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\S 1. Introduction and Theorem.

It is well-known that the weights of a weighted homogeneous polynomial
with an isolated singularity determines the topological type of the germ of the
singularity ([4]). Is the converse true? Namely, does the topological type of
the germ of isolated singularity defined by a weighted homogeneous polynomial
determine the weights of the polynomial?

In what follows, we shall assume that the weights of weighted homogeneous
polynomials are greater than zero and less than or equal to 1/2, without loss of
generality ([6]).

The above problem in the case of plane curves was treated in [7] and it
was proved affirmatively. It is well-known that the problem in the case of
three variables is also affirmative ([5]).

Now, let $f(z_{1}, z_{2}, \cdots , z_{n})$ be a weighted homogeneous polynomial of type
$(r_{1}, r_{2}, \cdots , r_{n})$ with an isolated singularity and let $r_{i}=a_{i}/b_{i}$ be irreducible frac-
tions. Then, J. Milnor and P. Orlik ([2]) proved that the characteristic polyno-
mial $\Delta_{f}(t)$ of the Milnor fibration of the polynomial $f(z_{1}, Z_{2}, , z_{n})$ is determined
by

divisor $\Delta_{f}(t)=\prod_{i=1}^{n}(\frac{1}{a_{i}}\Lambda_{b_{i}}-1)$ ,

where $\Lambda_{b}$ means the divisor $(t^{b}-1)$ , (see p. 386 [3]).
L\^e Dung Tr\’ang proved that the characteristic polynomial $\Delta_{f}(t)$ is a topological

invariant ([1]).

Our main result in this paper is the following
THEOREM. Let $f(z_{1}, z_{2}, \cdots , z_{n})$ (resp. $g$ ( $z_{1},$ $Z_{2},$

$\cdots$ , $z_{n}$ )) be a weighted homo-
geneous polynomial of type $(r_{1}, r_{2}, \cdots , r_{n})$ (resP. ( $k_{1},$ $k_{2},$ $\cdots$ , $k_{n}$ )) with an isolated
singulanty and let $r_{i}=a_{i}/b_{i}$ (resp. $k_{i}=c_{i}/d_{i}$ ) be irreducible fractions. Then, $\Delta_{f}(t)$

$=\Delta_{g}(t)$ if and only if the following two conditions are satisfied:
(1) $\{2, b_{1}, b_{2}, \cdots , b_{n}\}=\{2, d_{1}, d_{2}, \cdots , d_{n}\}$ .
(2) For any $b\in\{2, b_{1}, b_{2}, \cdots , b_{n}\}$ ,
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$\prod_{b_{i}\subset b}(1-\frac{1}{r_{i}})=\prod_{a_{i}=b}(1-\frac{1}{k_{i}})$

where the pr0duct over an empty set is assumed to be one.
COROLLARY. Let $f(z_{1}, z_{2}, z_{n}),$ $g(z_{1}, z_{2}, 4z_{n})$ be polynomjals of Brieskorn-

Pham type, namely $a_{i}=c_{i}=1$ ($i=1,2,$ $\cdots$ , n) in the theorem. Then, the following
three assertions are equivalent:

(1) The germs $\{f(z)=0\}$ and $\{g(z)=0\}$ at the origin are of the same topol-
ogical type.

(2) $\Delta_{f}(t)=\Delta_{g}(t)$ .
(3) Let $b_{1}\leqq b_{2}\leqq\ldots\leqq b_{n}$ and $d_{1}\leqq d_{2}\leqq\ldots\leqq d_{n}$ , then $b_{i}=d_{i}$ for $i=1,2,$ $\cdots$ , $n$ .
The author wishes to thank the referee for useful suggestions.

\S 2. Proof of Theorem.

LEMMA. Let $n_{i},$ $q_{j}$ be integers such that $2\leqq n_{1}<n_{2}<\ldots<n_{k},$ $2\leqq q_{1}<q_{2}<\cdots$

$<q_{l}$ . Let $c_{i},$ $r_{j}$ be integers and $m_{i},$ $p_{j}$ be positive rational numbers. Then, if

$(*)$ $\prod_{i=1}^{k}(m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}})=\prod_{f=1}^{l}(p_{j}\Lambda_{q_{j}}+(-1)^{r_{j}})$

