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Introduction.

Let M be a 2n—1)-dimensional manifold and S a subbundle of the com-
plexified tangent bundle CT(M) of M. Then S is called a PC (or CR) structure
if it satisfies the following conditions: 1) SNS={0}, 2) [I(S), I'(S)]cI(S) and
3) dim¢ S=n—1. The manifold M equipped with the PC structure S is called a
PC (or CR) manifold. Furthermore following Tanaka [5], we say that a PC
manifold M is normal if there is given an infinitesimal automorphism & which
is transversal to the subbundle S+ScCCT(M).

For example consider the hermitian quadric @, of the n-dimensional complex
projective space P,(C) defined by the equation

r n
ZIZJ'IZ— > lze|*=0,
=0 k=r+1

where 0=r= _n:z—_l For a given positive number ¢, let &, be the vector field

on @, induced from the l-parameter group of transformations
(20, =+, Za))=[20, =+, 2Zr, €Y7z, -, ¥V7I0Z, T,

where [z, -+, z,]=Q,. Then we can see that @, is endowed with a PC struc-
ture and that the PC manifold Q, is normal with respect to the vector field &,.

The main purpose of the present paper is to characterize the hermitian
quadrics in terms of normal PC structures.

Let us now proceed to the description of the main results in the present
paper. Let (M, &) be a normal PC manifold. We assume that M is compact
and non-degenerate of index » and that (M, &) satisfies Condition (C) (This con-
dition requires that the PC structure S is suitably decomposed into subbundles
St and S% For the details, see §1). Then we know that to the normal PC
manifold (M, & together with the decomposition of S, there are naturally as-
sociated a Riemannian metric g, the canonical affine connection V, and two kinds
of scalar curvatures ¢, and ¢,. Furthermore let a(M) be the Lie algebra of all
infinitesimal automorphisms of the PC manifold M, and let ¢(M) be the cen-
tralizer of & in a(M), which is nothing but the Lie algebra of all infinitesimal
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automorphisms of the normal PC manifold (M, &).

Now we notice that the hermitian quadric (Q., &) satisfies the conditions
above, that the scalar curvatures ¢, and ¢, coincide and equal to the constant
¢, and that a(Q.)#¢(Q,). Conversely we can show that these properties charac-
terize the normal PC manifold (Q., &.,). More precisely we have the following

THEOREM A. Let (M, &) be a normal PC manifold. Assume the following con-
ditions: 1) M 1is compact and non-degenerate of index r, 2) (M, &§) satisfies Con-
dition (C), 3) both the scalar curvatures ¢, and o, are constant, and 4) a(M)=«(M).
Then 6,=0:>0, and the normal PC manifold (M, &) is isomorphic to the hermitian
quadric (Q,, &) with the constant c=0,=0,.

Let us consider the special case where M is non-degenerate of index 0, i.e.,
M is strongly pseudo-convex. We first remark that Condition (C) is automatically
satisfied and that the scalar curvature o, vanishes. Furthermore we remark
that the hermitian quadric @, may be naturally identified with the unit sphere
S2e-1 of C™ and that the vector field &, is induced from the l-parameter group
of transformations, z,(z)=ev-1¢¢z, z&S?*"*~', Therefore Theorem A yields the
following

THEOREM B. Let (M, &) be a normal PC manifold. Assume the following
conditions: 1) M is compact and strongly pseudo-convex, 2) the scalar curvature
o (=a,) is constant, and 3) a(M)#c(M). Then ¢>0, and the normal PC manifold
(M, &) is isomorphic to the normal PC manifold (S**~*, §,) with the constant c=a.

As an immediate consequence of Theorem B we obtain

CorOLLARY C (Markowitz [3]). Let (M, &) be a normal PC manifold, and let
H be the group of all automorphisms of the normal PC manifold (M, §). Assume
the following conditions: 1) M is compact and strongly pseudo-convex, 2) the
group H acts transitively on M, and 3) a(M)#c(M). Then the normal PC manifold
(M, &) is isomorphic to the normal PC manifold (S*™*, §,) with a suitable positive
constant c.

In §1 we first recall several known results on normal PC manifolds and
give the definition of Condition (C). We also recall several known results on
Lie algebras a(M). In §2 we introduce certain differential equations which are
closely related to infinitesimal automorphisms of PC manifolds. Then we show
that there exists a non-trivial solution of these differential equations under the
conditions in In §3, by using the method of S. Tanno [6], we
determine the curvature tensor of the canonical affine connection V. §4 is de-
voted to the considerations of the normal PC structures of the hermitian quadrics
Q. and the Lie algebras a(Q,) and ¢(Q,). In §5 we completes the proof of
As an application of Theorem B, in §6, we show a different proof
of Theorem 6.5 in which characterizes the hyperplane section bundles over the
complex projective spaces.

The author would like to express his sincere thanks to Professor N. Tanaka who



Hermitian quadrics 411

has encouraged him and kindly read through the manuscript during the prepara-
tion of this paper.

PRELIMINARY REMARKS.

1) Throughout this paper we always assume the differentiability of class
C> and assume that the manifolds to be considered are connected.

2) Given a manifold M, C*(M) denotes the space of all complex valued
differentiable functions on M, and given a vector field X, .Lx denotes the Lie
derivation with respect to X. Let E be a vector bundle over M. I'(E) denotes
the space of all differentiable cross sections of E.

§1. Normal PC manifolds and Condition (C).

Let M be a differentiable manifold of dimension 2n—1 (n=2). A PC (or CR)
structure on M is a subbundle S of the complexified tangent bundle CT(M)
which satisfies the following conditions:

(PC.1) dim¢S=n—1 and S~S={0}.
(PC.2) [I'(S), I'(S)]JcTI(S).

