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1. Let $M/k$ be an infinite unramified Galois extension of a global field $k$ .
By investigating an analogue of $d$ log $\zeta(s)$ ( $\zeta$ : the zeta function) for the infinite
extension field $M$, and its analytic continuation especially towards $s=1/2$ , we
obtain an upper bound for some “weighted cardinality” of the set of primes of
$k$ that decompose almost completely in $M$. In the function field case, our upper
bound is attained by those $M/k$ which correspond to torsion-free co-compact
irreducible discrete subgroups $\Gamma$ of $PSL_{2}(R)\cross PGL_{2}(F_{\mathfrak{p}})$ ( $F_{\mathfrak{p}}$ : a $\mathfrak{p}$-adic field) (called
$\Gamma$-classfields in [4], and obtained by the reduction $mod \mathfrak{p}$ of towers of Shimura
curves cf. also $[3][5]$ ). In a sense, our inequality may be viewed as playing the
role of “the second norm index inequality for (non-abelian) classfield theory of
$\Gamma$-type”. In the number field case, we must assume the generalized Riemann
hypothesis to obtain an equally good bound. But this conditional result will also
be presented, with the hope that its comparison with the situation in the func-
tion field case might be suggestive for further study of infinite unramified ex-
tensions.

We state our main results in \S 2, and give their proofs in \S \S 3\sim 12. The crucial
part of the proof lies in the study of the limit of

$k\subset K\subset M$

$[K:k]^{-1}d$ log $\zeta_{K}(s)$

$[K:k]<\infty$

as $Karrow M$, especially in the domain $1/2<{\rm Re}(s)<1$ where the Dirichlet series ex-
pression for $d$ log $\zeta_{K}(s)$ is no longer valid. This is done by careful examination
of the property of their inverse Mellin transforms. In the number field case,
the “effective analysis” for $d$ log $\zeta_{K}(s)$ initiated by Stark [15] and continued by
Odlyzko, Lagarias, Serre, Poitou, $\cdot$ .. is crucial. In \S 13, we indicate what modi-
fications are necessary if we allow some tame ramifications in $M/k$ . In \S 14, we
give some examples of Golod- afarevi type. The final section \S 15 is for various
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remarks and discussions.
Relations with other works will be mentioned briefly at the end of \S 2. The

author wishes to express his acknowledgement to Professor J-P. Serre for bringing
some of them to his attention.

2. We use the following notations:
$k$ : a global field, $i.e.$ , either an algebraic number Peld of finite degree (NF),

or an algebraic function field of one variable over a finite field (FF);

$M/k$ : an infinite unramified Galois extension (the unramifiedness refers also to
the archimedean primes);

$P$ : runs over all non-archimedean primes of $k$ ;
$f(P)$ : the residue extension degree of $P$ in $M/k(1\leqq f(P)\leqq\infty)$ ;
$N(P)$ : the absolute norm of $P$ ;
$S$ $=\{P;f(P)<\infty\}$ ;
$S_{\infty}$ : the set of all archimedean primes of $k$ .

In the (FF) case, our goal is to prove the following

THEOREM 1 (FF). Let $F_{q}$ be the exact constant field of $k$ , and $g$ be the genus.
Then

(2-1) $\sum_{P\in S}\frac{\deg P}{N(P)^{(1/2)f(P)}-1}\leqq{\rm Max}(g-1,0)$ ,

the series on the left being convergent. Here, deg $P$ is the degree of $P$ over $F_{q}$

(so that $N(P)=q^{\deg P}$).

As for this formula, the presence of the factor 1/2 in the exponent of $N(P)$

is important, and owes to the Weil’s Riemann hypothesis for curves [16]. With-
out this, the formula becomes much weaker and easier to prove. When $M/k$

corresponds to a torsion-free co-compact irreducible discrete subgroup $\Gamma$ of
$PSL_{2}(R)\cross PSL_{2}(F_{\mathfrak{p}})$ , (2-1) becomes an equality. Indeed, in this case, $q=N(\mathfrak{p})^{2}$ ,
$g\geqq 2,$ $S$ is a finite set with cardinality

$H=(N(\mathfrak{p})-1)(g-1)=(\sqrt{q}-1)(g-1)$ ,

and moreover, $f(P)=1$ and deg $P=1$ for all $P\in S$ (cf. $[3]\sim[5],$ $[7]$ ). Thus, the
left side of (2-1) is $H\cdot(\sqrt{q}-1)^{-1}$ which is equal to the right side $g-1$ . A sur-
vey of our study in this direction is given in [7].

The equality will no longer (and never) hold if we replace this $M/k$ by
$Mk’/k’$ , where $k’$ is any finite separable extension of $k$ not contained in $M$ ;
see \S 15.

