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§1. Introduction.

In this paper we consider first order pseudo-differential operators on R™ and
study uniform estimates of the resolvents as a spectral parameter goes to infinity.
The uniform estimates for higher order partial differential operators and first
order systems whose coefficients approach constants at infinity will be studied on
the basis of the results of this paper in subsequent papers. The results there
will be used to give asymptotic expansions as t—oo of solutions for hyperbolic
or Schridinger-type equations.

In connection with time-decay for solutions of hyperbolic differential equa-
tions, analytic continuation of resolvents through the real line have been investi-
gated by many mathematicians (see, for example, [9] and [10]). They treated,
however, only differential operators which are homogeneous differential operators
with constant coefficients outside a bounded set. Our aim is to establish uniform
continuity and differentiability of the boundary values onto the real line for
resolvents of operators neither constant nor homogeneous at infinity.

Now, we explain notations in order to state our main results. We write
x=(x1, =+, x2) ER®, (2d>=(1+|x|)"?, 0,,=0/0x;, Dy=—i0/0x;, D3=D5*--- Dgn
for a multi-index a=(a,, ‘-, a,) of nonnegative integers. For a smooth func-
tion f on an open set of R*, V,f=(0.,f, -, 0;,f). S’ denotes the space of all
tempered distributions on R"*. For u=S’, the Fourier transform and the inverse
Fourier transform of u are denoted by #=F[u] and #=F"[u], respectively:

ﬁ(f)zSe‘”fu(x)dx, ﬁ(x)zge“”fu(f)dé, dE=(2n)-"dE |

For real numbers ¢ and s, we put

(1.1 Ho*={fe8"; | fllyo.s=IKx>*{Dz>? f Lyrnr <0}

In particular, H**=L§ and H?°=H? are the weighted L.-space and the Sobolev
space, respectively. We write ||f|s=[fllo,s» For Banach spaces X and Y,
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B(X, Y) denotes the Banach space of all bounded linear operators from X to Y.
We write

(1.2) B(o, s;r, »=B(H?°, H>"), B(s, r)=B(0, s;0, r).
Consider the pseudo-differential operator
(1.3) AX, D2)=b(Dz)+c(X, Dz)+d(X, D),

where b(€), c(x, §)eS!,and d(x, §)S%, (For pseudo-differential operators, see
and [3] for example.) We impose on the symbols the following conditions
(A.) and (A.ID).

(A.) b and c¢(x, &) are real-valued functions such that for some positive
constants K, and R,

(1.4) [Veb(@), [Vealx, )12 Ko, |xl, IE[Z R0,

where a(x, §)=b(&)+c(x, &).
(A.Il) There exists a constant p>2 such that for any multi-indices « and

(1.5) | D3ddc(x, £)] SCoplxdmemtaiKeyr1#,
(1.6) | D2ddd(x, )] SCagladt-emiagy™d!,

where the C,5 are constants independent of x, §€R".
It follows from (A.I) and (A.II) that the Cauchy problem

(D:— AKX, D)ult, x)=0,  u(0, x)=wuo(x)

is well-posed: The propagator E(t) defined by E()u.x)=u(t, x) forms a con-
tinuous group of operators on L, (see [2]). Let us denote by /A the generator
of the group. Then A is a closed operator whose resolvent R(z)=(z— A)~! exists
for |Imz|>1. Our problem is whether the resolvent R(z) on {+Imz>1} can be
extended, as a B(s, —s)-valued bounded continuous function, to the set N.=
{zeC; £Imz=0, |z| >N}, where N is a large positive number. In solving the
problem the no trapped ray condition (A.IIl) to be stated below plays a crucial
role. We denote by {q(¢, v, §), p(t, v, §)} the solution of the Hamilton equation
dp

D YT p L =T.a, ), 100, 2O =10, 8.

(A.Ill) For any R>0 there exists T such that
lgt, v, &)I>R  for all t>T, |y|=R, and |§|=R,.

We can now state our main results.
THEOREM 1. Assume (A.D~(A.III). Let 0=0<1 and k be a non-negative
integer such that 0<k+0<p—2. Then there exists a constant N>0 such that the
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resolvent R(z)=(z— A)™* on {xImz>1} can be extended to a k-times continuously
differentiable function on the set N.={z; £Imz=0, |z| >N} to B(s, —s), where
s>k-+043/2, which is holomorphic in the interior of N. and has the properties:
the derivatives RY(z), j=0, ---, k, are bounded, and R‘®(z) is uniformly Hélder
continuous with exponent 6. Furthermore, for any r> k4041 there exists a con-
stant C, such that for all feLj

(18) [ [

Si} DRG0 femd,zH_T]zdt§C?—llf||?,

where X(A) is a C>-function on R such that X(A)=1 for |A]>N+1 and SuppXC
{I2]>N}.

If p>3, for any 1<o<p—2 and s>o-+1/2 there exists a constant C; such
that

(L.9) " xarasmenran|,  =canr, ter.

THEOREM 2. Assume (A.l), (A.Il) and the condition that there exist symbols
a,(x, & and b,(§) homogeneous of order 1 on {|&|> R} such that a(x, &)—a,(x, &),
b(&)—b(&)eS%, Then the estimate (1.8) implies (A.IID).

A close connection between the no trapped ray condition and energy decay
has been observed by many mathematicians (see [4]~[6], [8]~[10]). Vainberg
[10] showed that the no trapped ray condition implies the high energy resolvent
estimate. asserts that the converse is true for a large class of
operators.

The remainder of this paper is organized as follows. Sections 2, 3, and 4
are devoted to the proof of [lheorem 1. [[heorem 2 is proved in Section 5. In
Section 6 we shall deal with operators with constant leading coefficients, and
give estimates sharper than and [1.9). The estimates are the best possible
ones.