The manifold M equipped with the PC structure S is called a PC (or CR)
manifold.

Let M and M’ be PC manifolds with PC structures S and S’ respectively.
A diffeomorphism ¢: M—M’ is said to be an isomorphism of the PC manifold
M onto the PC manifold M’ if the differential ¢4« of ¢ sends S onto S’. In
particular an isomorphism of M onto itself is called an automorphism of M.

Let € be a real vector field on M, and let ¢, be the local 1-parameter group
of local transformations generated by . Then { is called an infinitesimal
automorphism if each ¢, is a local automorphism. Note that { is an infinitesimal
automorphism if and only if [, I'(S)JCI'(S). We denote by a(M) the Lie
algebra of all infinitesimal automorphisms of the PC manifold M.

By a normal PC manifold, we mean a PC manifold M equipped with an
infinitesimal automorphism & which is transversal to the subbundle S+S of
CT(M). We remark that a normal PC manifold is called a PC manifold satisfy-
ing Condition (C.1) in the paper [4] Let (M, & and (M’, &) be normal PC
manifolds. A diffeomorphism ¢: M—M’ is called an isomorphism of the normal
PC manifold (M, &) onto the normal PC manifold (M’, &) if it is an isomorphism
as PC manifolds and ¢x«(§)=§". A real vector field { on a normal PC manifold
(M, &) is called an infinitesimal automorphism of (M, &), if it generates a local
l-parameter group of local automorphisms of (M, §). We denote by ¢(M) the
Lie algebra of all infinitesimal automorphisms of (M, §). We notice that ¢«(M) is
the centralizer of & in a(M).

In the following we fix a normal PC manifold (M, §). We define a real 1-
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form & on M by 6©#)=1 and 6(X)=0, Xe(S+S),. For x&M, we define a
hermitian form L, on S; by

L(X,Y)=—+v—1(d0)X, Y) X, YeSsS,;.

The hermitian form L, is called the Levi form of M at x corresponding to 6.

The manifold M is called non-degenerate if L, is non-degenerate at any
xeM, and M is called of index » if »=Min(A.(x), A-(x)) at any x= M, where
A(x) (resp. A.(x)) stands for the number of the positive (resp. negative)
eigenvalues of L,. In particular, M is called strongly pseudo-convex if M is
non-degenerate of index 0, i.e., L, is definite at any x= M.

ProPOSITION 1.1 ([5], see also [4]). Assume that M is non-degenerate. There
exists a unique affine connection

V: I'(T(M)) — I'(T(M)QT (M)*)

on M satisfying the following conditions.
1) S is parallel with respect to V.
2) &, 0 and dO are all parallel.
3) The torsion tensor T of N is parallel and possesses the following properties:

TX, V)=T(X, Y)=0, X, Ye&S,.
T(X, V=X, V). (=vV—1LX, V)§z), X, YES,.
TE. X)=TE,, X)=0, Xe&S,.

The above affine connection V is called the canonical affine connection.

In the following we assume that A is non-degenerate of index ». Moreover
we assume the following condition which was called Condition (C.2) in the
paper [4].

(C) There exist subbundles S* and S?% of S satisfying the following:

1) dim¢S'=r and dim¢S*=s, where r+s=n—1.

2) S=S5'45? (direct sum).

3) Both S*' and S? are parallel with respect to the canonical affine connec-
tion V.

4) At any point x of M, L, is negative definite (resp. positive definite) on
Si (resp. on S2), and S! and S are mutually orthogonal with respect to L,.

Note that if M is a strongly pseudo-convex manifold, then M automatically
satisfies Condition (C), by setting S'=0 and S*=S.

Using the direct sum decomposition CT(M)=CE-+S*'+S*+5'+52, we define
a Riemannian metric g on M as follows:

l) g.Z‘(X; V)Z—Lx(Xy Y) y X) YES;: .
2) g.X, V)=L.(X,Y), X, YeSi.
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4) The other components of g, are zero.
The Riemannian metric g induces a hermitian inner product in the space S; in
a natural manner.

Let R be the curvature tensor of the canonical affine connection V.

ProrosITION 1.2 (cf. [4] and [5]). Let X, Y, Z, WeS,.

(1) RE X)=RE X)=R(X, YV)=R(X, Y)=0.

@ R(X,Y)Z=R(1Z, V)X.

3) R(X, Y)&=0, R(X, Y)SicSi, R(X, Y)SicS:.

4 RX,Y)Z=R(Z, Y)X=0, if XSt and Z&S:%.

6) RX, V)=R({Y, X)=0, if XeS. and YS2.

6) gRX, V)Z, W)+g(Z, R(X, Y)W)=0.

Proor. (1) and (2) were proved in Proposition 1.3 in [4]. (3) follows from
the fact that & S* and S? are all parallel with respect to V. By (2) we have

RX, Y)Z=R(Z, V)X, XeSLl, YeS,, Z8S2.

Therefore it follows from (3) that R(X, Y)Z=R(Z, Y)XeS:nS2={0}. This
proves (4).
Since d@ is parallel with respect to V, we have

(1.1) (dOYR(X, Y)Z, W)+(dO)Z, R(X, Y)W)=0.
In particular if X, Z, WeSL and Y &S2, then by (4) we have
dO)R(X, V)Z, W)=0.