In the (NF) case, we prove a strong conditional, and a weak unconditional
result, as follows.

ASSUMPTION (GRH). The Riemann hypothesis is valid for the Dedekind zeta
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function $\zeta_{K}(s)$ for all $K$ with $k\subset K\subset M,$ $[K:k]<\infty$ .
THEOREM 1 (NF; under GRH). Let $d$ be the discriminant of $k$ . Then

(2-2) $\sum_{P\in S}\frac{\log N(P)}{N(P)^{(1/2)f(P)}-1}+\sum_{P_{\infty}\in S_{\infty}}\alpha_{P_{\infty}}\leqq\frac{1}{2}$ log $|d|$ ,

the first series on the left being convergent. Here,

(2-3) $\alpha_{P_{\infty}}=\frac{1}{2}(\log 8\pi+\gamma+\frac{\pi}{2})$ ... $P_{\infty}$ : real,

$=\log 8\pi+\gamma$ $P_{\infty}$ : imaginary,

$\gamma$ being the Euler’s constant; $\gamma=\lim$ ($1+1/2+\cdots+1/n$ -log $n$ ) $=0.577\cdots$ .
PROPOSITION 1 (NF; unconditional). We have

(2-4) $\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)}-1}+_{P\in}8_{\infty}^{\beta_{P_{\infty}}\leqq\frac{1}{2}}$ log $|d|$ ,

the first series on the left being convergent. Here,

(2-5) $\beta_{P_{\infty}}=\frac{1}{2}(\log 4\pi+\gamma)$

$=\log 2\pi+\gamma$

$P_{\infty}$ : real,

$P_{\infty}$ : imaginary.

This is much weaker than (2-2). Its proof will be given in \S 13. In the (NF)

case, one may expect that there exists $M/k$ for which $S$ is infinite and for
which the equality in (2-2) holds.

The difference (the right side)–(the left side) in (2-1) (resp. (2-2)) will be
denoted by $\delta(M/k)(\geqq 0)$ . We can interpret this number in terms of some
quantity related to the distribution of zeros of zeta functions of intermediate
fields of $M/k$ , as follows. (In the (FF) case, we assume for simplicity that $M/k$

contains no constant field extensions.) Let $K$ run over finite Galois extensions
of $k$ in $M$, and $\zeta_{K}(s)$ be its Dedekind zeta function. In the (FF) case, let

$\{\pi_{\nu},\overline{\pi}_{\nu}(1\leqq\nu\leqq g(K))\}$
$-$ : the complex conjugate,

$g(K)$ : the genus of $K$,

be its zeros for the variable $q^{s}$ , and in the (NF) case, let

$\{\rho_{v},\overline{\rho}_{\nu}(\nu=1, 2, )\}$

be its non-trivial zeros for the variable $s$ , each counted with multiplicity. (The
(GRH) being assumed, the real non-trivial zeros are only at $s=1/2$ , in which
case the multiplicity is even due to the functional equation, so that there is no
ambiguity in this notation.) For each $\sigma>1/2$ , put
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(2-6) $a_{K}( \sigma)=\sum_{\nu\approx 1}^{g(K)}\frac{q}{(q^{\sigma}-\pi_{\nu})(q^{\sigma}-\overline{\pi}_{\nu})}$ $(>())$ (FF),

$= \sum_{\nu=1}^{\infty}\frac{1}{(\sigma-\rho_{\nu})(\sigma-\overline{\rho}_{\nu})}$ $(>0)$ (NF).

Then
THEOREM 2 (FF, or NF with GRH). The limit

(2-7) $a_{M}( \sigma)=\lim_{Karrow M}[K:k]^{-1}a_{K}(\sigma)$

exists for each $\sigma>1/2$ , and the limit

(2-8) $a_{M}= \lim_{\sigmaarrow 1/2}(q^{2\sigma-1}-1)a_{M}(\sigma)$ (FF),

$= \lim_{\sigmaarrow 1/2}(2\sigma-1)a_{M}(\sigma)$ (NF)

also exists. We have

(2-9) $\delta(M/k)=a_{M}\geqq 0$ .

In particular, the equality in (2-1) (FF) (resp. (2-2) (NF)) holds if and only if
$a_{M}=0$ .

There is another essentially different way of expressing $\delta(M/k)$ in terms of
zeros of $\zeta_{K}(s)s$ in connection with one of the explicit formulae; see \S 15 (B).

The influence of the change of base $M/karrow Mk’/k’(k’/k$ : a finite separable
extension) on both sides of our inequality will also be discussed in \S 15 (C). For
this purpose, it is better to look at the ratio of the two sides instead of their
difference.