The author expresses his hearty thanks to Professor H. Kitada for his helpful
discussions.

§2. Phase functions.

The purpose of this section is to construct phase functions globally in time
by solving the Hamilton-Jacobi equation

2.1) 0ip—alx, V.8)=0, &0, x, &) =x¢&
or

(2.1) 0:9+a(Veg, £)=0,  ¢(0, x, =x¢
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for a(x, & satisfying (A.)~(A.III). We shall carry out the construction only
for =0, since the other case can be treated similarly. In what follows we shall
use the following notation [[x, y1l=x-y/|x||y|, x, yeR"~{0}.

2.1. Bicharacteristics. Consider the Hamilton equation

@) Mo Vg L=Vl GO, pOI=1, 8.

It is easily seen that the equation has a unique solution {q(t, v, &), p(t, v, &)}
on R

For —1<o<1 and R, £>R,, we put
(2'3) I_;(O', R’ E):{{y’ E}; i[[y; _an(yy 5)]]2:’:0, |y|2R; IGI_—>_—E}-

LEMMA 2.1. For any =+t=0 and {y, & =l.(o, R, 2R,) with R sufficiently
large,

2.4 lqt, , O)—(y—1tVealy, I =CR™*t],
(2.5) [p(t, ¥, §)—EI=CR"*|&],
(2.6) lgt, v, Olzc(ltI+1y1),

where C and ¢ are positive constants depending only on o.
PrROOF. The lemma can be shown easily by the successive approximation :
{go(®), po@®)} ={y—1V,a(y, ), § and

gin)=y— S:Vfa(qj(w, pis)ds
2.7)

pona=6+ Voalg (s), pANds

for j=0. ‘ Q.E.D.

LEMMA 2.2. Let =0, &=3R,, and R>»1. For any {y, & l_-(o, R, &)
satisfying |qt, v, §)|=R and [[¢t), —Vea(g®), p)I1=o for all t[0, 7], one
has (2.4), (2.5), and

(2.8) lgt, 3, )l zcle—t+1g(r, 3, O, 0=t=r,

where ¢ is a positive constant depending only on o.
PROOF. By virtue of we have only to show that |p(z, y, )|=
2R,, which is easily proved by reduction to absurdity. Q.E.D.
Fix o, 05, and o, such that —1<¢,<0;<0,<0, and choose R’ so large
that Lemmas and hold for any R=R’ with ¢ replaced by ¢, and gy,
respectively. By virtue of (A.I), (A.Il), and we can choose R,=R’
such that for any R=R,, {¢@t, v, &), p(t, », &}l (oy, R, 2R,) if t=0 and {y, &}
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el (0, R, 4R,). Fix such an R,. Then we have

LEMMA 2.3. (i) There exist Ty and 5,=2R, such that {q(t, y, &), p(t, v, &)}
ely(o1, Ry, 2R,) for any t>T,, |y| <R, and |&|>5,.

(ii) There exists E; such that |p(, v, §)|=2R, for any t=0, ycR", and
El=&..

PrOOF. By (A.Ill) there exists T, such that for any |y|<R, and |£|=R,
one can choose s€[0, T,] with |q(s, ¥, &)| =R, and [[¢(s, v, &), —Vea(q(s, y, &),
p(s, v, 6)11=0. On the other hand, elementary calculations yield the a priori
estimate

(2.9) e MHEY P, v, Ep =M, t=0, {y, §leR™,

where M is a positive constant. Putting 5,=4R.e¢¥7o, we thus obtain that
{q(s, v, &), ps, v, &)} I'L(0, R,, 4R,), which implies (i) by the property of R,.
(ii) follows from (i) and Lemma 2.2 Q.E.D.
For R=R, we define the incoming time z(y, &; R) as follows.
DEFINITION 2.4. For {y, & l-(o{, R, 5),

7(y, &; R)=sup{t=0; [¢(s, ¥, )| =R and

CLg(s), —V:alq(s), p(s))I1=a, for all s€[0, t]},
and z(y, &; R)=0 otherwise.

2.2. Incoming phase functions.
PROPOSITION 2.5. Assume (A.l) and (A.Il). Then for any positive integer k
there exists a real-valued C>-function ¢,(¢, x, §) on [0, k1X R* such that

(210) ¢k(0) X, S):JCE,
(2.11) 0:0:(t, x, &) —a(x, V0t x, £)=0
on 2:8)={(, qt, v, 8); 0=t=k, v(y, & R:)>k} with |§]1=&,,

where R, is some constant greater than R,, and for 0=t<k and {y, &} with
(3, §, R)>k

(2.12) (N20:(t, x, &), Vedi(t, %, O lzmqr,v.0 =10, ¥, &), 3.
Furthermore, ¢, satisfies the following estimates oa [0, R]X R*™:
(2.13) [Vapit, x, O—EI=1£1/9,

where I is the unit matrix of size n, and for any multi-indices a and S with
la+B]>0
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2.15 10302 p4(t, x, E)— xE—1b(&)]]
écaﬁ<R2+k_t>"p“‘“'+1<t>|ﬁ\<§>l—lp. ‘

Moreover, for any k and [

(2.16) $r=¢: on {Q x, &); (t, NELUEOHNLE), 1§25}

REMARK. It is sufficient for |Proposition 2.9 to hold that p>0.

For the proof we make some preparations. In view of there
exists 0,>0 such that |g(t, vy, §)|=d,(R+k—t) for t=[0, z(v, §; R)], {y, &}
I' (o, R, 5)), and R=R,. Choose a C=-function X, on R” such that X,(x)=1 for
|x|=2 and X(x)=0 for |x|=1. Put

Lx)

(2.17) axrlt, x, §)=b(E)+A2x/0:(R+k—1))c(x, &).
We see that for any multi-indices @ and 8 with |a|>0
(2.18) 10204a s, r(t, x, §)| SCag{RAk—ty-0-1a1EN-1F!,

Denote by {g.¢, v, ), p:(t, »,8)} a bicharacteristic for the Hamiltonian a, z(, x, &).
It is easily seen that

(219) {Qk(t; y’ E); pk(t7 J’, 5)} :{Q(ty yy s), p(t: y, E>}
for (¢, v, &) with 0=t=k and z(y, §, R)> k.

