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Introduction.

A compact connected Riemannian manifold of constant curvature 1 is said
to be a spherical space form. If the fundamental group of a spherical space
form is cyclic then the spherical space form is called a lens space.

Let $M$ and $N$ be spherical space forms. In papers [2], [3], [4] and [5],

we studied the spectrum of Laplacian acting on smooth functions of a spherical
space form and considered the following problem.

Whether or not $M$ is isometric to $N$ when $M$ is isospectral to $N^{\rho}$

In [5], we saw that there are many pairs of lens spaces which are isospectral
but not isometric.

In this paper, we consider the above problem in cases which the fundamental
groups of $M$ and $N$ are noncyclic. First we prove

THEOREM 1. Let $S^{2d-1}/G$ and $S^{2d-1}/G’$ be sPhencd space forms with non-
cyclic fundamental groups of type 1. SuppOse $G$ and $G’$ are irreducible and that
$G$ is isomorphic to $G’$ . Then $S^{2d-1}/G$ is isospectral to $S^{2d-1}/G’$ . (For the defini-
tions of “type 1” and “irreducible” in Theorem 1, see Sections 2 and 3
respectively).

From this Theorem we can show that there are many pairs of spherical space
forms with noncyclic fundamental grouPs which are isospectral but not isometric
(for more precise statement, see Theorem 3). And moreover we see that there
are spherical space forms which are isospectral but not isometric in every odd
dimension not less than 5 (see Theorem 4).

Two lens spaces which are isospectral but not isometric are also not homeo-
morphic to each other (see [5]). Moreover we obtained in [5] examples of pairs
of lens spaces which are isospectral but not even homotopically equivalent. But
unfortunately the author don’t know whether there are any topological differ-
ences between these isospectral non-isometric spherical space forms with non-
cyclic fundamental groups.

REMARKS. 1. As we have shown in [3], every 3-dimensional spherical
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space form is completely characterized by its spectrum as Riemannian manifold.
Moreover every 5-dimensional spherical space form with noncyclic fundamental
group is also completely characterized by its spectrum as Riemannian manifold
[4].

2. By Kitaoka’s example [7], we see there are flat tori which are isospectral
but not isometric in every dimension not less than 8. On the other hand, any
2-dimensional flat torus is completely characterized by its spectrum as Riemannian
manifold [1].

3. In [9], Vigneras constructed examples of pairs of compact hyperbolic
spaces which are isospectral but not isometric in every dimension not less than 2.

Theorem 1 and Theorem 3 in this paper were announced in [6].

1. Spherical space forms and their generating functions.

Let $S^{d}(d\geqq 2)$ be the unit sphere centered at the origin in $R^{d+1}$, the $(d+1)-$

dimensional Euclidean space. We denote by $0(d+1)$ the orthogonal group acting
on $R^{d+1}$ A finite subgroup $G$ of $0(d+1)$ is said to be fixed point free if for
any $g\in G(g\neq 1_{d+1})g$ has not 1 for an eigenvalue. A finite fixed point free
subgroup of $0(d+1)$ acts on $S^{d}$ as fixed point freely. So that the quotient
Riemannian manifold $S^{d}/G$ becomes a spherical space form in a natural way.
Conversely any spherical space form is obtained by this way.

It is easy to see that even dimensional spherical space forms are only the
canonical spheres and the canonical real projective spaces. Therefore in what
follows, we consider only for odd dimensional spherical space forms.

Let $M=S^{2d-1}/G(d\geqq 2)$ be a $(2d-1)$-dimensional spherical space form and $\Delta$

the Laplacian acting on the space of smooth functions on $M$. Then each eigen-
value of $\Delta$ is of the form $k(k+2d-2)(k=0,1, 2, )$ (see [1]). Let $E_{k}$ be the
eigenspace of $\Delta$ with eigenvalue $k(k+2d-2)$ . We define the generating function
associated to the spectrum of $\Delta$ by

(1.1) $F_{G}(z)= \sum_{k=0}^{\infty}(\dim E_{k})z^{k}$ .

