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\S 1. Introduction.

All groups considered here are finite. Let $H$ be a subgroup of a group $G$ .
We say that $H$ controls fusion in $H$ with respect to $G$ if $H$ has the property;
‘ Two elements of $H$ are conjugate in $G$ if and only if they are conjugate in H.’
If $H$ has a normal complement (that is, a normal subgroup $N$ of $G$ with $G=HN$

and $H\cap N=1$ ) in $G$ , then $H$ controls fusion in $H$ with respect to $G$ . But the
converse is false. For example, let $S_{n}$ be the symmetric group on $n$ letters,

where $n$ is greater than 4, and let $H$ be the stabilizer of one point. Then we
know that $H$ controls fusion in $H$ with respect to $S_{n}$ and $S_{n}$ has no normal
subgroups of order $n$ .

What conditions on $H$ guarantee that $H$ has a normal complement ? The
Brauer-Suzuki theorem answered the question for a Hall subgroup $H$ (see, for
example, Theorem 8.22 in [2]). In this paper, we shall give a more general
criterion for the existence of a normal complement of a subgroup $H$ in a group
$G$ . Before stating our result, we shall introduce the following notation:

Let $H$ be a subgroup of a group $G$ which controls fusion in $H$ with respect
to $G$ , and let $T,$ $M$ and $L$ be mappings from $H^{\#}$ to the family of subsets of $G$ ,

where $H^{\#}=H-\{1\}$ . Suppose $T,$ $M$ and $L$ satisfy the following conditions. Then
we say $(T, M, L)$ a complementary tnple of $H$ in $G$ .

(1.1) For every $h\in H^{\#}$ ,
(i) $T(h)$ is a subgroup of $G$ with $T(h)^{x}=T(h^{x})$ for $x\in H$,
(ii) $M(h)=hT(h)$ ,
(iii) $L(h)= \bigcup_{g\in G}M(h)^{g}$ ,

(iv) $N_{G}(M(h))=T(h)C_{H}(h)$ .
(1.2) Whenever $h\in H^{\#}$ and $g\in G,$ $M(h)\cap M(h)^{g}=\emptyset$ or $M(h)$ .
(1.3) ($G-$

$\bigcup_{\#,x\in H}L(x)I\cap N_{G}(M(h))=T(h)$ for every $h\in H^{\#}$ .
(1.4) Whenever $h_{1}$ and $h_{2}$ are elements of $H\#$ which are not conjugate in $G$ ,

then $L(h_{1})\cap L(h_{2})=\emptyset$ .
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REMARK 1. In the above definition, the mappings $M$ and $L$ are determined
by $T$ .

REMARK 2. Let $h_{1}$ and $h_{2}$ be elements of $H^{\#}$ . If they are conjugate in $H$,
then there exists an element $y$ of $H$ with $h_{1}=h_{2}^{y}$ . Since $M(h_{1})=M(h_{2})^{y}$ by (i)

and (ii) of (1.1), it follows that $L(h_{1})=L(h_{2})$ . If they are not conjugate in $H$,
then by the assumption that $H$ controls fusion in $H$ with respect to $G$ , they are
not conjugate in $G$ . Hence by (1.4), $L(h_{1})\cap L(h_{2})=\emptyset$ .

Suppose $H$ has a normal complement $N$ in $G$ . Let $T_{0}(h)=N,$ $M_{0}(h)=hN$ and
$L_{0}(h)= \bigcup_{g\in G}M_{0}(h)^{g}$ for $h\in H^{\#}$ . Then $(T_{0}, M_{0}, L_{0})$ is a complementary triple of $H$

in $G$ . This is a trivial example. In general, complementary triples can be con-
structed through several ways depending on the structures of $H$ and $N$ (see

Theorem 3.3 and Proposition 3.4).

Our main result is the following (which we shall prove in \S 2):
THEOREM. Let $H$ be a subgroup of a group $G$ which controls fusion in $H$

with respect to G. SuppOse there exists a complementary triple of $H$ in G. Then
$H$ has a normal complement in $G$ .