For the derivatives of {q:, p.} we have the following lemma.
LEMMA 2.6. For any multi-indices a and [ there exists Cqop such that

(2.20.1) 103040 q(t, ¥, &)—(y—tVeb(E)]]
ZCoglR+E—tp P 1 (11 R+ R —1)~1)1BI(E) 1A
(2.20.2) 10504042, ¥, O—)]
SCogdR+E—1) 07 (11 R4k —1)~1)BI(EI1A!
for all 0=tk and R sufficiently large. In particular
|Vyq4t, v, E)—I| SCLKR+-k—1>"°
{ IV, 0, v, Ol SCLCR+E—1>"P"KE.

ProoF. (2.20) for a=pf=0 can be shown easily by using [2.18)] Let us
show [2.21). We have

@221 Tyl 3, O=1-| [TTean als, g3 prNTy0a(5

(2.21)

+Viag r(s, qi(s), pr(sHVypr(s)]ds
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@22 Typalt, 3, 9 =| [T2a0k5, 04(5), PNToax(s)

+VeVoar, v(S, qe(s), Pr(SHVypi(s)lds.
With
M<t)=osslslgtiquk(8)—ll<R+k—3>f’

N(t)=sup |V, pu($) [{R+ k=507,
we have by (2.22)

MO <CR-*M@#)-+CN®)+C
(2.23) {

NOZCR-*M@)-+CR-°N@)+C.

Thus, M({t)+CN@H<2R°CA+C)M@E)+CN@®)+3C. From this we get by
choosing R so large that 2R-°C(1+C)<1/2.
(2.20) for |a+B|>0 can be shown by induction on |[a+j]. Q.E.D.
PROOF OF PROPOSITION 2.5. Choose R, such that C,R;°<1/10. By
the mapping: y—¢.(¢, v, &) on R™ is a bijection. Let v, x, & be the solution
of the equation x=gq,(, », §). Define ¢.(t, x, & by

(2.24) Pt x, E)=y:(, x, §)-¢

+{ e n 8 Teaam} s, 0as, 30, 8, pals, vay s,
Then we have
0.0, x, §)—ar r,(t, x, V20, x, §)=0 on [0, 2]x R*™
$:0, x, §)=x¢&,
Vaodi(t, x, E)=p(, ¥, x, §), &
Vedr(t, x, £)=4(t, x, &).
Thus the proposition follows from Q.E.D.

(2.25) {

(2.26) {

2.3. An outgoing phase function.
PropPOSITION 2.7. Assume (A.I) and (AIl). Then there exists a real-valued
C»-function ¢.(t, v, n) on [0, c0)X R*™ such that

(2.27) $:+0, ¥, N=y7
(2‘28) at¢+<t; y; 77)+a(v17¢+(ti y; 77)7 7)):0 on ‘Q+<y)
:{(Z’ p(t) yr 5)); 120) {y; 5} EF+<00y RZ’ ZRO)} lUZ.H'L U’ ] ER‘Z)

where R, is some constant greater than R,, and
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(2.29) {Vi0+(8, 3, ), Vyd:t, 3, D} y=pee. .0 =19, v, &), &}

for t=0 and {y, &} €l'i(as, Ry, 2R,). Furthermore, ¢. satisfies the following
estimates on [0, co) X R*™ ;

(2.30) [Vyd:@, 3, )—nl=<>/9,
(2.31) V04, y, )—T1=1/9,
(2.32) 105050+, v, 7)—y7+tb(PI SCap R34 )%, |+ >0.

REMARK. It is sufficient for this proposition to hold that p>0.

ProOF. The construction of ¢.(¢, ¥, n) is similar to that of @, x, &), and
so we give only a sketch.

In view of there exists d,>0 such that [q@, y, &) =0,(|y]|+1)

for t=0 and {y, &l (0, R, 2R,), where R=R,. With X, being the C=-function
in §2.2, put

(2.33) a+,&(t, x, E)=b()+Xo(2x/0,(R+1))c(x, &) .

Denote by {g.(t, v, &), p+(t, v, &)} a bicharacteristic for the Hamiltonian
a. g(t, x,&). It is easily seen that

(2-34) {Q+<t, y; E); p+(t7 3’, 6)} = {Q(t» yy E)y ﬁ(ty y) E)}

for t=0 and {y, &} =l\(0,, R, 2R,). We can show the following lemma by an
argument similar to that in the proof of
LEMMA 2.8. For any multi-indices o and 3 there exists a constant C,p Such
that for all (&, y, &) [0, oco)X R*™®
(2.35) { 10308 q.(t, v, &)—(y—tVeb(E)I| SCap RPN H
' 10304(p+(t, 3, §)—8) ZCagR0EI181,
In particular,

(2.36) IVep(t, 3, ) —I|=CR7.

REMARK. An estimate similar to is given in [1, Lemma 3.7].
Now, choose R, such that C,R3°<1/10. By the mapping : §é—p.(, ¥, 8)

on R" is a bijection. Let &.(¢, y, n) be the solution of the equation »=p.(, v, §).
Define ¢.(¢, y, n) by

(2"37) ¢+(t> y’ 77):J"E+(t, 3’, 7])

a1 Taanmd 5, ails, 3, 8, pls, 1, Eds.