Relations with other works. The present work continues $[3]\sim[6]$ , but is
stimulated also by the Drinfeld-Vladut refinement [1] of Theorem (i) of [6].

After this work was accomplished and circulated as preprint, the author received
a new note [14] of Serre referring to this article and leading our Theorem 1
(FF) as a corollary of his new theorem ([14]; th. 3 and cor.). He makes a
systematic use of the Weil’s generalized explicit formula, and gives a similar
result on systems of curves $\{C_{\alpha}\}$ with genus $g_{\alpha}arrow\infty$ , which is identical with our
Theorem 1 (FF) when $\{C_{\alpha}\}$ is a family of finite \’etale coverings of a fixed base
curve $C$ . Such systematic use of the Weil explicit formula has already been
developed in the number field case, in order to obtain good lower bounds for the
discriminant (cf. Poitou [10]). In fact, the infinite local factor $\alpha_{P_{\infty}}$ in Theorem
1 (NF; under GRH) is exactly the same as the one which appears in [10] as
coefficients of $r_{1},$ $r_{2}$ in the asymptotic lower bound for log $|d|$ under GRH. About
the unconditional result for the (NF) case (Proposition 1), I only mention here
that this can be refined to some extent, using [10] (b) pp. 6-16, as suggested by
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Serre. I would like to add here that Proposition 1 leads immediately to the
(perhaps more or less known) fact that the topological Galois group of the maxi-
mum unramified Galois extension of a number field is generated by the conjugacy
classes of finite number of elements, because the sum of $(\log N(P))(N(P)-1)^{-1}$

over all non-archimedean primes $P$ of $k$ is divergent.

3. Put $l=[\overline{F}_{q}\cap M:F_{q}]$ ( $(FF)$ -case), where $\overline{F}_{q}$ is the algebraic closure of $F_{q}$ .
To start the proofs, we first note that in the (FF) case, it suffices to prove
Theorem 1 when $1=1$ . Indeed, if $1=\infty$ , then $f(P)=\infty$ for all $P$ ; hence $S=\emptyset$

and the left side of (2-1) vanishes. If $l<\infty$ , the base change $karrow kF_{q^{l}}$ reduces
the assertion to the case $l=1$ . So, we assume from now on that the exact con-
stant field of $M$ is also $F_{q}$

4. Now, returning to the general situation, let $K$ run over the finite Galois
extensions of $k$ in $M$, and for each $K$, let $\mathfrak{P}(K)$ denote the set of all non-
archimedean primes of $K$. Let $\zeta_{K}(s)$ be the Dedekind zeta function with the
Euler product expansion

(4-1)
$\zeta_{K}(s)=\prod_{P_{K}\in \mathfrak{P}(K)}(1-N(P_{K})^{-S})^{-1}$

, ${\rm Re}(s)>1$ .

Put

(4-2) $Z_{K}(s)=- \frac{\zeta_{K}’(s)}{\zeta_{K}(s)}=\sum_{P_{K}\in B(K)}\sum_{m\geqq 1}\frac{\log N(P_{K})}{N(P_{K})^{ms}}$

$=[K:k] \cdot P\in\ovalbox{\tt\small REJECT}_{(h)}\sum_{m\geqq 1}\frac{\log N(.P)}{N(P)^{f(PK)ms}}$

$=[K:k] \cdot\sum_{P\in \mathfrak{V}(k)}\frac{\log N(P)}{N(P)^{f(P,K)S}-1}$ , ${\rm Re}(s)>1$ ,

where $f(P, K)$ is the residue extension degree of $P$ in $K/k$ . Dividing $Z_{K}(s)$ by
$[K:k]$ (for averaging purpose) and subtracting the main term at its pole(s) on
${\rm Re}(s)=1$ , we obtain a function

(4-3) $Z_{K}^{0}( s)=[K:k]^{-1}(Z_{k}(s)-\frac{\log q}{q^{s-1}-1})$ FF-case

$=[K:k]^{-1}(Z_{K}( s)-\frac{1}{s-1})$ NF-case,

which is holomorphic on ${\rm Re}(s)>1/2$ under the assumption (GRH) in the (NF)

case. Now put

(4-4) $Z_{M}(s)= \sum_{P\equiv S}\sum_{m\geqq 1}\overline{N}^{\frac{ogN(P)}{(P)^{f(P)ms}}=\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)S}-1}}1$
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which is holomorphic on ${\rm Re}(s)>1$ , being a convergent Dirichlet series. Assume
(GRH) for the $(NF)$-case throughout \S \S 4-11. Then our key lemma is:

LEMMA. $Z_{M}(s)$ extends to a holomorphjc function on ${\rm Re}(s)>1/2$ , and as
$Karrow M,$ $Z_{K}^{0}(s)$ tends to $Z_{M}(s)$ absolutely and uniformly in wider sense on ${\rm Re}(s)>1/2$ .