REMARK 3. The assumption that $H$ controls fusion in $H$ with respect to $G$

in the above Theorem can not be removed. For example, let $G$ be $S_{6}$ and $H$ be
a Sylow 3-subgroup of $S_{5}$ . Set $T(h)=1,$ $M(h)=h$ and $L(h)= \bigcup_{g\in S_{5}}h^{g}$ for $h\in H^{\#}$ .

Then it can easily be checked that $T,$ $M$ and $L$ satisfy the conditions $(1.1)\sim(1.4)$ .
However, $H$ does not have a normal complement in $G$ .

Let $H$ be a Frobenius subgroup of a group $G$ . Let $T_{1}(h)=1,$ $M_{1}(h)=h$ and
$L_{1}(h)=\{h^{g}|g\in G\}$ for $h\in H^{\#}$ . Then an easy argument shows that $(T_{1}, M_{1}, L_{1})$

is a complementary triple of $H$ in $G$ . Hence by applying our theorem to $G$ , we
conclude that $H$ has a normal complement. Thus the above Theorem yields
Frobenius’ theorem (see for example Theorem 7.2 in [2]). Our notation is stand-
ard [1].

\S 2. Proof of the theorem.

To prove the theorem, we need the following lemma which is due to Brauer
\langle see Theorem 8.4 in [2]).

LEMMA 2.0. Let $\Theta$ be a complex-valued class function of a group G. Then
$\Theta$ is a generalized character of $G$ if and only if $\Theta|_{E}$ is a generalized character
of $E$ for every elementary subgroup $E$ of $G$ .

Let $(T, M, L)$ be a complementary triple of $H$ in $G$ . Set $N=G-$
$\bigcup_{\#,x\in H}L(x)$ .

We shall show that $N$ is a normal complement of $H$ in $G$ through several steps.
(2.1) $T(h)$ is a normal complement of $C_{H}(h)$ in $N_{G}(M(h))$ for every element

$h$ of $H^{*}$ .
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PROOF. Since $T(h)=\langle y^{-1}z|y, z\in M(h)\rangle,$ $T(h)$ is normal in $N_{G}(M(h))$ . By
(1.3), $T(h)\cap H=1$ . (2.1) follows from (iv) of (1.1).

(2.2) (i) $|L(h)|=|G:C_{H}(h)|$ for every $h\in H^{\#}$ .
(ii) $|N|=|G:H|$ .

PROOF. By (1.2), $|L(h)|=|M(h)||G:N_{G}(M(h))|$ . On the other hand,
$|N_{G}(M(h))|=|T(h)||C_{H}(h)|$ by (iv) of (1.1) and (2.1). Hence we have $|L(h)|=$

$|M(h)||G|/|T(h)||C_{H}(h)|=|G:C_{H}(h)|$ from (ii) of (1.1). Thus (i) is proved.
For the proof of (ii), let $h_{1},$ $h_{2},$ $\cdots$ , $h_{n}$ be the representatives of the conjugacy

classes of $H$, where $h_{1}=1$ . Then $| U_{\#}L(x)x\in H|=\sum_{i=2}^{n}|G:C_{H}(h_{i})|=|G:H|(|H|-1)$ ,

which implies $|N|=|G:H|$ . Thus we have proved (2.2).

(2.3) Whenever $h_{1}\in H^{\#}$ and $h_{2}\in C_{H}(h_{1})^{\#}$ , then $h_{2}T(h_{1})\subseteqq L(h_{2})$ .
PROOF. Let $S=T(h_{1})\cap T(h_{2})$ . By (1.2), $N_{G}(h_{2}S)\subseteqq N_{G}(M(h_{2}))$ . Then we have

$N_{G}(h_{2}S)\cap T(h_{1})\subseteqq N_{G}(M(h_{2}))\cap T(h_{1})\subseteqq S$ by (1.3). Since $S\subseteqq N_{G}(h_{2}S)$ , we conclude
$N_{G}(h_{2}S)\cap T(h_{1})=S$ . Hence $| \bigcup_{x\in T(\hslash_{1})}(h_{2}S)^{x}|=|h_{2}S||T(h_{1}):S|=|T(h_{1})|$ , which proves
(2.3).