Then ¢, is the desired phase function having the properties in [Proposition 2.7]
and satisfying
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(2 38) { at¢+(ty Y, 77)+a+,R2(t, vﬂ¢+<t, v, 77), ‘)7):0 on [:0’ OO)XRzn
| $+0, 3, n)=y7,
v + Z ’ =S+ t, s
(2.39) { uP+(t 3, M=E:t, 9, 7)
Va0t v, n)=q.(t, v, (¢, v, 7). Q.E.D.

§3. Approximate propagators.

The purpose of this section is to construct approximate propagators for the
hyperbolic operator L=D,—A(X, D,). Here A(X, D,) is the pseudo-differential
operator satisfying (A.I)~(A.Ill). Namely, this section is devoted to the proof
of the following theorem.

THEOREM 3.1. For any R sufficiently large there exists a function F(f) on
[0, o) to B(s, —s), s>1, having the following properties:

(i) F(0)=identity.

(ii) For any ¢>0 and s=0 there exists a constant Cg depending on R such
that

3.1) ' [F @l aes, -5 =Cr{ty—**e.

(iii) LF@)=Git)+G@). Here for any >0 and s, s’eR' there exists a
constant C independent of R such that

3.2 IGiBco, 531,80y SCLRA-E ™5+ 42
and for any >0, s>1, s’<p there exists a constant Cy depending on R such that

3.3 1GOll B0, 5; 2,5 = Crity~min @ p=30+e

3.1. Outgoing approximate propagators. Let X, be a C=-function on R"
such that Xo(x)=1 for |x|=2 and X%,(x)=0 for |x|=<1. Let —1<¢,<0:<0,<0,
where a,, 05, and ¢, be the constants fixed before and h, be a C*~-
function on R! such that h,(¢)=1 for 0=0¢; and h,.(¢)=0 for 6=Z0, Put

3.9 D&, )=2(E/2R)Xo(y/ R R ([Ly, —Vealy, £)11),

where R, is the constant appearing in Propositions and 2.7 Define an out-
going approximate propagator F.(f), t=0, by

(35)  Fu)=tx/0 Rt 0)| |ef sttt no £ & yu)d g,

40, &, »)=¢.&, »),

where f,(t, & y) is determined below by solving transport equations. By Theo-
rem C in [2], A(X, D,)=A(D,, X’) with
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(3.6) A, y={e 1Atz s-pdzdy~ 2 alé, v,

where a,(&, y)=a(y, § and

lal

5 (& 2! aja aq
3.7) @ )= % -~ r0aly, O+ X 1 8568d(y, 6

I=1- al=-
for /[=0. We see from (2.28) and the definition of ¢, that
0.9+, v, )+a(Ved:(t, v, 7), 7)=0  on the set

{@ 3, p v, 8); t=0, {y, &} =Supp¢.}.
Thus,*byzTheorem 2.3 in [2], the transport equations to be solved are

(3.8) 0.5, 1, y)+ Iglaga(v,]gf)_,_(t, v, 1), v)agfi(t, 7, %)
1
~[§|aégaga(vﬂ¢+(ty y; 7]); v)aggb.;_(t, y’ 7/7)

+Zd0(77; Vry¢+(t) y} v))jlfi(t; 77, J’):gi(t, 77) J’) y

(3.9) F30, 7, )=¢+(n, ), [30, p, y)=0  for v<0,
where gl(t, », y)=0, and for v<0

1 1oy glall
(3'10) ng(t’ 7 y)_.— lgx:z 1a|2=l+1 al

x0g[05a(n, V,0+t, y; 7, NN, &, 9)]leny
(3.11) Tapilt, 35 0, O=\ Vit 3, 06,—)+8)d0 .

DenOting {Q(T)y P(T>} :{Q(T; y, E+(t) y’ 7])), p(T’ y: E+(t, y’ 77))} "‘Vith E+(t; y} 7‘/)
being the solution of »=p(t, v, §), we have

(3.12) i n, =06+, v, 7), )

xexo{[[ 5 % 020(Q), PEIF6., 3, PE)+iaPE), Q) Jde}
3 ¢ i1 -
G137y, = exp{| |5 = 020, P, v, PE)

+ia(P(), Q@) |de}gr(s, P(s), »ds,

1 lal+l -
gi'(s, 9, y)=— 2 %agtazm@, Voo, v; 0, ENFIUE, v, ©)]leey

l=~1tal=1+1
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Now we can define the symbol f.(¢, &, v) of the outgoing approximate propagator
3.5) by

3.14) [+, & »)=F1C & N+ E ).
PROPOSITION 3.2. The following estimates hold for all t=0:

3.15) [F:®] 8o, -5=C>~*, =0

(3.16) ILF:@OlB0,0;2, 0 =CLH7*,  s=p,

where C; is a constant independent of R.
For the proof we prepare a lemma.
LEMMA 3.3. Let ¢ be a real-valued function on R* such that for some &,<1

(3.17) IVep(x, E)—E1=elE), |VVed(x, §)—I|=¢,,
and for some M<co
(3.18) (1+&>1E-1|0%04(x, E) )" =M, 1= |a| =2, |Bl=n+2.

Let p(x, &) be a function such that

(3.19) &P 08 p(x, P, ETII=M, |al =1, |Bl=n+1.

Let Py be the Fourier integral operator with phase function ¢ and symbol p, and
P¥% be the adjoint operator of Ps. Then for every ¢>0 there exists a constant C.
such that

(3.20) 1Pgll 0,00 =l P&l 50,0 SC.A+M) p(x, E)llzocrens -

PrROOF. Since B(0, 0)-norm of P, is obviously equal to that of P¥, we have
only to estimate the B(0, 0)-norm |[P¥| of P§. For ucS, we have

F[P;fu](s)zge—fwf)ﬁ(y, Eu(y)dy .