Let $S^{2d-1}/G$ and $S^{2i-1}(/G’$ be spherical space forms. By the definition of the
generating function we have

(1.2) $S^{2d-1}/G$ is isospectral to $S^{2d-1}/G’$ if and only if $F_{G}(z)=F_{G}(z^{\backslash }$

PROPOSITION 1.1 (see [3]). We have

(1.3) $F_{G}(z)= \frac{1}{|G|}\sum_{g\in G}\frac{1-z^{2}}{\det(z1_{\underline{o}}d-g^{\backslash }}$

where $|G|$ is the order of $G$ .
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From this proposition, we see easily
COROLLARY 1.2. Let $S^{2d-1}/G$ and $S^{2d-1}/G’$ be spherical space forms. Suppose

there exists $a$ one to one onto map $\Psi$ of $G$ onto $G’$ satisfyng det $(z1_{2d}-g)$

$=\det(z1_{2d}-\psi(g))$ for each $g\in G$ . Then $S^{2d-1}/G$ is isospectral to $S^{2d-1}/G’$ .

2. Vincent’s results for spherical space forms.

The complete classification of 3-dimensional spherical space forms was
obtained by Seifert and Threllfall (see [11]). In this section we state Vincent’s
results for a classification of spherical space forms, according to Wolf’s book
[11].

DEFINITIONS. A finite dimensional orthogonal representation of a finite
group is fixed Point free if it is faithful and its image is a fixed point free
subgroup of the orthogonal group. A finite group is called a fixed point free
group if it has a Pxed point free representation.

The following proposition is a fundamental property for Vincent’s classi-
fication program.

PROPOSITION 2.1 (see [11]). Let $K$ be a finite fixed point free group. Let
$\pi_{1}$ and $\pi_{2}$ be fxed point free representations of degree $2d$ of K. Then the
sphencal space forms $S^{2d-1}/\pi_{1}(K)$ is isometnc to $S^{2d-1}/\pi_{2}(K)$ if and only if $\pi_{1}$

is equivalent to $\pi_{2}$ modulo automorphisms.
Owing to Vincent, finite fixed point free groups are divided into two types

as abstract groups (see [10], [11]).

Type 1: Every Sylow subgroup is cyclic.
Type 2: Every Sylow $p$ -subgroup $(p\neq 2)$ is cyclic and every Sylow 2-sub-

group is a generalized quaternionic group.
For the definition of a generalized quaternionic group, see [11]. In this

paper we treat only spherical space forms with type 1 fundamental groups.
Type 1 groups are not so special because of the following.

PROPOSITION 2.2 (Vincent [10], see also [11]). The fundamental group of
every $(4k+1)$-dimensional sphemcal space form is of type 1.

For any non-zero integer $m,$ $K_{m}$ denotes the multiplicative group of residue
classes modulo $m$ of integers prime to $m$ . The order of $K_{m}$ is denoted by $\phi(m)$ ,
so called Euler function. For two integers $a$ and $b$ , we denote by $(a, b)$ the
greatest common divisor of $a$ and $b$ .

We describe finite fixed point free groups of type 1. Let $m,$ $n,$
$d$ and $n’$ be

positive integers and $r$ integer satisfying
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(2.1)$\{\begin{array}{l}((r-1)n, m)=1,r^{n}\equiv 1 (mod m),d is the order of the residue class of r in K_{m} ,n=n’d, n’ is divisible by any prime divisor of d.\end{array}$

For such integers $m,$ $n,$ $d,$ $n’$ and $r$, we have the finite group $\Gamma_{d}(m, n, r)$

of order $N=mn$ generated by two elements $A$ and $B$ with defining relations

(2.2) $A^{m}=B^{n}=1$ and $BAB^{-1}=A^{r}$ .
Note that the following four conditions are equivalent for the $\Gamma_{d}(m, n, r)$ ;

(i) $\Gamma_{d}(m, n, r)$ is cyclic, (ii) $A=1$ , (iii) $r\equiv 1(mod m)$ , and (iv) $d=1$ .
We define automorphisms of $\Gamma_{d}(m, n, r)$ . Whenever $s,$

$t$ and $u$ are integers
with $(s, m)=1=(fn)$ and $t\equiv 1(mod d)$ , we put

(2.3) $\psi_{s.t.u}(A)=A^{s}$ and $\psi_{s.t.u}(B)=B^{t}A^{u}$ .
Then we can see easily $\psi_{s.t.u}$ defines an automorphism of $\Gamma_{d}(m, n, r)$ .