$\sum_{i=1}^{k}c_{i}\equiv\sum_{j=1}^{l}r_{j}$ mod 2,

we have $k=l,$ $n_{i}=q_{i},$ $m_{i}=p_{i}$ and $c_{i}\equiv r_{i}$ mod 2 for $i=1,2,$ $\cdots$ , $k$ .
PROOF. We shall prove the lemma by the induction. Firstly, we shall prove

the following
(1) $n_{1}=q_{1},$ $m_{1}=p_{1}$ and $c_{1}\equiv r_{1}$ mod 2.
Proof of (1). Using the formula:

$\Lambda_{a}\Lambda_{b}=(a, b)\Lambda_{[a,b]}$

where $(a, b)$ and $[a, b]$ are the greatest common divisor and the least common
multiple of $a,$ $b$ respectively, we can express both sides of $(*)$ as a linear com-
bination

$\alpha_{1}\Lambda_{\beta_{1}}+\alpha_{2}\Lambda_{\beta_{2}}+\cdots+\alpha_{s}\Lambda_{\beta_{s}}$ $(\beta_{1}<\beta_{2}<\ldots<\beta_{\epsilon})$ .
This expression is unique. By the left side expression of $(*)$ , we have $\beta_{1}=n_{1}$

and $\alpha_{1}=(-1)^{c_{2}+\cdots+c_{k}}m_{1}$ . By the right side expression, we get $\beta_{1}=q_{1},$ $\alpha_{1}=$

$(-1)^{r_{2}+\cdots+r_{l}}p_{1}$ . Thus, we have:

$n_{1}=q_{1}$ , $(-1)^{\sum_{i\neq 1}c_{i}}m_{1}=(-1)^{Z\prime_{j}}J\neq 1P_{1}$ .

This implies the assertion (1).

Secondly, we shall prove the following (2) under the hypothesis of the in-
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duction: $n_{i}=q_{i},$ $m_{i}=p_{i}$ and $c_{i}\equiv r_{i}$ mod 2 for $i\leqq i_{0}-1$ .
(2) $n_{i_{0}}=q_{i_{0}},$ $m_{i_{0}}=p_{i_{0}}$ and $c_{i_{0}}=r_{i_{0}}$ mod 2.
Proof of (2). By the hypothesis of the induction, the coefficient of $\Lambda_{\alpha}$ in

$\square ^{k}(m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}})$ equals the coefficient of $\Lambda_{a}$ in $\prod_{j\Leftarrow 1}^{l}(p_{j}\Lambda_{q_{j}}+(-1)^{r_{j}})$ for each
$i=1$

$\alpha<n_{i_{0}}$ (or $q_{i_{0}}$). So, by the assumption of the lemma, we get $n_{i_{0}}=q_{i_{0}}$ .

Now, the terms of the divisor $\Lambda_{n_{i_{0}}}$ in $\prod_{i=1}^{k}(m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}})$ is

$(-1)^{a}m_{i_{0}} \Lambda_{n_{i_{0}}}\prod_{n_{i}|n_{i_{0}}}(m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}})+\sum_{[n_{i_{1}}.n_{i_{2}}.\cdots.n_{iq}]=n_{i_{0}}}(-1)^{\alpha_{I}}m_{i_{1}}m_{i_{2}}$

$n_{i}\neq n_{i_{0}}$ $n_{i_{1}}<n_{i_{2}}<\cdot\cdot\prec n_{iq}<n_{i_{0}}$

... $m_{i_{q}}(n_{i_{1}}, n_{i_{2}}, \cdots n_{i_{q}})\Lambda_{n_{i_{0}}}$ ,

where
$\alpha=\sum_{n_{i}\downarrow n_{i_{0}}}c_{i},$

$\alpha_{I}=\sum_{i\not\in I}c_{i},$ $I=\{i_{1}, j_{2}\ldots , i_{q}\}$
and the integer

$(n_{i_{1}}, n_{i_{2}}, \cdots , n_{i_{q}})$

is the greatest common divisor of the integers $n_{i_{1}},$ $n_{i_{2}},$
$\cdots$

There is the same sum in the terms of
$\Lambda_{q_{i_{0}}}=\Lambda_{n_{i_{0}}}in\prod_{j=1}^{l}n_{i_{q}}(p_{j}\Lambda_{q_{j}}+(-1)^{r_{j}})$

corresponding to the second sum in the above terms. Hence, we have:

$(-1)^{\alpha}m_{i_{0}} \prod_{n_{i}|n_{i_{0}}}(m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}})=(-1)^{\beta}p_{i_{0}}\prod_{p_{i}|p_{i_{0}}}(p_{i}\Lambda_{q_{i}}+(-1)^{r_{i}})$

$n_{i}\neq n_{i_{0}}$ $p_{i}\neq p_{i_{0}}$

where
$\beta=\sum_{q_{i}1qi_{0}}r_{i}$

.
This implies $(-1)^{\alpha}m_{i_{0}}=(-1)^{\beta}P_{i_{0}}$ since $m_{i}=p_{i},$ $n_{i}=q_{i},$ $c_{i}\equiv r_{i}(mod 2)$ for $i<i_{0}$

by the hypothesis of the induction. So, the assertion (2) is proved. This
completes the proof of the lemma.

Now, we shall prove the theorem.
PROOF OF THEOREM. Let

$\{b_{1}, \cdots , b_{n}\}=\{n_{1}, \cdots , n_{k}\}$ , $n_{1}<\ldots<n_{k}$

and let $c_{i}=\#\{j|b_{j}=n_{i}\}$ .
Then

$\prod_{b_{j}=n_{i}}(\frac{1}{a_{j}}\Lambda_{b_{j}}-1)=m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}}$

where $m_{i}= \frac{1}{n_{i}}\{\prod_{b_{j}=n_{i}}(\frac{b_{j}}{a_{j}}-1)-(-1)^{c_{i}}\}$ .
Thus,

divisor $\Delta_{f}(t)=\prod_{i=1}^{k}(m_{i}\Lambda_{n_{i}}+(-1)^{c_{i}})$ .

Noting that $m_{i}=0$ if and only if $n_{i}=2$ and $c_{i}=even$ , the theorem follows
immediately the above lemma.
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PROOF OF COROLLARY.
(1) $\Rightarrow(2)$ . This was proved by L\^e Dung Tr\’ang [1].
(2) $\Rightarrow(3)$ . Let us put: $r_{i}=1/b_{i}$ and $k_{i}=1/d_{i}$ in the theorem. So, we have:

$\prod_{b_{i}=b}(1-b_{j})=\prod_{a_{i}=b}(1-d_{i})$

for any $b\in\{2, b_{1}, \cdots , b_{n}\}$ by the theorem.
Here, let $b\geqq 3$ , then the above equation implies

$\#\{i|b_{i}=b\}=\#\{i|d_{i}=b\}$ .
These imply

$\#\{i|b_{i}=2\}=\#\{i|d_{i}=2\}$ .

Thus, the assertion (3) is proved.
(3) $\Rightarrow(1)$ . This was proved by M. Oka [4].

This completes the proof of the corollary.

\S 3. Examples.

It is clear that the topology (not the topological type) of $S_{\epsilon}^{3}\cap\{f(z_{1}, z_{2})=0\}$

does not determine the weights of the weighted homogeneous polynomial $f(z_{1}, z_{2})$

where $S_{\epsilon}^{3}$ is a three dimensional sphere of an $\epsilon$ radius ( $\epsilon$ small enough) centered
at the origin. On the other hand, we can determine the weights of a weighted
homogeneous polynomial $f(z_{1}, z_{2}, z_{3})$ knowing only the topology of $S_{\epsilon}^{5}\cap\{f(z_{1},$

$z_{2}$ ,
$z_{3})=0\}([5])$ .

By the next two examples, we can see that the topology (not the topological
type) of the isolated singularity defined by a weighted homogeneous polynomial
does not determine the weights of the polynomial for each $n(\geqq 4)$ , in general.
So, we know that the case of three variables is the only exceptional case.

EXAMPLE 1. Let $f(z_{1}, \cdots , z_{n}, w_{1}, w_{2})=z_{1}^{2}+\cdots+z_{n}^{2}+w_{1}^{3}+w_{2}^{2p}$ , a weighted
homogeneous polynomial of type $($ 1/2, $\cdots$ , 1/2, 1/3, $1/2p)$ with an isolated
singularity at the origin. Let $n\geqq 0$, even and $(3, p)=1$ .

Then, we have:

divisor $\Delta_{f}(t)=(\Lambda_{3}-1)(\Lambda_{2p}-1)$

$=\Lambda_{6p}-\Lambda_{2p}-\Lambda_{3}+1$ ,
so

$\Delta_{f}(t)=\frac{(t-1)(t^{6p}-1)}{(t^{3}-1)(t^{2p}-1)}=\frac{t^{4p}+t^{2p}+1}{t^{2}+t+1}’$ .