Since R(X, Y)Z<S!, we have R(X, Y)Z=0. Similarly we can show that if
XeS! and Y, Z=S2, then R(X, Y)Z=0. These facts combined with (3) and
(4) imply (5). Finally (6) is an immediate consequence of (3) and g.e.d.

From now on the two indices a, b range over the integers 1, ---, r while
the two indices «, 8 range over the integers »+1, ---, n—1. Lete,, -+, e, (resp.
@11, **» €n-1) be a basis of SL (resp. of S%) such that gle,, &,)=0.s (resp.
gleq, 23)=0,p). By using these bases, we will express various tensor fields in
terms of their components.

We define a linear operator Ry: S,—S, by

R*X=':§R<ei, 2)X, Xe&S,,
=1

which is called the Ricci operator. From (5) of [Proposition 1.2, we see that R
is a hermitian operator on S, with respect to the hermitian inner product as-
sociated with g. Moreover from (3) and (4) of Proposition 1.2, it is also shown
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that if XS (resp. X&S52), then R X< S! and R« X=R(e,, ¢,)X (resp. RsX
€SZ and Ry« X=2 R(eqa, ¢,)X).
We also define the scalar curvatures ¢, and o, respectively by

_ 1\ _ 1 )
=+ 2 8(Rxeq, 8,) and o,= SGID 3 g(Ruea, 2a).

In particular, if M is a strongly pseudo-convex manifold, ¢, will be simply de-
noted by o.

We will frequently use the following equalities.

LEMMA 1.3 (The Ricci formulas cf. Lemma 2.3 in [4]). Let feC=(M) and
XY, ZeT(M),.

D) VeV f=VVxf—Vrax.nf.

@) VxVyVzf=VeVxVzf~rx.vwVzf ~Veax.nzf .

Let Ca(M) be the complexification of a(M), which is a Lie algebra of com-
plex vector fields on M. We define a subspace (M) of C=(M) by

(1

FM)y={feC=(M)|VxVrf=VgVp /=0, X, YES,},
and a linear mapping {— f; of Ca(M) to C=(M) by

fe=00).

PROPOSITION 1.4 (cf. Proposition 1.5 in [4]). The assignment {—f; gives a
linear isomorphism of Ca(M) onto $(M), and {=a(M) if and only if fr isavreal
valued function. The correspondence f—{ is given by

(=f+UAT,
where U is the cross section of S defined by
Yfc4+do)U, Y)=0, YesS,.

Now we define differential operators N, O, O, A4;, A, and A; on C~(M)
respectively by

Nf=v—1¢&f,
O f=—2VaVaf,
Oof=—2ZVaVaf,

Alf:D%f_Dle+E R*?J.vbvdf_*_Wlf)
Azf:[]%f+ Dsz+2 R*gvﬂvaf+sz ’
Aaf‘:Dngf,

where f=C=(M), and Ry} and Ri«f stand for the components of Ry, that is,



Hermitian quadrics 415

Rye,=2  Ry%ep, and Rye,=X Ryfeg, and W, (resp. W,) is the cross section of
St (resp. of S?%) defined by

Wi=3VaRibey,  (resp. Wo=2V:Rxbep).

In particular, in the case where M is a strongly pseudo-convex manifold, O,
and A, will be simply denoted by O and A.

LEMMA 1.5 (cf. Propositions 2.4 and 2.8 in [4]). Let N, T, O, A, A, and
A, be the conjugate operators of N, Oy, Oy, Ay, Ay and A, respectively. Then,

(1) N=-—N.
(2) Ty,=0,+rN and T,=0,—sN.
@) A=A+@+1)Ni—ro,N+20O,N)+W,—W,.
A=A+ (s+1)(sN2+s0,N—20,N)+W,—W,.
As=Ay—sO N+rO,N—rsN2.
LEMMA 1.6 (cf. Propositions 2.2 and 2.6 in [4]). Assume that M is compact.
Let feC=(M).
(1) O.f=0 (resp. Tof =0) if and only if Xf=0 (resp. Xf=0) for all X=S!.
0./=0 (resp. Tof=0) if and only if Xf=0 (resp. Xf=0) for all XS2.
@) fedM) if and only if Aif=A,f=0, i=1,2, 3. In particular, in the
case where r=0, feF(M) if and only if Af=Af=0.

§2. Differential equations (D),.
For each ve R, we define a subspace ., of Ca(M) by
Jor= {{eCa(M) |V ~1L§, (1=},
and a subspace &, of $(M) by
Fm={feF(M)|Nf=vf}.

One should note that the assignment {—f; gives a linear isomorphism of §,
onto &, and §, coincides with the complexification Cc(M) of ¢(M). We also
remark that dim &,=dim &.,,, because N=—N. If M is compact, we can de-
compose F(M) into the eigenspaces of N. Hence we have & (M):Zy) g, (direct

sum) (cf. Propositions B.1 and 5.3 in [4]).

In this section we will prove the following two propositions.

PROPOSITION 2.1. Assume that M is compact and both the scalar curvatures
g, and o, are constant. If a(M)#c«(M), then 6,=0,>0, and F,#0 for the con-
stant ¢c=01=0,.

PROPOSITION 2.2. Assume that M is compact and both the scalar curvatures
o, and o, are equal to a positive constant ¢. Let f€% . Then f satisfies the
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following differential equations:

Nf=cf.

D) Vz/=0, X&S. and Vyf=0, YeS5;.

VxVyf=0, X, YeSt.
VzVyf=0, X, YeS2.

From these propositions we have the following

COROLLARY 2.3. Assume that M is compact and both the scalar curvatures
o, and oy are constant. If a(M)#c(M), then o,=0d.=c for a positive constant ¢
and there exists a non-trivial solution of equations (D)..

