for P, Q in Pic(R). We define a map in Pic(S)

£y dle(w)) —> e(g(w))

for ueF(Iz) as follows:

i) §u+v:(5u+§o)°ae(u>,sw)y

i) &u=(—€wBecw

i) =7,

iv) & SQrM(=¢(M)) —> S-¢(M)(=F(M)) is the canonical isomorphism
if Melp.

Since F(Ig) is the free group-like set on Ig, there is a unique family of maps
{€u} ucrrg satisfying i)~iv).
15. LEMMA. We can make ¢:F(Ip)—F(s) into a functor &: Pic(R)—
Pic(S) in such a way that
E:de —>¢d

becomes a natural isomorphism. Then the functor ¢ becomes a strict homomor-
phism, and & is an isomorphism of homomorphisms. In particular, & preserves
reduced maps.

PrROOF. Let g: u—v be a map in Pic(R). Since ¢ is an equivalence, there
is a unique map g’: ¢(u)—F ) such that e(g”)-&,=E,ed(e(g)). We put g'=¢(g).
Then ¢ becomes a functor Pic(R)—Pic(S). Now conditions i)-iii) mean that &
is already an isomorphism of homomorphisms if we take the identities as the
structure of e@. It follows from e being a homomorphism that @ is indeed a
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homomorphism with identities as the structure. Thus ¢ is a strict homomorphism.
Since ¢ is an equivalence, so is ¢. Q.E.D.
We will define maps A(¢) and B(¢) to make the next commutative diagram

0 U(R) A(R) B(R) — Pic(R) — 0

(1.6 lvw  |agw  |B@ | Picw
0 Uu(s) A(S) B(S) Pic(S) — 0

where both rows are [1.4).

It follows from Lemma 1.5 that the functor &: Pic(R)—Pic(S) preserves
reduced maps. Hence u~v implies ¢(u)~¢ () for u, ve F(Ig), and (u, a)~(v, b)
implies (¢(u), ¢(a))~(F®), (b)) for (u, a), (v, b) in A(R). Hence the maps

B@)ul=[sw)],  Alp)u, al=[gw), ¢(a)]

are well-defined, and seen to be homomorphisms to make diagram commute.
Let ¢:S—T be another homomorphism of commutative rings. It is easy
to see

$od=¢¢
as functors: Pic(R)—Pic(T), (while ¢ is different from gb'g}S). It follows that
Algp)=A(p) A(¢) and B(¢pe¢p)=B(¢)> B(¢).
If 1: R—»R denote the identity, then I: Pic(R)—Pic(R) is the identity. Hence
A1) and B(1) are identities.
Thus we get an exact sequence of abelian group functors on commutative
rings

(1.7) 0 U A B Pic 0.

§2. Identification.

We will identify the Amitsur or Galois mapping cone sequence obtained
from with the Amitsur or Galois Pic-U sequence.
Let

X: o> Xy — Xpyy—> -,
Y: o — Y, — Y, —>

be complexes of abelian groups.
A diagram of abelian groups
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7 Xn'('ﬁs——* Xpsg —>
] / j’r 7
()] ntl

Ja
/\l/(m-;%/

— Y”_l.__..—> Y:n ———

2.1)

where complexes X and Y appear as two rows, is called a V-Z system [12, p.
37] if the following conditions are fulfilled.
(a) The composite along each diagonal is zero:

Yn—2 '_—>]7z —— n+1 -

(b) The parallelograms (I) anticommute.
(¢) The triangles (II), (III) commute.
(d) The five term, crank-shaped sequences are exact:

KXoy —> Xp—> Ju—> Yoy —> V.

We can associate a long exact sequence
(2.2) o —> HYX) —> H™(]J) —> H""((Y) —> H™Y(X) —> -+

with each V-Z system (2.1) [12, p. 39]. H™(J) means Ker (J,—X,+1)/Im (Y n_.—J5).
HYX)—»H™(J)—»H"(Y) are induced from X,—/J,—Y,-;.. If yeKer(Y,-,—Y,),
y comes from some z&J,. Let xeX,,, be the image of z by J,—Xz+:.. Then
H*YY)—»H"*X) is induced by (class of y)—(class of x).

Isomorphisms between two V-Z systems are defined obviously. Isomorphic
V-Z systems have isomorphic sequences.

Let

f
(2.3) 0—X—>C—>D—Y—0

be an exact sequence of complexes. We can associate to it some V-Z system
containing X and Y as two rows. The sequence contains square diagrams

Cooy —> Dy,

2| la

C,—D,
with coboundary operator . Let J, be the center of the square, i.e.,
Jo=(Cy ><DnDn—1>/hn (Cpy —> CnXDnDn—l) .