Thus
3.21) |Pyuls=| FTP3udl/ @)= |[Qul@a)dz
(3.22) [Qul)=| e w0800 50y, p(z, Ou(r)dyd .

Writing ¥.6(z, &, 9)=| Vup(y+0(z—2), 940, we have that ¢(z H—g(y, &)=

(z—y)V.(z, &, y). [BI7] shows that the mapping: é—9=V.¢(z, &, ) is a bijec-
tion and there exists the inverse mapping &(7) such that [0,5§(n)—T|=1/(1—z¢,).
Change the variable & to . Then [3.22) becomes
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(3.23) Qu(Z)=SSe“z“y’”q(z, 7, Nuy)dydy,

a(z, 1, y)=p(z, ENP(, E(n))ldet[d,E(n)]].

Denote by R a pseudo-differential operator with symbol »(z, 5, y)=q(M?z, M*y,
M?y). Since M"[Qu](M?z)=Ruv(z) with v(y)=M"u(M?y), we obtain that |Q|=
|R|l. By definition of r(z, », ), there exists a constant C depending only on ¢,
such that for /=0 or 1

y'#108 ,0fr(z, 7, ISCMUpIEa=>, |l <L, |Bl=n+1.

Thus, [KPP'rP(z, 5, y)—r®@E, 5, y)IISCM|pl2*2(z—2" |+ ]y —y'|°).
Hence, Theorems 2.1 and 2.2 in [3] give

IRI=C.A+M*)pls.

This implies [(3.20). Q.E.D.
PROOF OF PROPOSITION 3.2. shows that for some constant C independent

of t
105080, v, E)| SCEP, 120, 1= |a| 22, |Bl=n+2.

By (3.12)~(3.13), [3304f4(t, & »)|=C&>~#' for any 120, |a| <1, | 8| <n+1.
Since F.(t)=2%(4x/0:;(Ro+1)P¥, with p(x, §)=f.(, & x), Lemma 3.3 yields [3.15).
It remains to show (3.16). With X@)=2¥,(4x/0,(R.-+1t)):, we obtain that

(3.24) LE0ux)=X@) ||etsetstndrg ¢, & yu(y)dyds

+LL, X@|{ercre-tve v £, & puly)dyae

= [G+, 1(t)+G+, Z(t)]u(x) ’

where [L, X(#)] is the commutator of L and X(¢) and g.(¢, &, ) catisfies

(3:25) 1850880, &, 3| =Caplt-+<D) 017

for any « and . Since

(_Z.x>aggei<xe-¢+(z, y,$>)g+(t’ 5’ y)u(y)dydE

=[{eraeresrerog &, y1ucdyas

for any «, (2.32) and together with the interpolation theorem yield

Gt 1 B0, 052,00 =CLED™OFS, s=p.
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The estimate for G. .(f) can be obtained using that D% ,[X.(4x/6,(R,+1))]1=0 for
| x| =(00,/2)(Rs+1) if |a|>0, and that for any |x]|=(30,/4)(R,+1t) and {y, {} =
F+(Uo, Rz, 2R,)

| x—Vedi(t, ¥, )| 20:¢+<y),
where d, is a positive constant. Hence we get (3.16). Q.E.D.

3.2. Incoming approximate propagators. Let X, be a C>-function on R"
such that X;(x)=1 for |x|=1 and X% (x)=0 for [x|=2. For ¢>0, let Z. be the
set of all lattice points in R™ multiplied by e. For R=R, and a non-negative
integer k, put

(3.26) Ii={la, peZ; |Bl=lal, k=cla, (&:/]la])B, R+1)<k+1},
where 7 is the incoming time (see Definition 2.4). Let
3.27) J(x, E)ZWE Ds0gp. €, x)/al,

1=2

where ¢.(§, x) is the function defined by [3.4). For a nonnegative integer &,
set

(3.28) Pi(x, E)=1—g(x, ONL(E/END(x, &)
7 X <ah%361,2%1((96~06)/sn)7€1([Ia|/en][f/ 1&1—8/lalD),
(3.29) Dx, =2 X Lllx—a)/enX(lal/enllE/16]—B/lall).

a€Z; |fi=1al

Lemmas 2.1 and imply that there exists a positive constant
C such that the points « in are included in {|x|<C(R+£k)} for any £=0
and R sufficiently large. Choosing another R, if necessary, we may and shall
assume that |a|<C(R+k) for any « in k=0, and R=R, Then we
obtain that

(3.30) 3 galx, H=1—F.(x, ONE/F),

(3.3D) 105080 x(x, E)| SCop(R+RY'PEH,  |at+5]20.

Let 0i<01<0:<0{<0. Choosing ¢ sufficiently small we obtain that for any
{», &} €Supp¢e

(3.32) {g@, v, 8), pCt, 3, &y el (al, R, 2R,)  for 0=t=k,
(3-33) {Q(k: .y’ E)y p(k: J’; E)} EF+(J{) R: ZRO) or

Furthermore, for A=>1
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(3.34) Supp¢C {{x, &} ; | x| =0(R+R)}.

Now, we define k-th incoming approxXimate propagator F,(t) for 0=tk by
(3.35) Fuutn={[e s =00 1,0, x, Huindds,
(3.36) fet, x, ©)=¢(¥:(, x, &), &)
il .
<exp{['[3 £ 20(Q), P94, Q) H+id (@), PE)de},

where v, x, &) is the solution of x=q(t, v, §) and

{Q), P} ={q(z, y:(t, x, &), &), p(z, yr(t, x, &), 5)}.

Furthermore, we put

(3.37) Fy0)=5F0, 0st=k.

By (2.16),

(3.38) Fk(t)u(x):SSei(¢k“'x's"wj;z £it, %, Eu(ndyds .