(2.4) Let $E$ be a nilpotent subgroup of $G$ which is not contained in N. Then
there exist $h\in H^{\#}$ and $g\in G$ such that $E\subseteqq N_{G}(M(h)^{g})$ .

PROOF. Let $1=E_{1}\subseteqq E_{2}\subseteqq\ldots\subseteqq E_{m}=E$ be the upper central series of $E$ . Then
there exists some $i,$ $2\leqq i\leqq m$ , such that $E_{i-1}\subseteqq N$ and $E_{i}\not\leqq N$. Let $E_{\iota\cap}M(h)^{g}\neq\emptyset$

for $h\in H^{\#}$ and $g\in G$ . Let $z\in E_{i}\cap M(h)^{g}$ . First we shall show that $E_{i-1}\subseteqq T(h)^{g}$ .
Suppose $E_{j-1}\subseteqq T(h)^{g}$ and $E_{j}\not\leqq T(h)^{g}$ for some $j,$ $2\leqq j\leqq i-1$ . Then $[z, E_{j}]\subseteqq E_{j-1}$

$\subseteqq T(h)^{g}$ , which implies $E_{j}\subseteqq N_{G}(M(h)^{g})$ . Since $j\leqq i-1$ , we have $E_{j\Leftarrow}\subset N$ by the
choice of $i$ . Therefore by (1.3), $E_{j}\subseteqq N_{G}(M(h)^{g})\cap N=T(h)^{g}$ , which contradicts our
choice of $E_{j}$ . Thus we conclude $E_{i-1}\subseteqq T(h)^{g}$ . Then $[z, E]\subseteqq E_{i-1}\subseteqq T(h)^{g}$ . Hence
we have $E\subseteqq N_{G}(M(h)^{g})$ . Thus (2.4) is proved.

Let $\Psi$ be an irreducible complex character of $H$. Then by (1.4), we can
define a class function $\hat{\Psi}$ on $G$ as follows:

$\hat{\Psi}(x)=\{\begin{array}{l}\Psi(h) if x\in L(h) for h\in H^{\#}, \Psi(1) if x\in N.\end{array}$

(2.5) The restriction of $\Phi$ to $N_{G}(M(h)^{g})$ is a character of $N_{G}(M(h)^{g})$ for $h\in H^{*}$

and $g\in G$ .
PROOF. Since $\hat{\Psi}$ is a class function, it suffices to show that the restriction

of $\hat{\Psi}$ to $N_{G}(M(h))$ is a character of $N_{G}(M(h))$ for every $h\in H^{\#}$ . Since $h_{1}T(h)\subseteqq$

$L(h_{1})$ for $h_{1}\in C_{H}(h)^{\#}$ by (2.3), $\hat{\Psi}$ takes the constant value $\Psi(h_{1})$ on $h_{1}T(h)$ . Also
$\hat{\Psi}$ takes the constant value $\Psi(1)$ on $T(h)$ . Considering $N_{G}(M(h))/T(h)\cong C_{H}(h)$ by
(2.1), we can regard $\hat{\Psi}$ as a character of $N_{G}(\lrcorner M(h))/T(h)$ . Thus we conclude (2.5).

(2.6) $\hat{\Psi}$ is an irreducible character of $G$ .
PROOF. First we shall show that $\hat{\Psi}$ is a generalized character of $G$ . By
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Lemma 2.0, it suffices to show that the restriction of $\hat{\Psi}$ to any nilpotent subgroup
$E$ of $G$ is a generalized character of $E$ . If $E$ is contained in $N$, then the restric-
tion of $\hat{\Psi}$ to $E$ is a multiple of the principal character of $E$ by the definition of
$\hat{\Psi}$ . So we may assume that $E$ is not contained in $N$. Then by (2.4), there exist
$h\in H^{\#}andg\in GsuchthatE\subseteqq N_{G}(M(h)^{g})$ . Since the restriction of $\hat{\Psi}toN_{G}(M(h)^{g})$

is a character of $N_{G}(M(h)^{g})$ by (2.5), we conclude that the restriction of $\hat{\Psi}$ to $E$

is a character of $E$ . Hence $\hat{\Psi}$ is a generalized character of $G$ . Next, we shall
show that $\hat{\Psi}$ is an irreducible character of $G$ . Let $h_{1}=1,$ $h_{2},$ $\cdots$ , $h_{n}$ be repre-
sentatives of the conjugacy classes of $H$. Then by (2.2),