Hence, $\Delta_{f}(1)=1$ . By Theorem 8.5 in [2], $K_{f}=S_{\epsilon}\cap\{f(z, w)=0\}$ is a
topological sphere. Thus all $K_{f}$ for all $p,$ $(3, p)=1$ are homeomorphic each other
though $f(z, w)$ are of the different weighted homogeneous types for all $p$ .
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The topological types of the germs of isolated singularities defined by $f(z, w)$

are of the different types for all $p$ , by [1] since the characteristic polynomials
$\Delta_{f}(t)$ are different each other.

EXAMPLE 2. Let $f(z_{1}, \cdots , z_{n}, w_{1}, w_{2})=z_{1}^{2}+\cdots+z_{n}^{2}+w_{1}^{3}+w$ ”, a weighted
homogeneous polynomial of type $($1/2, $\cdots$ , 1/2, 1/3, $1/p)$ with an isolated singu-
larity at the origin. Let $n\geqq 1$ , odd and $(2, p)=(3, p)=1$ .

Then, we have:

divisor $\Delta_{f}(t)=(\Lambda_{2}-1)(\Lambda_{3}-1)(\Lambda_{p}-1)$

$=\Lambda_{6p}-\Lambda_{3p}-\Lambda_{2p}-\Lambda_{6}+\Lambda_{p}+\Lambda_{3}+\Lambda_{2}-1$

so
$\Delta_{f}(t)=\frac{(t^{2}-1)(t^{3}-1)(t^{p}-1)(t^{6p}-1)}{(t-1)(t^{6}-1)(t^{2p}-1)(t^{3p}-1)}$

$= \frac{(i+1)(t^{3p}+1)}{(t^{3}+1)(t^{p}+1)}$ .

Hence, $\Delta_{f}(1)=1$ and $K_{f}$ is a topological shere for $n\geqq 3$ . Thus, all $K_{f}$ for
all $p,$ $(2, p)=(3, p)=1$ are homeomorphic each other, though weighted homo-
geneous polynomials $f(z, w)$ are of the different types for all $p$ .

The topological types of isolated singularities defined by $f(z, w)$ are of the
different types.

Our last example is the following
EXAMPLE 3. Let us put:

$f(x, y, z, w)=x^{2}+y^{2}+z^{2}+w^{13}$ of type (1/2, 1/2, 1, 2, 1/13),

$g(x, y, z, w)=x^{2}+y^{3}z+z^{2}w+yw^{2}$ of type (1/2, 3/13, 4/13, 5/13).

Each one is a weighted homogeneous polynomial with an isolated singularity
at the origin. A polynomial $f(x, y, z, w)$ is of Brieskorn-Pham type and a poly-
nomial $g(x, y, z, w)$ is not so.

Now, we have:

divisor $\Delta_{f}(t)=(\Lambda_{2}-1)(\Lambda_{13}-1)$

$=\Lambda_{26}-\Lambda_{13}-\Lambda_{2}+1$ ,

divisor $\Delta_{g}(t)=(\Lambda_{2}-1)(\frac{1}{3}\Lambda_{13}-1)(\frac{1}{4}\Lambda_{13}-1)(\frac{1}{5}\Lambda_{13}-1)$

$=( \Lambda_{2}-1)(\frac{1}{3}\Lambda_{13}-1)\{(\frac{13}{20}-\frac{1}{5}-\frac{1}{4})\Lambda_{13}+1\}$

$=( \Lambda_{2}-1)\{(\frac{13}{15}-\frac{1}{5}+\frac{1}{3})\Lambda_{13}-1\}$
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$=(\Lambda_{2}-1)(\Lambda_{13}-1)$

$=\Lambda_{26}-\Lambda_{13}-\Lambda_{2}+1$ .
$S\mathfrak{a}$ the characteristic polynomials

$\Delta_{f}(t)=\Delta_{g}(t)=\frac{(t-1)(t^{26}-1)}{(t^{2}-1)(t^{13}-1)}=\frac{t^{13}+1}{t+1}$ .
Hence, $\Delta_{f}(1)=\Delta_{g}(1)=1$ and $K_{f},$ $K_{g}$ are topological spheres by Theorem 8.5 in
[2].
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