PROOF OF PROPOSITION 2.1. We begin with the following lemma.

LEMMA 2.4 (cf. Propositions 3.1 and 5.3 in [4]).

(1) Assume that r=1. In the case where o,=0,=c for a positive constant
¢, Fu,=0 for v#0, —¢, ¢. In other cases, F,,=0 for v+0.

(2) Assume that r=0. In the case where c=c for a positive constant ¢, &
=0 for |v|>c. In other cases, F,,=0 for v+0.

Since a(M)+#c¢M), we have G(M)#F . If r=1, then the assertion of Prop-
osition 2.1 is immediate from

Now let us consider the case where »=0. From we see that
o=c for a positive constant ¢ and there is a real number g such that 0<p=c
and g, #0. We will show that g=c. Let f be a non-trivial function which

belongs to &,. By we have Af=Af=0. We also have Nf=puf.
Since

g(X, W)=g(X, ZVaRules)=g(X, ZVaRsle)=n(n—1)Xo=0,
for every X, we have W=0. It follows from that
n{(n—1N*+(n—1)cN—20N} f=Af—Af=0.
This means that

szﬁﬂ:‘l)é(ifEZf and 'D—f:ﬁi)z(c;&f )

Let C (resp. D) be the cross section of S defined by
g(C, V)=~/—1Yf (resp. gD, Y)=~/—1Yf), Ye&S,.

By putting y={(n—Dc+n+1Dy}/2 and o= {(n—Dc—(n+1u}/2, we have
LEMMA 2.5. R«C=yC and R«D=0dD.
ProorF. First we remark that both R4C and R«D are cross sections of S,
because S is parallel with respect to V. We have
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Y(Df)z(i“%(cﬂ‘)- Yf, veS,.

On the other hand, by using the Ricci formula (Lemma 1.3), we obtain
Y(Df):~§ V?VaVafZ—‘; VoVeVaf— 7(NfH-(gl R e)Y)f

=—uYf+R:Y)f .
Therefore we have (RyY)f=7Yf. Since Ry is hermitian, it follows that
g(R«C, V)=g(C, Ri¥)=v—1(R:Y)f=v—17Yf=g(C, Y),

and hence R4«C=yC. Similarly we obtain R«D=0D. g.e.d.

Now let p (resp. ¢) be the real part of f (resp. the imaginary part of f).
Since Nf=pf, it follows that

ép=pq and Eg=—pup.

In view of these differential equations, we may conclude that p does not vanish
identically and there is a point m of M such that (dp),=0 and p(im)+0. We
define a linear transformation @, (resp. @p) of S, by @o(X)=V,C (resp. by
D(X)=VyD) for X&S,.

LEMMA 2.6. (1) Cp=D,=0.

) Ry|lm@,=rId and Ry|Im@p=01d, where Id stands for the identity
transformation.

3 Sp=Im@;+Im @, (orthogonal decomposition with respect to Ly).
PROOF. Let Xe8,.

(1) We have g(C+D, X)=24/—1Xp=0. This means that
Cn+Dp=0.
By applying the Ricci operator Ry, we have
7Cn+0D =0,
Since y#9, it follows that C,,=D.,,=0.
(2) By differentiating the both sides of the equality R«C=yC, we have
(VxR)(Cr)+ Re(VxC)n=7(VxC)m .
From (1), it follows that
Rie(VxC)m=7(VxC)m .

Hence we have Ry (D (X))=7D,(X). Similarly we obtain R4(Dp(X))=0D,(X).
(3) From (2), it follows that Im @, (resp. Im@,) is contained in the eigen-

space of Ry corresponding to the eigenvalue 7 (resp. 6). Since Ry is hermitian

with respect to L,, Im®, and Im @, are mutually orthogonal with respect to L.
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We now show that Ker @.\Ker @,={0}. Suppose that XeKer @,~Ker @p.
We have

VyVsf=—v=1g({xC, X)=0 and VxVgi=—+/—1 g D, X)=0.
Since T(X, X)=+—1 g(X, X)&, it follows from the Ricci formula that
0=VVxf—VeVef=(T(X, X))f
=g(X, X)(INf)(m)=g(X, X)uf(m).

Since p#0 and f(m)#0, we obtain g(X, X)=0 and hence X=0. This means
that Ker @on\Ker @p,={0}. Hence we obtain dimS,=dimIm @,+dimIm @,
Therefore we have

San=Im@;+Im P, q.e.d.

We are now in a position to complete the proof of [Proposition 2.1, By
we have

trace Rx=ydimIm @,+ddimIm @,

_ (n—1c

5 (dimIm @;+dimIm @)

—I—Qj;—)#(dim Im @ ,—dim Im @)

1\
_(n 21> ¢ L (”;1)" (dim Im @, —dim Im @) .

From the definition of the scalar curvature o, it follows that traceRs=n(n—1)o
=n(n—1)c. Hence we have

pdimIm @;—dimIm @p)=(n—1)c.

Since 0<p¢=c and dimIm @,—dimIm @,<n—1, it follows that g=c. This proves
our assertion.

PROOF OF PROPOSITION 2.2. By (2) of we have
Aif=4,f=0, i=1, 2, 3.
We also have Nf=cf. Since W,=W,=0, it follows from (3) of Lemma 1.5 that
2r+1D)cO, f=Af— A, f=0,
2(s+De(scf— O, f)=A,f — A f =0.

Therefore we have 0O,f=0 and O.f=scf. By (2) of we have
T.f=0. From these equations and it follows that f satisfies equa-
tions (D).. g.e.d.

g.e.d.
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§3. The curvature R.