PROPOSITION 2.3 (see [11]). 1. The automorphisms of $\Gamma_{d}(m, n, r)$ are just
the $\psi_{s.t.u}’ s$ .

2. $\Gamma_{d}(m, n, r_{1})$ is isomorphjc to $\Gamma_{d}(m, n, r_{2})$ if and only if there exists an
integer $c$ such that $r_{1}\equiv r_{2}^{c}(mod m)$ .

3. A finite fixed pojnt free group of type 1 is isomorphic to some $\Gamma_{d}(m, n, r)$ .
As for fixed point free representations of $\Gamma_{d}(m, n, r)$ , we have
PROPOSITION 2.4 (see [11]). Let $K=\Gamma_{d}(m, n, r)$ , and let $R(\theta)$ denote the

rotational matrix on the plane;

$R(\theta)=(\begin{array}{ll}cos2\pi\theta sin2\pi\theta-sin2\pi\theta cos2\pi\theta\end{array})$ .

Given integers $k$ and 1 with $(k, m)=1=(l, n)$ , let $\pi_{k.l}$ be the representati0n of
degree $2d$ of $K$ defined by

$\pi_{k,l}(A)=(\begin{array}{llll}R(k/m) R(kr/m) 0 \ddots 0 R(kr^{a-]}/m)\end{array})$

and

$\pi_{k,l}(B)=[0....I...I0\cdot..\cdot.\cdot.\cdot o_{I})$ ,
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where each matrix is a block matnx consisting of $2\cross 2$-matrices, I is the unit
$2\cross 2$-matnx and all other comp0nents are zero. Then $\pi_{k.l}$ is irreducible and a
real representation of $K$ is fixed point free if and only if it is equivalent to a
sum of these representati0ns $\pi_{k,l}$ . $\pi_{k,l}$ is equivalent to $\pi_{k’.l’}$ if and only if there
exist numbers $e=\pm 1$ and $c=0,1,$ $\cdots,$ $d-1$ such that $k’\equiv kr^{c}(mod m)$ and $l’\equiv el$

$(mod n’)$ . $\pi_{k,l}\circ\psi_{s.tu}$ is equivalent to $\pi_{sk^{i},ll^{r}}$ where $\psi_{s,t,u}$ is the automorphism of
$K$ defined before.

REMARK. Any irreducible fixed point free representation of $\Gamma_{d}(m, n, r)$ has
the same degree $2d$.

LEMMA 2.5. Let $K=\Gamma_{d}(m, n, r)$ be a finite fixed pojnt free group of type 1
with $n’=d$. Then the number of isometry classes in $(2d-1)$-dimensional spherjcal
space forms with the same fundamental group $K$ is at least 2 if and only if $d=5$

or $d>6$ .
PROOF. Let $\pi_{k.l}$ and $\pi_{k^{l}.l^{r}}$ be fixed point free representations of $K$ as in

Proposition 2.4. Then $\pi_{k.l}$ is equivalent to $\pi_{k’.l^{r}}$ modulo automorphisms if and
only if there exists an integer $t$ with $(t, n)=1,$ $t\equiv 1(mod d)$ and $l\equiv\pm tl’(mod n’)$ .
Since $n’=d$ , the number of isometry classes in $(2d-1)$ -dimensional spherical
space forms with the fundamental group $K$ is $\phi(d)/2$ if $d>2$ , and 1 if $d\leqq 2$ .
Now the Lemma follows easily from this fact. $q$ . $e$ . $d$ .

LEMMA 2.6. For fixed $d\geqq 2$, there are infinitely many finite fixed pojnt free
grouPs $\Gamma_{d}(m, n, r)$ of tyPe 1 with $n’=d$ .

PROOF. It is well known that there are infinitely many prime numbers of
forms $kd+1$ . Let $m=kd+1$ be a prime number. Then $K_{m}$ is a cyclic group of
order $kd$ . So there exists an integer $r$ whose order in $K_{m}$ is $d$ . Put $n=d^{2}$,
then we have a finite fixed point free group of type 1 $\Gamma_{d}(m, n, r)=\Gamma_{d}(m, d^{2}, r)$ .