We denote by [c¢, d]=], the image of element (¢, d) in the fiber product, and
by d€Y, the image of d€D,. With well-defined maps
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Xo—>Ju, x—>[x, 0],
Jo—>Yay, [c,dl—>d,
Jo—> Xniy,  [e, d]—0(c),
Yooi = Jasr, d—>1[0,3(d)]

we have a V-Z system as is easily checked.

Next we review complexes of categories introduced in [10]

2.4. DEFINITION. A sequence of homomorphisms of categories with abelian
group structure

0
C‘n. Cn+1

together with isomorphisms of homomorphisms
X:0° >0

where 0: C,—C,+. denotes the constant homomorphism, is called a coherent com-
plex of categories if

oxX cano
X0:0° 00

Strictly speaking, some coherence conditions for C, as asserted in [10, Lemma
1.2] are necessary to assume. But they are fulfilled for Piwc(R) or their direct
products. Coherent complexes of categories are special cases of \X-systems of
9.

In [10], Ulbrich constructs a V-Z system

> L'y > Fppy —>
2.5) Prit

with each coherent complex of categories {C,, 0}, where maps are defined:
P* —s F.., [10, Proposition 2.5], Cy-y—> P" [10, 11, p. 133],
P — C, [10, (19), p. 134], F,— P™ [10, (21), p. 134].

(We lower the dimension of P. P™ here means P"~! in [10].)
He defines two coherent complexes of categories corresponding to the Amitsur
and the Galois cases:

0 )
(2.6) Pie(S) —> Pic(S?) —> -+ —> Pic(S™) —> Pic(S™H) —> -
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for a commutative ring extension S/R [10, (32), p. 137] and

0 0
2.7  Pu(R) —> (G, Pic(R)) —> -+ —> (G", Pic(R)) —> (G, Pic(R)) —> -+

for a group G acting on a commutative ring R [10, (31), p. 137]. In Pic(S™)
is of degree n—1. In (2.7), (G® @Pic(R)) means the direct product of Pic(R)
indexed by G". He shows that the V-Z system (2.5) associated with complex
(respectively (2.7)) has the Amitsur Pic-U sequence [12],

2.8 «+—>H"S/R, U)—>H"(J)—>H"YS/R, Pic)—>H"*{(S/R, U)—> -
(respectively the Galois Pic-U sequence [2]
2.9) -+ —>H"(G,U(R))—>H"(R, G)—>H"Y(G, Pic (R))— H"*{(G, U(R))—> ---).

2.10. THEOREM. (a) Let S/R be a commutative ring extension. Let
(2.11) 0—U(S) —> A(S") —> B(S") —> Pic(S) —> 0

be the exact sequence of complexes obtained by applying sequence (1.7) to the
Amitsur semi-simplicial complex

S =2 S®nS =3 S@rS@rS =X -+
—_—

There is a natural isomorphism between the V-Z system associated with (2.11) and
the V-Z system associated with complex (2.6).

(b) Let G be a group acting on a commutative ring R as automorphisms.
Let C be the non-homogeneous standard complex of G, which is a free Z[G]-
resolution of the trivial G-module Z. Let

(2.12) 0—~Homg(C, U(R))—>Homg(C, A(R))—Homg(C, B(R))—Hom(C, Pic(R))—0

be the exact sequence obtained by the exact sequence (1.4) of G-modules. There is
a natural isomorphism between the V-Z system associated with the sequence of
complexes (2.12) and the V-Z system associated with complex (2.7).

2.13. COROLLARY. The V-Z system associated with complex exact sequence
(2.11) (respectively (2.12)) has the Amitsur (respectively Galois) Pic-U sequence
(2.8) (vespectively (2.9)).

ProOF. (a) Recall the definition of [2.6). S™ is the n-fold tensor product
of S over R and the functor

0: Pic(S?) —> Pic(S™HY)
maps an object P to oP=(--+ (&,P+(—1)&,P)-+(—1)%,P)+ -+-)+(—1)"&, P, where
g0 S"—> S, 4, - Ran > )R - RaQLR a1, Q - Ran
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for 0=/=<n. Using &; instead of &; we get a coherent complex of categories

5 5
2.19) Pic(S) —> Pic(S?) —> -+ —> Pic(S™) —> Pic(SPH) —> -

with structure X:9*—0, and we have a diagram of homomorphisms
0

oo —> Pc(S?) —> Prc(S*) —> -

lsale

v —> Prc(S™) —> Pic(S™H) —> .-

where [2.14) and [2.6) appear as two rows. It follows from Lemma 1.5 that there
is a natural isomorphism