In this section we will determine the curvature tensor R, assuming the ex-
istence of a non-trivial solution of equations (D).. In view of Proposition 1.2, it
suffices to compute the components R(X, Y)Z, where X, Y, ZeSL or X, Y, Z<
Si. We will show the following proposition.

PROPOSITION 3.1. Assume that M is compact and there is a non-trivial solu-
tion f of equations (D)., with a positive constant c¢. Then

R(X, V)Z=c{g(X, V)Z+g(Z, Y)X},

where X, Y, ZeSL or X,Y, Z&S2.
Combining Propositions [.2, and Corollary 2.3, we obtain the following
COROLLARY 3.2. Assume that M is compact and both the scalar curvatures
o, and ay are constant. If a(M)+cM), then

R(X, V)Z=c{gX, )Z+g(Z, )X},

where X, Y, ZeS, or X,Y, Z&S1, and ¢ is a positive constant. In particular,
VR=0 and o,=0,=c.

PRrROOF OF PROPOSITION 3.1. The essential idea of the proof is similar to
that of S. Tanno (Theorem 5.1 in[6]). We only consider the case where X,Y, Z
€S2, By replacing f by f the proof goes through with several changes of
signs, even in the case where X, Y, Z&S}.

Let p (resp. ¢) be the real part (resp. the imaginary part) of f. We define
a real vector field » by

n=2ps+C+C=(f+/)s+C+C,
where C is the cross section of S? defined by
gC, V)=v—-1Yf, YeS2.

Note that, in the case where »=0, % is an infinitesimal automorphism of M.
LEMMA 3.3. Let X=S2.

(1) VzC=0.
2) VxC=—+—lcf()X.

PRrRoOOF. First we remark that both VC and VxC belong to S3. Let Y S3.
We have

g(VzC, V)=+/—=19Vsf=0.

Hence we have VzC=0, proving (1). Using the Ricci formula, we have
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g(VxC, V)= —=1VxVpf=~—1VVxf—~—1T(X, Y)f
=—v/—1T(X, Y)f=—v—1g(X, Y)INf)(x)
=—~/—1g(X, Y)cf(x).

This means that VxC=—+—1cf(x)X. g.e.d.
LEMMA 3.4. (1) [, I'(SHICI(SY).
@) [, E1=—2cqf+~—1cC—+/—1cC.
3) (L,9X, Y)=2¢q(x)g(X, Y), X, YeSi.
@) 7np=2cpq.
®) ng=—2cp*—g(C, C).

Proor. (1) Let X*<I'(S?». Using and the fact that S? is
parallel, we obtain

[y, X*¥]=V,X*—Vxp—T (7, X¥)
=—(X*)E+T(X*, C),  (mod I'(S?).

Since (X*f)e=+—1g(X*, C)é=T(X*, C), we have [z, X*]=(S?.
(2) Since £f=—+/—1cf, we have [§ C]=—+/—1cC. Hence we have

[y, §1=—Ef+ENEFHIC, E1+LC, €]

=—2cqé++—1cC—+/—1cC.
(3) We have

(L)X, V)=(,0)(X, Y)+g(Vxy, YV)+g(X, Vpy)
+2(T(y, X), V)+gX, T(y, V).
Since V,g=0, T(y, X)=CE, and T(y, Y)C%,, it follows that
(L18)X, V)=g(Vxn, ¥)+g(X, Trn).

By we have

g lxn, V)=—+—1cf(x)g(X, V),

g(X, Vep)=v—lcf(x)g(X, V).
Therefore we obtain

(L)X, V)=—~—1cf(x)g(X, V)+~—1cf(x)g(X, ¥)
=2cq(0)g(X, V).
(4) Since Cf=0, we have
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1b=pEf +EN+5(CFHT.

Since Ef’#—lecf and Cf=—~/—1g(C, C), it follows that

np=2cpq.

(5) By similar calculations, we have

ng=p(—v —16f+~/—16f)+ V-1 Cf— “;1 Cf=—2cp*—g(C, C).

2
g.e.d.

Now we define a tensor field H of type (1,1) on M by

and a tensor field K of type (1,2) on M by

KX, Y)=NxH)Y+R(p, X)Y, X, YeTM)..

Note that K is nothing but the Lie derivative of V with respect to »:

K(X*, Y*)=[7, V.Y *]=Vy, xaV *—Vx.([y, Y*]),

where X* and Y* are vector fields on M. By direct calculations, we have the
following formulas.
LEMMA 3.5. Let X, Y, ZT(M),.

(1
@)

(L, T)X, YV)=KX, Y)—KY, X).
(LyRYX, V)=(VxK)Y, Z)—(yK)X, Z)+K(T(X, Y), Z).

Now we compute the tensor fields K and .L,R.
LEmMmA 3.6. Let X,Y, Z€S].

oY)
2)
®
4)
(5)

KX, YV)eS: and K(X, V)eS2.

KX, VN)=cg(X, Y)C and K, X)=cg(X, Y)C.
KX, Z)=—cg(X, C)Z—cg(Z, 0)X.

K¢, X)=—c*f(0)X.

(L, R(X, Y)Z=2c*(x){g(X, Y)Z+g(Z, Y)X}.

PROOF. We extend the vectors X, Y and Z to cross sections of S?, say X*,
Y* and Z* respectively.