We see that '

(3.39) 2 oilx, H=1=Fu(x, DNE/E)  for [x|2CR+E,

where C is a constant independent of 2 and R. Choose A, so large that My,=
sup|Vea(x, §|+1 and ¢o(x, §)=0 for |x|=R+M, Put

(3.40) Xi=X(x/(R4+My))- and Y ,=X(4x/0,(R+k))-

Then we have the following proposition.

PROPOSITION 3.4. (i) For any ¢>0 and s, s’ R there exists a constant C
such that for all 0=t<k and R sufficiently large

(3.41) I1Fe@)Y rllBes,0 SCRA-R>7%F¢,
(3.42) I LE:@)Y llBeo, ;1,6 SCRA-RY5H 42,

(i) The same estimates as (3.41) and (3.42) hold with F,(t) replaced by F ().

(iii) For any e and s, s’"eR' there exists a constant C such that for all
0=t=Fk+1 and R sufficiently large

(3.43) IF 31T 201—Y Dl Beo. 532,60 SCCRARD0F+2,
(3.44) 1= )A—=X)F(B)Y 11z, s: 2,5y SCLRAR>=848" e
whe?’e w..).:F+(O)ZXQ(4X/61R2)¢+(DI, X’)‘
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Proor. The proposition can be shown in the same way as [Proposition 3.2
using (3.30)~(3.40), Lemma 3.3, and [Proposition 2.5.

3.3. Proof of Theorem 3.1. Let E(*) be the fundamental solution of L:
LE® =0 and E(0)=identity. Let @(t) be a C=-function on R' such that @()=1
for t<1/4 and @(#)=0 for ¢t=1/2. In view of the assumption (A.Ill) choose a
positive integer T depending only on R such that for all {=T and {y, & with
|y =2(R+M,) and |§|=R,

(3.45) lqt, v, §)| =3R, and [[q¢(t, v, §), —V:alglt, y, &), p, ¥, §)11=o0:.
We define F(¢) for 0=t<1 by

(3.46) F)=F.(0+EOF0)Y +F.(0)Y
+OOLA—g+(X, D))1=Xo(D2/EN+(P+(X, Do) —¥)
F¢o(X, Do)(1—-Y o)+ ng)lgbj(X, D)(1-Yyl.

For k=t<k-+1 (k: a positive integer),

(3.47) FO=F.0)+ % Fult—=U—X)F)Y

S F -~ TEDXFGY o+ % B DR,
i=0

J=k-T+1
+F i)Y 41+ O —RIA—T DET) X, Frr(k—=T)Y 11
+(1=THA=X)F(R)Y p+F 1 n(OY 1 =Y 241,

where F;=0 for j<0. Noting that X,F,(0)=¢(X, D,)=F,0), we see that F()
is a continuous function on [0, oo) such that F'(0)=identity and LF(¢) has a jump
at t=Fk, where k is a positive integer. now follows from Proposi-
tions 3.2 and 3.4, [3.46), [3.47), and the following lemma.

LemmaA  3.5. Let seR' and T>0. Then lEOsei.ss  and
1A= HET)X B s:5.50 are bounded on [0, T].

PrOOF. By Theorem 3.2 in [2], E(t) can be represented by a Fourier inte-
gral operator for 0=¢t<0, where ¢ is a sufficiently small positive number. Since
EW)=[EW@VE({—j0) for jo<t<(j+1)d, the lemma can be shown in the same
way as [Proposition 3.4 Q.E.D.

§4. Proof of Theorem 1.

In this section we complete the proof of [Theorem 1. To this end we make
some preparations.
PROPOSITION 4.1. Let Ro(z2)=(z—b(D.)"' and s—1/2=k+6 with k being a
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non-negative integer and 0<O=1. Then there exists a constant N>0 such that
Ry(2) on {z; =Imz>1} can be extended to a k-times continuously differentiable
function on the set N.={z; =Imz=0, |z] >N} to B(s, —s) having the properties:

(i) The derivatives R$(z), j=0, -+, k, are bounded.

(i) When 0<0<1, the k-th derivative is uniformly Holder continuous with
exponent 0 ; and when 6=1, there exists a constant C such that |A}R§®(2)|=Ch
for any h and z with z, z+he N, and 0<h<1, where A} is the second difference
operator.

Furthermore,

4.1) HS:X(Z)RO(ZiiO)e‘“a’l']ms L SC, teR 520,

where X(2) is a C>-function on R' such that X(A)=1 for |A|>N+1 and SuppXC
{IA]>N}.

Proor. The first half can be shown along the line given in [7, §4]. The
estimate for s>1 is deduced from the estimate

4.2) 1e**PDH(D ) g, - =CKE>™,  tERY, 520,

where ¢(§) is a C=-function on R such that ¢(§)=1 on {§; [b(§)|=N+2} and
P€)=0 on {&; [b(E)|=N-+1}. We have

|” Riioe di=s2mitiF 000,
where H(s)=1 for s=0 and H(s)=0 for s<0. This shows for s=0, which
together with the interpolation theorem implies [4.1). Q.E.D.

LEMMA 4.2. Let 1/2<s<p—3/2 and Ar=b(Dz)+%(X/R)d(X, D) with R
sufficiently large depending on s. Let | be a nonnegative integer. Then the first
half of Proposition 4.1 holds with Ry(z) replaced by {D)'(z— Agr)~*<{D>"!, where
KDY=1+D3+ --- +D2.  Furthermore, there exists a constant C such that for all
fel;

+ H e . -1 - it | 2 2 2
@y supl| [@r||” 2Dy aio— A Dy treviaa) [a=cefIz,

-0

where Qp=1{t; T<{><2T}.

If p>3, (4.1) holds with Ry(A+i0) and s=0 replaced by {D>'(A+i0— Ag)~(D>"*
and 1<s<p—2, respectively.