E:0e ™, €0

such that
0& &o
0% 0¢d ik
l Xe i el
Oe = 0 = €0

commutes. Since e is an equivalence, it follows that the V-Z systems corre-
sponding to and are isomorphic. Let (2.5) be the V-Z system associated
with [2.14). By definition, we can identify F,=U(S"*!) and C,=Pic(S"*!). P"
is the quotient set of the set of all pairs (u, a) with ¥ =O0b(Pic(S™) and a:d(u)
—0 in @ic(S™*!) by the equivalence relation: (u, a)~(v, b) if there is a map
¢:u—v in Pic(S™) such that b-d(c)=a. Denote by {u, a} the equivalence class
of (u, a). Next, let (2.1) be the V-Z system associated with [2.1I). We can also
identify X,=U(S™"") and Y ,=Pic(S"*!). Recall that J, is the center of square

f
A(S™) ——> B(S™)

Lo

A(S™) — 5 B(S™+Y)

If {u, a} €P", we have [uleB(S"), [d(u), ale A(S™*Y), and ([d(w), a], [u]) is
in the fiber product. Assume {u, a}={v, b} in P* with ¢: u—v in Pic(S™). Put

c+1 reduced map
e: u+(~v) —> v+(—v)

Then [u-+(—v), e]= A(S™) and we have

([3(%), a]) [u]):([a(v)) b:l: [1):])+A|:u+(_v)’ e—_l

with diagonal map 4: A(S™)—A(S™*)x B(S™). Hence the map
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{u) (1}'—) [[a(u), a]; [u]:l) P —> Jn

is well-defined and seen to be a homomorphism. It is very easy to check that
this homomorphism gives rise to a homomorphism of the V-Z system associated
with to the V-Z system associated with together with identities
F,—X, and C,—Y,. In particular P*"—J, is an isomorphism by (d) below (2.1).
This proves (a). (b) is proved similarly. Q.E.D.

The final step is to identify the sequence of the V-Z system associated
to (2.3) with the mapping cone sequence. We review the definition of the map-
ping cone sequence [4, Theorem 1.3], [8], [7, p. 46].

The mapping cone M(f) of is defined by:

M(f): {Mn, a}, Mn:CnXDn—ly
o(x, y)=(—0x, fx+0dy).

(In [4], M, is given degree n—1.) There is a long exact sequence

a B g
(2.15) oo —> HYX) —> H*M(f)) —> H* YY) —> H*""{(X) —> -

where
a: (class of x€X,) — (class of (x, 0)),

B: (class of (x, y)eM,)—> (class of —3),
7: (class of y€Y,_, with dy=fx)—> (class of dx).

Here we denote by y<VY,_, the image of yeD,_;. (The last map 7 is —y with

the notation of [4].)
If (x, y)€M, is an n-cocycle, then dx=0 and fx+0dy=0. Hence (x, —y)E /.
The homomorphism

0: (class of (x, y)) —> (class of [x, —vy]),  H™M()—> H™(J)

is well-defined. It is easy to prove:
2.16. PROPOSITION. We have a commutative diagram

- —> HYX) — H"(M(f)) — H"'(Y) — H"*(X) —> -

o

e ——» Hn(X) —_ Hn(]) _— Hn—-l(Y) > Hn+1(X) — 3 een

where the first row is the mapping cone sequence (2.15), and the second row is the
sequence of the V-Z system associated with (2.3). Especially, 8 is an isomorphism.
Combining (2.16) and (2.13), we have:
2.17. THEOREM. (a) Let S/R be a commutative ring extension. There is
an isomorphism of sequences
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- —> HY(S/R, U)—> H"(J) — H""XS/R, Pic) — H"*/(S/R, U) —> -+

| ] 1I |

o —> H"(S/R, U) — H"M(f)) —> H""(S/R, Pic) —> H"*((S/R, U) —> -

where the first row is the Amitsur Pic-U sequence (2.8) and the second row is the
mapping cone sequence of the sequence (2.11).

(b) Let G be a group acting on a commutative ring R. There is an isomor-
phism of sequences

- —> H"(G,U(R))—> H*(R, G)—> H""YG, Pic (R)) —> H**Y(G, U(R)) —> -

| ) L H

o —>HYG,U(R))—> HYG, f) —> H" (G, Pic(R)) —> H""(G,U(R)) —> -~

where the first row is the Galois Pic-U sequence (2.9) and the second row 1is the
mapping cone sequence of the sequence (2.12).

Note that the second row of (b) is obtained by applying [4, Proposition 2.1]
to the sequence of G-modules

0 —> U(R) —> A(R) L B(R) —> Pic (R) —> 0.

(H™(G, f) in the above means H""Y(G, f) of [4].)
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