(D

)

Since S? is parallel with respect to V, by (1) of Lemma 3.4, we have
K(X* Y®el(S?) and K(X* Y*eI'(Sy).
Since T(X*, Y*)=+/—1g(X*, Y*§&, we have
(L, X, V)=V —1(L,0)X, Y+ —1g(X, V)7, £].
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Hence, by using (2) and (3) of and (1) of Lemma 3.5 we have
KX, V)—K(Y, X)=(£,T)(X, V)=—cg(X, Y)C+cg(X, Y)C.
Therefore by (1), we obtain
KX, V)=cg(X, Y)C and K(Y, X)=cg(X, Y)C.
(3) We have
Vil Ly YH)— L, (Vg V9=V, xn V¥—K(X*, Y¥),
Vil Ly Z¥)—L,(VxeZ*)=—Ny, xaZ*—K(X*, Z%).
These equations yield
(Vxo Lo @)(V*, Z%)—(L (Ve )(Y*, Z%)
=— (Ve x28)(V*, Z¥)+g(K(X*, Z¥), Y*)+g(Z*, K(X*, Y¥).
Since g is parallel with respect to V, we have
(L (Vo)) (T¥, Z9=, xng(T*, Z¥)=0.
By (3) of we also have
(VoL NZ*, Y¥)=2c(X*q)g(Z*, Y¥).
Therefore we obtain
2c(Xq)g(Z, V)=g(K(X, Z), V)+g(Z, KX, Y)).
Since 2(Xg)=+~—1Xf=—g(X, C), it follows that
g(K(X, Z), V)=—cg(X, C)g(Z, V)—cg(X, NgiZ. O,

which implies (3).
(4) Since Ve=_¢, we have

K, X0=[y, [§, X*]]—Vey, 0 X*—[§, [y, X*]]
=.£’[,7,5]X*—V[,7,53X*

=—Vx(y, ED—T[y, &1, X*).
ByJ(@2) of we have

K&, X)=—Vx(—2¢q+~—1cC—~/=1cC)++/—=1cT(C, X)
=20(Xq)E—~ —1cVxC+cg(X, C)&
=—cg(X, O)—c*f(x)X+ca(X, OV
=—ctf(x)X.
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(5) Combining (2) of Cemma 3.5 and (2), (3) and (4) above, we obtain
(L,R(X, Y)Z=(xK)Y, Z)—-(VsK)(X, Z)+K(T (X, V), Z)
=cg(Z, Y)VxC+eg(X, VWO Z+cg(Z, TyO) X
—v—1c*f(x)g(X, Y)Z
=2¢%(x) (g(Z, )X+ g(X, T)Z}. g.e.d.

We define a tensor field @ of type (1,3) on M by

(i) O, V)Z=R(X, V)Z—clgX, V\Z+g(Z, )X}, X, Y, Z&S}.
(i) The other components of @ vanish.

LEMMA 3.7. ©,=0 at any x=M such that p(x)=0.

Proor. Let ¢, teR, be the 1-parameter group of transformations generated
by 7 and 7(t), t€R, the curve defined by 7(t)=¢.(x). By (3) of Lemma 3.4, we
have (¢¥g).=p{t)gs,, where p(t) is a positive function satisfying the ordinary
differential equation

2 (O)=2cq )0

with the initial condition p(0)=1. By (3) of and (5) of
we also have .£,0=0, and hence (¢¥0).=0..

Let ¢r41, *++, €n-y be a basis of S such that gle,, €g)=045. To prove the
assertion, it suffices to show that g(@ (e, &s)e;, ;=0 for any quadruplet («, 3,7, 0)
of indices. Let {e.(?)} be the frame of S* along 7(t) defined by e (t)=(dr)x(ea).
Then it follows that

geat), es0)=g(B)xea, (p)xZp)=($¥g)(ea, 25)
=p(t)g(eq, 5)=p{)0ag -
Put X,(0)=(1/vp®))e.(t) so that g(X,(t), Xs{))=0,5. Then it follows that
3.2) 2(O(X,(t), Xp0)X;(1), X5(t))
=p(1)g(O(ea(t), es))e(t), est))
=p)?g(O(p)xear (Pe)x8p)(Pe)xer, ($2)x85)
=p)*g(($)xO(ea Cp)ey, (Pe)xCs)
=pO)"*(gF2) O eq, &g)e;, 25)
=p(t)'g(O(eq, 2ple;, ).
If we put X()=p(r®))/p(x), then, by using (4) of Lemma 3.4, we have X(0)=1 and
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%(t):(vm(r(t))/ P)=2¢p(r@)g(r®))/ p(x)=2cq(r@NA() .

From the uniqueness of the solutions of ordinary differential equation (3.1), we
have p@®)=X().

By (5) of we see that the function ¢(7(t)) is a bounded decreas-
ing function. Hence we can choose a sequence {t;}, {;<R, such that

. d _
lim g ()] e=e,=0.

By using (5) of again, we obtain 11131 p(r))=0. Therefore we have
p(t)=X({t)—0 (G—+o0).
Suppose that g(@(e,, €g)e;, é5)+0. From (3.2), we hav:

lim | g(O(Xa(ts), Xpt)X;(ts), Xot))|=-+00,

On the other hand, since M is compact and g(X,(t), Xs(t))=0ap, it follows that
|g(O(X, (1), Xs) X (1), X5(1)|, teR, are bounded, which is a contradiction. Hence
we have

g(@(ea: éﬂ)er; 0_5)20. q. e.d.

To complete the proof of [Proposition 3.1, it suffices to show that {xeM]|p(x)
#0} is an open dense subset of M. To see this fact, we remark that

(O,+0,+ D2+EZ+N2)f:(n+C—1)Cf .