ProOOF. Choosing R so large that

W X/R)dA(X, Do)Ry(2)B(s, s =1/2 for all ze N, ,
we have
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(4.4) (Z_AR)_IZERO(Z)[XO(X/R)d(X, D2)Ry(2)}?  in B(s, —s).
By the Leibniz formula,

<KDY Ao( X/ R)A(X, D2)Ro(2)1<D> g5 =Cj'277.

Thus we get the first half of the lemma, which implies (4.3).
Now assume that p>3. Choosing a C™-function ¢ on R' such that ¢(2)=1
on SuppX and Supp¢C {|1| >N}, we put

4.5) V) :Sgb(Z)XO(X/R)d(X, D) Ry(A=i0)e a2 .

With U (t):SX(Z)RO(ZiiO)e’“dZ, choose R so large that

(4.6) UGSV OV s, -0 =C27KE, =12, -,

where * denotes the convolution. Then we obtain that
4.7 SX(Z)<D>‘(2iz’O—AR)‘1<D>’lei“dl=gU(t)(*V(t)V-

This shows the second half of the lemma. Q.E.D.
Now we can complete the proof of [Theorem 1l
PrROOF OF THEOREM 1. We shall show the theorem only for Imz=0.
[Theorem 3.1 shows that

(4.8) (z—A)F(z)=—i+G) in B(s, —s), Imz=0,

for s>1, where F(z):SjF(t)e‘“zdt and G(z)=Cy(2)+Calz). We have from [Z38)
that for z with |z|>1 and Imz=0
4.9) (z— A[F (@) —(z—Ap)G@)]=—i+(A—Ap)(z— AR)'G(2) .

By [8.2), (A.ll), and Lemma 412 we can choose R such that for all z with |z|>1
and Imz=<0 and s in a compact subset of (3/2, p—1/2)

(4.10) (A= AR)(z— AR Gi(@) 3es, 0 =1/4.

Fix such an R. Since
(A—AR)(z— Ar)"1G(2)

=(z—2iN)"{(A— AR[(2iN— Ag) " —(z— Ap)"12iN— Ar)D>"% {(DY* ()},
and [33] vield
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4.11) I(A—Ap)(z— AR Go(2) | s, =Clz| .
Thus we can choose N such that
(A= AR)(z— AR)'G(@) |5, »=1/2, |2z|=N and Imz=0
Hence, for ze V.
(4.12) (z— A)'=—i[F(2)—(z—Ap)'G(2)] ,230 [i(Ar— A)z— AR) G2 .

This implies the first half of the theorem.
The second half of the theorem, [1.9), can be shown in the same way as
that of Q.E.D.
REMARK 4.3. The assumption (A.Il) is redundant : It is sufficient for Theo-

rem 1 to hold that and are satisfied for |a+B|=<3n+11.

§5. Proof of Theorem 2.

In this section we give a proof of
LEMMA 5.1. Assume the hypotheses of Theorem 2. Let s>3/2. If (A.lll)
does not hold, then there exists a constant 0,>>0 such that for any T >0 there holds

(5.1) e g5, -5y =06

on {t; T—0,=t=T} or {t; —T=t=—T-+0,}.
PrOOF. We see that there exists a C=-function ¢(t, x, &) on [—d, 6] X R**,
where 0 is some positive constant, such that

0.9, x, &) —alx, V.90, x, £)=0, 80, x, §H=x§,

and for some 0<g;=1 and C,>0

IVe0(, x, §)—&|=(1—e)) || +Co,  [VaVeglt, x, §)—|=1—¢,.

With J(, v, &)=det[0,4(t, vy, §)] for [t|=d, we have that

5.2 O logJ=—T 3 itals, Vuplt, x, )36, x, §

— $0.04,005, Telt, % O)lemano -

Using this we rewrite formulas similar to [3.35) and [3.36), and put

(5.3) Fu(x) ={{ew e =0 £, x, u)dyae,
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G.4) ¢, 1, O=J, x, E)—l/zexp[S:(é— E 0. 0:,0+id)(Q(), P(z-))dt] ,

I, x, &=Ja, 3¢, x, &), &),
{Q@), P()}={q(z, »t, x, ), &), p(z, 3, x, &), &)},

where y(¢, x, &) is the solution of x=¢(t, v, §). Then we obtain that for some
ges™

(5.5) LE@u(n)={[erewr0000, x, Hutdyds.

Since (A.IIl} does not hold, there exists R with the following properties:
For any T>0 there exists {y° &° such that |y°| <R, |£"| =R, and |q(, »°, §%|
=R for 0=¢=T. Choosing another point near {y° &°} if necessary, we may

also assume that there exists a neighborhood U of {y° &° such that for any
{y, &telU

(5.6) lg(t, v, ¥&)| =R for 0=¢t=T and r=1,

(5.7) lim|a(y, 7&)| =lim |b(r&)| =co .
We write g(t):(—é— ;?1 9.,0;,a—Im d)(q(t, ¥, &Y, p(t, y°, £). Assuming that

(5.8) epo:g(ndzﬁ]gl ,

we shall show for t€[T—d,, T]. (When the left hand side of is
smaller than 1, for te[—T, —T-+d,] can be shown in the same way as
below.) Let ¢(x) be a C>-function on R” such that ¢(x)=1 for |x| =1, ¢(x)=0
for |x|=2, and ¢(x)=0. Put

5.9) o) =My s =02~ %8 gy — yDd e,

where ;>1 and the constants M; are chosen so that |h,};=1. We see that
(5.10) Ill-=M;772{{$O) [ 1Qlo+0(GD} as j—oo, 0=r=<s,
(5.11) [<Dz> *h;lly=0("") as j—oo.