$\sum_{g\in G}\hat{\Psi}(g)\hat{\Psi}(g^{-1})=\sum_{g\in N}\Psi(1)^{2}+\sum_{i=2}^{n}( \sum_{g\in L(h_{i})} |\Psi(h_{i})|^{2})$

$= \Psi(1)^{2}|N|+\sum_{i=2}^{n}|L(h_{i})||\Psi(h_{i})|^{2}$

$=|G$ : $H|( \Psi(1)^{2}+\sum_{i=2}^{n}|H:C_{H}(h_{i})||\Psi(h_{i})|^{2})=|G|$ .

Considering $\hat{\Psi}(1)=\Psi(1)$ , we conclude that $\hat{\Psi}$ is an irreducible character of $G$ .
Hence (2.6) is proved.

(2.7) $N$ is a normal complement of $H$ in $G$ .
PROOF. Let $\Psi_{1},$ $\Psi_{2},$ $\cdots$ , $\Psi_{n}$ be the irreducible characters of $H$. Set $M=$

$\bigcap_{i=1}^{n}Ker(\hat{\Psi}_{i})$ . Then $N$ is contained in $M$. On the other hand, $M\cap H=1$ , which

implies $|M|\leqq|G:H|$ . Thus we have $N=M$, which proves (2.7). This completes
the proof of the theorem.

\S 3. Constructions of complementary triples.

LEMMA 3.1. Let $N$ be a normal $\pi$-subgroup of a group $G$ , where $\pi$ is a set
of primes. Let $x$ be an element of G. Set $S=\{g\in N|[g, x, \cdots , x]=1\}$ . Supp0se
$N$ is generated by S. Then $[N, y]=1$ for every $\pi’$-element $y$ of $\langle x\rangle$ .

PROOF. Suppose false. Then there exists a $\pi’$-element $y$ of $\langle x\rangle$ with $C_{N}(y)$

$\neq N$. Since $N$ is generated by $S$ , there exists an element $z$ of $N$ such that
$z\not\in C_{N}(y)$ and $z^{-1}z^{x}\in C_{N}(y)$ . Considering $C_{N}(y)=C_{N}(y)^{x}$ , we have $z^{-1}z^{y}\in C_{N}(y)$ .
Let $w=z^{-1}z^{y}$ . Then $w^{n}=ww^{y}\cdots w^{y^{n-1}}=1$ , where $n$ is the order of $y$ , which
contradicts the choice of $y$ . Thus Lemma 3.1 is proved.

LEMMA 3.2. Let $N$ be a nilp0tent normal subgroup of a group G. Set $T^{*}(g)$

$=\{x\in N|[x, g, \cdots , g]=1\}$ for $g\in G$ . Then the following hold:
(i) $T^{*}(g)$ is a subgroup of $G$ .
(ii) $\langle g\rangle T^{*}(g)$ is a nilpotent subgroup of $G$ .
(iii) Whenever $\langle g\rangle K$ is a nilp0tent subgroup of $Gfo^{\gamma}$ a subgroup $K$ of $N$,

$K\subseteqq T^{*}(g)$ .