We also have (O,+0,+0,4+0.+Ny)p=(n+c—1)cp, because O;+0;+ 0.+,
+N? is a real operator. Thus we see that p satisfies a strongly elliptic differ-
ential equation of order two, and hence {x<=M]|p(x)#0} is an open dense subset
of M. g.e.d.

§4. The hermitian quadrics Q,.

Let P,(C) be the n-dimensional complex projective space with homogeneous
coordinate system z,, -+, z,. Consider the hermitian quadric @, of P,(C) defined
by the equation

élzﬂz— {2 |z, |*=0, 0=r= n—1
i=0 P 2

Let S’ be the induced PC structure of @Q,, that is, S'=CT(Q,)N\T"°(P,(O)).
Let 7, be the l-parameter group of transformations defined by

Tt([zm Tt Zn:l):[ZO; *tty 2y e‘/jluzr+1) Tty e\/:Cth] s

where ¢ is a positive constant, and &, be the vector field on Q, induced from



Hermitian quadrics 425

7;. It is easy to see that &, is an infinitesimal automorphism which is trans-
versal to the subbundle (S’+S’) and hence Q, together with &, is a normal PC
manifold.

Let z be the natural projection of C"*'— {0} onto P,(C). For zez~Y(Q,), let
T, be the subspace of the holomorphic tangent space T*°(C"*'—{0}), defined by

n a T - n -
T={Zti5 | Stz= 3 tal,
i=0 aZi j=0 k=r+1
where z=(z,, -+, z,). Then 74« induces an isomorphism of T, onto S, x=r(2)

To consider the Levi form of Q,, we define a 1-form ¢’ on n~*(Q,) by
0':«/‘—15*51og(j§01zj12)—«/fle*a1og(k§+lxzk12)

where ¢ is an injection of 7 Y(Q,) to C"**—{0}. We easily see that there is a
unique real 1-form § on @, such that §’==*f. It is easy to see that # satisfies
0(E)=1 and 6(X)=0 for every X=(S’+S’),. Hence the Levi form L, at
xe@Q, is given by

L(X, Y)=—+v—-1(d0)X, V), X, YeS,.

Now we claim that Q. is a non-degenerate PC manifold and satisfies Condi-
tion (C). To show this, we define subbundles S and S¥ of S’ as follows. For
a point z of 7~*(Q,), we define subspaces T! and T2 of T, respectively by

Tiz{ztiaiziemtm: e =ty =0},
Tg:{zti-a—; ET, o= - :t,zo}.

For x=Q,, we put SY=r4«(T}) and S¥=r4«(T?2), where zex~(x). Itis clear that
the definitions of SY and S% do not depend on the choice of z, and S;=SY+S%
(direct sum). We define SV and S* respectively by S¥=\JSY¥ and S¥=\JS%.

x z

From the equality
V—=1d0'=—{(Z2;|)H(Z dz; N dZ;)— K (D 2;dz) N (X 2;d2Z,)} (] 257
H{(Z 22 |DH(E dze NdZp)— ¥ (X Zedz) AKX 22dZ )} /(] 26 %),

where j (resp. k) range over 0, ---, r (resp. r+1, -=-, n), we can see that Q,
satisfies Condition (C) with respect to the decomposition S’=S"+S*. It is also
verified that

R'(X, V)Z=clg'X, V)Z+g'(Z, )X},

where R’ is the curvature and X, Y, ZeSY or X, Y, Z=S5%. In particular, we
have VR’=0 and ogi=0:=c.
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Now we consider the space a(Q,). First we define an (n--1) X (n-+1)-matrix

Jr by
'—_Ir+1 O
J=
O Is+1 ’

I, (resp. I;.;) being the identity matrix of degree r+1 (resp. of degree s+1).
Let G be the subgroup of GL(n+1, C) defined by

G={UeGL(n+1, O)|*ULU=]}.

For UG, we denote by U’ the projective transformation of P,(C) associated
with U. It is easy to see that U’ keeps @, invariant, and hence induces an
automorphism of @, as a PC manifold. It is known that the mapping U—-U’|Q,
induces an isomorphism of the quotient group of G by its center onto the group
of all automorphisms of @Q,. Therefore the Lie algebra a(Q,) is naturally iso-
morphic to the Lie algebra

{Uesal(n+1, O*UJ,+JU=0},

and hence Ca(@,) is naturally isomorphic to the simple Lie algebra 8l{(n-+1, C).
In particular, under this isomorphism, ., corresponds to the matrix

(rlm 0 )
0 6l
s+1

ot
nil and d=+—1 ——

morphic to the Lie algebra
Ut 0
U=
0 U*

§5. Proof of Theorem A.

where y=—+/—1 ¢, and hence ¢(Q,) is naturally iso-

Uleu(rr+1), Ucu(s+1), Ussl(n+1, C)}.

In this section we will complete the proof of Theorem A.
First by [Proposition 1.1] and [Corollary 3.2, we have

VT=VR=0.

Therefore M is a real analytic manifold and V is a real analytic connection
(Theorem 7.7 in [2], p. 263).

We fix a point y of Q, and a point x of M and take a linear isomorphism
@ of T(Q,), onto T(M), such that

( i ) ¢<E(c)y)‘:5x »

(ii) @(SYy)=Si and O(S¥)=Si,
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(i) g(@X, OV)=g'(X, V), X, YeS),

where we extend @ to a linear isomorphism of CT(Q,), onto CT(M), in a
natural manner. By [Proposition 1.1 and [Corollary 3.2, we see that @ maps T
(resp. R7) to T, (resp. to R,).

LEMMA 5.1. There exists an affine mapping ¢ of Q. to M such that (Px),=®.