$q.e.d$ .

3. Spherical space forms which are isospectral but not isometric.

LEMMA 3.1. Let $A=(a_{i,j})$ be a $d\cross d$-matnx and let $d_{1}$ be an integer with
$0\leqq d_{1}<d$ . SuppOse that $a_{i.j}=0$ if $j\not\equiv i+d_{1}(mod d)$ . Then the charactenstic
polynomial of $A$ is

(3.1) det $(z1_{2d}-A)= \prod_{i=1}^{(d,d_{1})}\{z^{d/(d.d_{1})}-\prod_{j=1}^{d/(d,d_{1})}a_{i}+(d,d_{1})(j-1).i+(d.d_{1})(j-1)+d_{1}\}$ ,

where $a_{i.j}=a_{i’.j’}$ if $i\equiv i’(mod d)$ and $j\equiv J’(mod d)$ .
PROOF. It is easy to see the Lemma in case $d_{1}=0$ or 1. Now we regard

the matrix $A$ as the linear transformation on a d-dimensional complex vector
space $V$ with a basis $\{e_{1}, e_{2}, \cdots , e_{d}\}$ such that

(3.2) $Ae_{i}= \sum_{j=1}^{d}a_{i.j}e_{j}$
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$=a_{i.i+d_{1}}e_{i+d_{1}}$ $(i=1,2, \cdots, d)$ ,

where $e_{j}=e_{j’}$ if $j\equiv]’(mod d)$ . Put

(3.3) $f_{i.j}=e_{l+d_{1}(j-1)}$ $(1\leqq i\leqq(d, d_{1}),$ $1\leqq J\leqq d/(d, d_{1}))$ .

Let $V_{i}$ $(i=1,2, \cdots , (d, d_{1}))$ be the subspace of $V$ generated by $f_{i,1},$ $f_{i.2},$ $\cdots$

$f_{i,df(d,d_{1})}$ . Then we have

(i) $V=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{(d.d_{1})}$ (direct sum),

(ii) $AV_{i}\subset V_{i}$ $(i=1,2, \cdots , (d, d_{1}))$

and
(iii) $Af_{i.j}=a_{t+d_{1}(j-1).i+d_{1}j}f_{i.j+1}$ $(1\leqq j<d/(d, d_{1}))$ ,

A $f_{i,d/(d.d_{1})}=a_{i-d_{1}.i}f_{i.1}$ .
Hence we have the characteristic polynomial of $A$ is

(3.4) $\prod_{i=1}^{(d.d_{1)}}\{z_{J=1}^{d/()}d,d_{1-I\dot{I}^{d_{1})}a_{i+d_{1}(j-1),i+d_{1}j}}a/(d\}\cdot$

Now the Lemma follows from the fact that

(3.5) $\{d_{1}(]-1) ; j=1,2, \cdots , d/(d, d_{1})\}$

$\equiv\{(d, d_{1})(]-1);j=1,2, \cdots d/(d, d_{1})\}$ $(mod d)$ . $q.e.d$ .

For a positive integer $p$ , we put

(3.6) $\zeta_{p}=\exp(2\pi\sqrt{-1}/p)$ .

Let $G$ be a subgroup of $SO(2d)$ . We say $G$ is irreducible when the representation
$G\subset SO(2d)$ is real irreducible.

THEOREM 1. Let $S^{2d-1}/G$ and $S^{2d-1}/G’$ be spherical space forms with noncyclic
fundamental groups of type 1. SuppOse $G$ and $G’$ are irreducible and that $G$ is
isomorphic to $G’$ . Then $S^{2d-1}/G$ is isospectral to $S^{2d-1}/G’$ .