Choosing ; sufficiently large, we shall show that there exists d,>0 independent
of T such that

(512) fetth;l-=d, for all te[T—0d,, T] and j>1.
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Choosing another ¢ if necessary, we assume that K=T/0 is an integer. We
write {y*, &%} ={q(kd, y°, &), p(kd, ¥°, &7}, k=0, 1, ---, K. Put

Uilx, O)=¢((x—y")/e)p(E/ 161 =E*/1E )/ e,

where 0<e=¢go<e;< --- <ex are chosen so that ¥,.,(x, &)=1 on {{¢(, v, &),
P, v, &)}; {y, &} €Supp¥,}. and (5.11) imply that for any 0<k<K

(5.13) let**h;—F(©6)*h,lo=0("")  as j—ooo.

We obtain that for any &

(5.14) sup 1A=¥ ess(X, DNF O (X, Do)l peat, mien, =Ce™,

(5.15) KDY y11(X, D)F @) (X, D)F (@) -+ To(X, D2)h;lo
=C(jet i,

where C and M are constants independent of ¢ and ;. (5.13)~(5.15) yield

(5.16) etk 0op =, (X, D)F O (X, D)F @) - To(X, Do)h;

+0((je"F)™,
for ej=2. We have that for some g,&S™*

G TealX, DIFGT X, Dou(x)
=([ere s o-mrrin, O+ gutx, OTuyE,

fk(x: E):f((;, X, E)w‘k(y(ay X, S)) E) .
Using and (5.4) we get

618 |\ {esomov0 fx, unayae]

=exp[ | gwat] |gresie1—gr/164 e 10012 ]

k

+O0(ersDlullo

as €,,,—0. We see by definition and [5.10) that [ 4;],=¢ for some ¢ independent
of 7. Thus (5.16)~(5.18) yield

le*4Thy] = e(R+1)"* exp [S:ga)dt]+O<eK>+0<<J‘e“>‘l> :

Since {q(t, ¥°, &9, p(t, ¥°, &%} is uniformly continuous on R, we obtain by
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choosing j sufficiently large after choosing e¢x sufficiently small. Q.E.D.

PROOF OF THEOREM 2. Supposing (A.IIl) does not hold, we shall derive a
contradiction. We treat only the case that holds for all t<[T—d, T1.
Choose T so large that (T —0d,0*+%9,>2C,, where k46 and C, are the constants
in [1.8). Let h; be the function given by [5.9). Then (5.12) yields

(5.19) [[correrersen - rarzacs

for 7>1. Choosing ¢ such that holds for any {y, & with |y—y°|=2¢ and
[§—E&°| =26, put
D(x, E)=¢((x—")/e)p((E—5%€"/2)) .

We have that @,(X, D,)h,=h,~0("") in L§ as j—oo. For |z|=N+1 and j>1,
put :
S;..(x, §)=(z—alx, §))'Pix, &) .

By 1S;..(X, D). =Cj~! for any [z|=N-+1. Simple calculations show
that
(z—A)S;,.(X, D)=0,X, D)+T,,.

for some T, with |T;.llpw. »=Cs! for all |z|=N+1. Thus
(5.20) sup |[(z—A)*hl-s=0(G"")  as j—oo.

tz1=N+1

By [1.8),

L | evta—A)hydz,
v

otAth = 5
71

where 7={x; —co<x < —N—-1DU{N+1e*?; —z <O L0V {x; N+1<x<oo},
Hence [5.20) and imply that the left hand side of is smaller than 2C?
for sufficiently large 7. This is a contradiction. Q.E.D.

§ 6. The constant leading coefficient case.

In this section an improvement of the estimates in is given for
operators with constant leading coefficients. Consider the pseudo-differential
operator

6.1) A(X, D;)=b(D;)+d(X, D)

where b(&)e S, d(x, £)eS° and they satisfy the following conditions.

(B.I) b(&) is a real-valued function such that |V:b(€)|=K, on {|§|=R,} for
some positive constants K, and R,. .

(B.Il) There exists a constant p>1 such that for any multi-indices a and 3
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(6.2) | D30Rd(x, §)| SCaplx>=r1oE) 8, x, E€R™.

THEOREM 6.1. Assume (B.I) and (B.II). Let 1/2<s<p—1/2 and s—1/2=
b+80 (k:a nonnegative integer, 0<0=1). Then there exists N>0 such that R(z)
=(z—A)"! on {z; £Imz>1} can be extended to a k-times continuously differentiable
function on the set N.={z; =Imz=0, |z|>N} to B(s, —s) which satisfies the
following : (i) The derivatives R (z), j=0, ---, -k, are bounded; (ii) when 0<8<1,
R™(z) is uniformly Hélder continuous with exponent 0 ; and (iii) when =1, there
exists a constant C such that |AiR®(2)|=Ch for any h and z with 0<h<1, z
and z+2heN.. Furthermore, for all fe L}

o0 gl o

STMX(DRUiiO)fei“dRH-s]Zdtécznf”g ,

where Qr=1{t; T<><K2T} and X(Q2) is a C*-function on R such that X(A)=1 for
|A] > N+1 and SuppX< {|1| > N}.
If p>2, for any 1<s<p—1 there exists a conslant C, such that

(6.4) HS:X(Z)R(ZiiO)emd,Z‘ s SCD- . teR.

PrROOF. Let »>k-+60+3/2. Then shows that R(z) can be ex-
tended, as a B(r, —r)-valued function, to N. and has the same regularity prop-
erties as in the theorem. Putting Az=b(D)+X(X/R)d(X, D,) as in [Lemmal
4.2, we have

(6.5) R(z)=(z—Ap) "'+ (z— Ar) HA—Ap)z— Ap™
+(z—Ap) (A=A R(2)(A—Ap)(z—Ar)™".

Since A—Az= B(—s’, s’) for any s’>0, we get the theorem by and
4.2. Q.E.D.
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