ProOOF. Since T, R, T’ and R’ are all parallel and @ maps T and Rj to
T, and R respectively, it follows that there is an affine mapping ¢’ of a con-
nected neighborhood of y onto a connected neighborhood of x such that (¢%), =@
(Theorem 7.4 in [2], p. 261).

Here we remark that the canonical affine connection V is complete, because
Vg=0 and M is compact. Since @, is simply connected, we see that ¢’ can be
uniquely extended to an affine mapping ¢ of Q, to M (Theorem 5.1 in [2], p.
252). q.e.d.

LEMMA 5.2. ¢x(S")=S", ¢x(S¥)=S* and ¢+&»)=6.

ProOOF. These assertions follow immediately from the fact that &, S*, S?
£, SY and S¥ are all parallel. q.e.d.

LEMMA 5.3. ¢ is a diffeomorphism.

ProoF. Since Q. is compact, ¢ is a covering map. Let ¢ be a covering
transformation of the covering space (Q,, ¢). To prove the assertion, it suffices
to show that ¢ has a fixed point. By [Proposition 2.1, we have a non-trivial
element { which belongs to §.,. Let {’ be the lift of { to Q.. Since [§, {]=—
v/ —1cC, we also have [£,, '1J=—+~/—1cC’.

Under the identification of Ca(M) with 8l(n+1, C), we easily see that £’ is

of the form
0 A
U=
0 0/,

where A=(a;;), 0=i<r, r+1=j<n, is an (r+1)X(s-+1)-matrix. Since ¢ is an
automorphism of @,, it follows that ¢=U’|Q, for some U= G. Since ¢x&y=E&

and ¢«{'={’, we have
u* 0
U=
0 uz/,
where U'eU(r+1) and U*cU(s+1) such that U'A=AU?.

Without loss of generality, we may assume that U! and U? are diagonal
matrices so that

Ul=40;; and Ul=pd:;,

where U}; and U}, are the components of U* and U?® respectively and 4; and p;
are complex numbers such that |1;|=]|g;|=1. Then we have

AiQi;=afj
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Take a pair of indices (7, j) such that a;;#0, then we have A;=p;. Let p be
the point such that z;=z;=1 and z,=0, k+#7, j. Then we have ¢(p)=p, which
means our assertion. g.e.d.

§6. A characterization of the complex projective spaces.

In [4] we have shown a characterization of the complex projective space:

THEOREM 6.1 (Theorem 6.5 in [4]). Let M be an (n—1)-dimensional compact
complex manifold and F a holomorphic line bundle over M with a hermitian
metric h. Assume the following conditions:

[al The first Chern form @ of the hermitian holomorphic line bundle F is a
positive form.

[b] The Kdhlerian metric g associated with @ is an Einstein metric.

[c] The vector bundle T**(M)RQF-* admits a non-trivial holomorphic cross
section, where F~! stands for the dual line bundle of F.

Then M and F must be one of the following

1 M is the (n—1)-dimensional complex projective space P,-(C) and F is the
hyperplane section bundle over P,_,(C).

(2) n=2 and M is the 1-dimensional complex projective space P,(C) and Fis
the holomorphic tangent bundle of Py(C).

Let X be the Ricei form associated with g. By Condition [b], we have X=
nc® for some real constant ¢. In Theorem 6.5 in we showed that if nc+1,
then (1) holds and if nc=1, then (2) holds. In the proof of the case where
nc+1, we used the results of Kobayashi-Ochiai. Here we show (1) by using
Theorem B.

As in [4], let P be the principal C*-bundle associated with F-!. Let M be
the U(1)-reduction of P with respect to the hermitian metric induced from #,
which is a real hypersurface of P. Let & be the vector field on M induced from
the 1-parameter group of the right translations R.v-1t, teR. By Condition [a],
M together with £ is a normal strongly pseudo-convex manifold. Furthermore,
since X=nc®, it follows that Ris=nclId and hence Condition (C.3) in is
satisfied (cf. p. 96). In particular we have o=c.

Now we will show that ¢=1 and a(M)+#c(M). For feC(M), let {; be the
complex vector field defined by

Cf:f$+U+U;
where U is the cross section of S satisfying
YF+do)yU, Y)=0 for every YeI'(S).

For veR, let g), and g%, the sets of the complex vector fields on M defined
respectively by
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gb=1{,18f=0, Nf=uf},
g =1, 10f=(nc—v)f, Nf=vf},

(cf. §5 in [4]). In Theorem 5.6 in [4], we showed that g%,=0 for v>0, unless
y=c¢>0.

By Proposition 6.4 in [4], we see that g%, is isomorphic to the space of all
holomorphic cross sections of T 1'0(1\71 YRF-1 (the space g*(P)(-a, in Proposition
6.4 in [4] is isomorphic to g%, by the definition of g*(P)m,). Consequently we
have g?%,#0 and hence ¢=1. By Theorem 5.7 in [4], we have

Ca(M)=gl+g%+e8t-n+8% ,
and
C(M)=g',+8%, .

Since g2%,,#0, we have a(M)#«(M).

Now we apply [Theorem B. Then we obtain an isomorphism ¢ of (S**7%, & ;)
onto (M, ). Clearly ¢ is equivariant with respect to the U(l)-actions. Hence ¢
can be extended uniquely to a bundle isomorphism ¢’ of C*— {0} onto P as C*-
bundles. It is easy to see that ¢’ induces a biholomorphic mapping of P,-,(C)
onto M and also induces an isomorphism of the hyperplane section bundle onto F.
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