Complementary triples 449

PROOF. For the proof of (i) and (ii), it suffices to show that $\langle g\rangle\langle T^{*}(g)\rangle$ is
a nilpotent subgroup. Set $H=\langle g\rangle\langle T^{*}(g)\rangle$ . Let $p$ be a prime divisor of $|H|$ and
let $\langle g_{p}\rangle$ be the Sylow $p$ -subgroup of $\langle g\rangle$ . Since $\langle T^{*}(g)\rangle$ is nilpotent, the Sylow
$p$ -subgroup $F$ of $\langle T^{*}(g)\rangle$ is normal in $H$. Set $\overline{H}=H/P$. Then $\langle T^{*}(g)\rangle/P$ is a
normal $p’\cdot\cdot subgroup$ of $\overline{H}$. Hence by Lemma 3.1, we have $[\langle T^{*}(g)\rangle, g_{p}]\subseteqq P$,
which implies $\langle g_{p}\rangle P$ is a normal subgroup of $H$. Therefore $H$ is nilpotent and
we have proved (i) and (ii). On the other hand, (iii) is obvious by the definition
of $T^{*}(g)$ . Thus we have Lemma 3.2.

THEOREM 3.3. Let $H$ be a subgroup of a group $G$ which has a nilp0tent
normal complement $N$ in G. Set $T^{*}(h)=\{g\in N|[g, h, \cdots , h]=1\},$ $M^{*}(h)=hT(h)$

and $L^{*}(h)= \bigcup_{g\in G}M^{*}(h)^{g}$ for $h\in H^{\#}$ . Then $(\tau*, M^{*}, L^{*})$ is a complementary tnple
of $H$ in $G$ .

PROOF. By Lemma 3.2, (i) of (1.1) is satisfied. Also by the definition of $M^{*}$

and $L^{*}$ , (ii) and (iii) of (1.1) are satisfied. Suppose $h_{1}x\in N_{G}(M^{*}(h))$ for $h_{1}\in H$

and $x\in N$. Then $x^{-1}h_{1}^{-1}hh_{1}x\in M^{*}(h)$ . Hence $h_{1}^{-1}hh_{1}\in H\cap hN$, which implies
$h_{1}\in C_{H}(h)$ . Then $[x, h]$ is contained in $T^{*}(h)$ , and it follows that $x$ is an
element of $T^{*}(h)$ . Therefore $N_{G}(M^{*}(h))$ is contained in $T^{*}(h)C_{H}(h)$ . Since the
converse inclusion is obvious, (iv) of (1.1) is satisfied. Suppose $M^{*}(h_{1})\cap M^{*}(h_{2})^{g}$

$\neq\emptyset$ for $h_{1},$ $h_{2}\in H^{\#}$ and $g\in G$ . Let $x$ be an element of $M^{*}(h_{1})\cap M^{*}(h_{2})^{g}$ . Then
both $\langle x, T^{*}(h_{1})\rangle$ and $\langle x, T^{*}(h_{2})^{g}\rangle$ are nilpotent. Then by Lemma 3.2,
$\langle x, T^{*}(h_{1}), T^{*}(h_{2})^{g}\rangle$ is nilpotent. Considering $\langle x, T^{*}(h_{1}), T^{*}(h_{2})^{g}\rangle=\langle h_{1},$ $T^{*}(h_{1})$,
$T^{*}(h_{2})^{g}\rangle=\langle h_{2}^{g}, T^{*}(h_{1}), T^{*}(h_{2})^{g}\rangle$ , we have $T^{*}(h_{1})=T^{*}(h_{2})^{g}$ by (iii) of Lemma 3.2.
Hence $M^{*}(h_{1})=M^{*}(h_{2})^{g}$ . Let $g=h_{3}z$ for $h_{3}\in H$ and $z\in N$. Since $h_{2}^{g}\in M^{*}(h_{1})$ ,
we have $h_{1}^{-1}h_{2}^{g}=h_{1}^{-1}h_{4}h_{4}^{-1}h_{4}^{z}\in T^{*}(h_{1})$ , where $h_{4}=h_{3}^{-1}h_{2}h_{3}$ . Obviously, $h_{4}^{-1}h_{4}^{z}$ is
contained in $N$. Hence we have $h_{1}^{-1}h_{4}\in N\cap H$. Thus $h_{1}=h_{4}$ , which proves (1.2)

and (1.4). For (1.3), let $h\in H^{\#}$ . Since $|N:N_{G}(M^{*}(h))\cap N|=|N:T^{*}(h)|$ , we have
$| \bigcup_{x\in N}M^{*}(h)^{x}|=|N|$ by (1.2). Therefore $hN\subseteqq L^{*}(h)$ . Then $G-$

$\bigcup_{\#,x\in H}L^{*}(x)$ coincides

with $N$, which implies (1.3). Thus we have proved Theorem 3.3.
REMARK 4. The complementary triple constructed in Theorem 3.3 is appli-

cable to investigate a finite group which admits an automorphism of prime order
(see [3]).