PROOF. By Proposition 2.3, $G$ and $G’$ are isomorphic to a finite fixed point
free group $K=\Gamma_{d}(m, n, r)$ . For the proof, we may assume $G=\pi_{1.l}(K)$ and
$G’=\pi_{1,1}(K)$ , where $\pi_{1.l}$ and $\pi_{1.1}$ are fixed point free representations of $K$ as in
Proposition 2.4. The complexiPcation of $\pi_{1.l},$

$(\pi_{1.l})_{C}$ is decomposed into two
irreducible mutually conjugate complex representations of $K$ ;

(3.7) $(\pi_{1.l})_{C}=\rho_{l}\oplus\overline{\rho}_{l}$

where
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$\rho_{l}(A)=(\begin{array}{llll}\zeta_{m} 0 \zeta_{m}^{r} \ddots 0 \zeta_{m}^{r^{n-1}}\end{array})$

and

$\rho_{l}(B)=\{\begin{array}{lllll}0 1 0 \cdots 0\vdots 0 1 . \vdots\vdots \ddots 1 00 \cdots \cdots 0 1\zeta_{n’}^{l}0 \cdots \cdots \cdots 0\end{array}\}$ .

Hence for each $d_{1}$ with $0\leqq d_{1}<d$ , the components of the matrix $\rho_{l}(A^{s}B^{Vd+d_{1}})$

$(1\leqq v\leqq n’)$ are as follows;

(3.8) $\{\begin{array}{ll}(\rho_{l}(A^{s}B^{vd+d_{1}}))_{i.i+d_{1}} =\zeta_{m}^{sr^{i-1}}\cdot\zeta_{n^{l}}^{lv} 1\leqq i\leqq d-d_{1},(\rho_{l}(A^{s}B^{vd+d_{1}}))_{i.i+d_{1}- d}=\zeta_{m}^{sr^{i-1}}\cdot\zeta_{n^{l}}^{l(v+1)} d-d_{1}<i,(\rho_{l}(A^{s}B^{vd+d_{1}}))_{i,j}=0 otherwise.\end{array}$

Applying Lemma 3.1 to the matrix $\rho_{l}(A^{S}B^{t})(1\leqq s\leqq m, 1\leqq t\leqq n)$ , we have

(3.9) det $(z-\rho_{l}(A^{s}B^{t}))=\Pi^{(d.t)}(z^{d/(d.t)}-\zeta_{m}^{sr^{i-1_{\gamma(i)}}}\cdot\zeta_{n^{l}}^{tlf(d,t)})$ ,
$i=1$

where $r(t)= \sum_{j=1}^{d/(d,t)}r^{(d,t)j}$ .

We define the map $\psi$ of $G$ onto $G’$ by

(3.10) $\psi(\pi_{1,l}(A^{S}B^{t}))=\pi_{1,1}(A^{S}B^{lt})$ .

Then $\psi$ is clearly one to one onto. Then from (3.7) and (3.9) we have

(3.11) det $(z1_{2d}-g)=\det(z1_{2d}-\psi(g))$ for each $g\in G$ .
By Corollary 1.2, this implies $S^{2d-1}/G$ is isospectral to $S^{2d-1}/G’$ . $q.e.d$ .

THEOREM 2. Let $S^{2d-1}/G$ and $S^{2a-1}/G’$ be $(2d-1)-\ men\alpha onal$ sPhencal space
forms with noncyclic fundamental groups. SuplOse $d$ is odd Pnme. Then $S^{2d-1}/G$

is isospectral to $S^{2d-1}/G’$ if and only if $G$ is isomorphic to $G’$ .
PROOF. If $d$ is odd, then $2d-1\equiv 1$ (mod4). By Proposition 2.2, $G$ and $G’$

are of type 1. Moreover if $d$ is odd prime, and $G,$ $G’$ are not cyclic, then $G$

and $G’$ are irreducible by Proposition 2.4. Therefore, if part of the theorem
follows from Theorem 1. On the other hand, only if part of the theorem was
already proved in [4]. $q.e.d$ .

Combining Theorem 1 with Lemma 2.5 and Lemma 2.6, we have
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THEOREM 3. Supp0se that $d=5$ or $d>6$ . Then there exist infinitely many
paurs of $(2d-1)$ -dimenstonal spherical space forms which are isospectral but not
isometnc.

Since there exist lens spaces which are isospectral but not isometric in
dimensions 5, 7 and 11 (see [5]), we have

THEOREM 4. There exist spherical space forms which are isospectral but not
isometric in every odd dimenston not less than 5.
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