PROPOSITION 3.4. Let $H$ be a Hall $\pi$-subgroup of a group $G$ which controls
fuston in $H$ with respect to $G$, where $\pi$ is a set of primes. Supp0se for every
$h\in H^{\#},$ $C_{G}(h)$ is $\pi$-nilp0tent and $C_{H}(h)$ is a Hall $\pi$ -subgroup of $C_{G}(h)$ . Let $T(h)$

be the normal $\pi$-complement of $C_{G}(h),$ $M(h)=hT(h)$ and $L(h)= \bigcup_{g\in G}M(h)^{g}$ for
$h\in H^{\#}$ . Then $(T, M, L)$ is a complementary triple of $H$ in G. Consequently, $G$

$;_{s}\pi$-nilpotent.
PROOF. (i), (ii) and (iii) of (1.1) are satisfied by the definition of $T,$ $M$ and

$L$ . Let $h\in H^{\#}$ . Since $T(h)$ is contained in $C_{G}(h),$ $h$ is the only $\pi$-element of
$M(h)$ , hence we have $N_{G}(M(h))\subseteqq C_{G}(h)$ . This implies (iv) of (1.1). Suppose
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$M(h_{1})\cap M(h_{2})^{g}\neq\emptyset$ for $h_{1},$ $h_{2}\in H^{\#}$ and $g\in G$ . Let $x\in M(h_{1})\cap M(h_{2})^{g}$ . Then there
exist $t_{1}\in T(h_{1})$ and $t_{2}\in T(h_{2})^{g}$ with $x=h_{1}t_{1}=h_{2}^{g}t_{2}$ . Since such a decomposition of
$x$ is unique, we have $h_{1}=h_{2}^{g}$ . Thus (1.2) and (1.4) are satisfied. By the assump-
tion of Proposition 3.4, every $\pi$ -element of $G$ is conjugate to an element of $H$.
Therefore $G-$

$\bigcup_{\#,h\in H}L(h)$ coincides with the set of all $\pi’$-elements of $G$ , which

shows that (1.3) is satisfied. This proves Proposition 3.4.
COROLLARY 3.5. Let $A$ be a solvable group of automorphisms of a group $G$

with $(|A|, |G|)=1$ . Supp0se $C_{G}(A)$ is a Hall $\pi$-subgroup of G. Then $G$ is $\pi-$

nilpotent.
PROOF. Let $G$ be a minimal counterexample. Then obviously, $G$ contains no

proper A-invariant normal subgroups. Let $h\in C_{G}(A)^{\#}$ . Then $C_{G}(h)$ is a proper
A-invariant subgroup. Since every A-invariant $p$ -subgroup is contained in $C_{G}(A)$

for a prime $p\in\pi$ , we conclude that $C_{G}(A)\cap C_{G}(h)$ is a Hall $\pi$-subgroup of $C_{G}(h)$ .
Hence by the minimality of $G,$ $C_{G}(h)$ is $\pi$ -nilpotent. Thus setting $H=C_{G}(A)$ , we
have that $G$ satisfies the assumption of Proposition 3.4, and therefore $G$ is
$\pi$-nilpotent. This contradicts the choice of $G$ . Therefore Corollary 3.5 is proved.

REMARK 5. Note that the assumption that $A$ is solvable in Corollary 3.5 can
be dropped by the Feit-Thompson theorem. Also note that both Proposition 3.4
and Corollary 3.5 can be obtained from the Brauer-Suzuki theorem.
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