REMARK. It is easy to see, by comparing the Dirichlet series expressions
for $[K:k]^{-1}Z_{K}(s)$ and $Z_{M}(s)$ (valid for ${\rm Re}(s)>1$ ), and by letting $Karrow M$, that
$Z_{K}^{0}(s)$ tends to $Z_{M}(s)$ for ${\rm Re}(s)>1$ uniformly in wider sense. On the other hand,
$Z_{K}^{0}(s)$ is holomorphic on ${\rm Re}(s)>1/2$ (modulo (GRH) in the (NF) case). But it
remains to show that the limit $\lim_{Karrow M}Z_{K}^{0}(s)$ is convergent also in ${\rm Re}(s)>1/2$ (uni-

formly in wider sense), and for this purpose, the Dirichlet series expression for
$[K:k]^{-1}Z_{K}(s)$ will not help, as it converges only for ${\rm Re}(s)>1$ . Here lies the
main difficulty to be worked out.

5. To prove the lemma, we need some analysis of the inverse Mellin trans-
forms of $Z_{K}^{0}(s)$ and $Z_{M}(s)$ . First, let $\psi_{K}(x)$ ( $x$ : real, $>1$ ) be the Chebyshev’s
step function obtained as the partial sum of coefficients of the Dirichlet series
defining $Z_{K}(s);i$ . $e.$ ,

(5-1)
$\psi_{K}(x)=_{P_{K}\in}\S_{(K)}N(P_{K})m\geqq 1m<x$

log
$N(P_{K})=[:_{N(P)f(P.K)m<x}P\in m\geq 1\ovalbox{\tt\small REJECT}^{\log N(P)}(k)$

More precisely, as is usual in Fourier analysis, $\psi_{K}(x)$ should be replaced by
$(1/2)(\psi_{K}(x+0)+\psi_{K}(x-0))$ at the points of discontinuity (and similarly for $\psi_{K}^{0}(x)$

and $\psi_{M}(x)$ below). Put

(5-2) $\psi_{K}^{0}(x)=[K:k]^{-1}(\psi_{K}(x)-\frac{q\log q}{q-1}(q^{y}-1))$ (FF)

$=[K:k]^{-1}(\psi_{K}(x)-x)$ (NF)

for $x>1$ , where $y=[\log x/\log q]$ , the largest integer not exceeding log $x/\log q$ .
Finally, put

(5-3) $\psi_{M}(x)=$
$\sum_{P\in S}$ log $N(P)$ $(x>1)$ .
$m\gtrless 1$

$N(P)^{f(P)m}<x$

Then, as is clear from the definitions, we have for each fixed $x_{0}>1$ ,

(5-4) $[K:k]^{-1}\psi_{K}(x)=\psi_{M}(x)$ $(1<x\leqq x_{0})$

for all sufficiently large $K$ (large $w.r.t$ . $\supset$ ) depending on $x_{0}$ . Now, it is well-
known and easy to prove that

(5-5) $s^{-1}Z_{K}(s)= \int_{1}^{\infty}\psi_{K}(x)x^{-S-1}dx$ , ${\rm Re}(s)>1$ .
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Since

$\int_{1}^{\infty}x^{-S-1}dx(\log q)\int_{0}^{\infty}q^{[t]-St}dt$ (by $x=q^{t}$ )

$=( \log q)\infty\sum_{\nu=0}q^{\nu}\int_{\nu}^{\nu+1}q^{-st}dt=\frac{1-q^{-S}}{s(1-q^{1-S})}$ ,

we obtain

(5-6) $s^{-1}Z_{K}^{0}(s)= \int_{1}^{\infty}\psi_{K}^{0}(x)x^{-S- 1}dx$ , ${\rm Re}(s)>1$ .
Similarly,

(5-7) $s^{-1}Z_{M}(s)= \int_{1}^{\infty}\psi_{M}(x)x^{-S-1}dx$ , ${\rm Re}(s)>1$ .

6. We shall need the following evaluation of $\psi_{K}^{0}(x)$ based on the Riemann
hypothesis for $\zeta_{K}(s)$ and the explicit formula for $\psi_{K}(x)$ ;

(6-1) $|\psi_{K}^{0}(x)|\leqq C_{k}x^{1/2}(\log x)^{2}$ $(x\geqq 2)$ ,

where $C_{k}$ is a positive constant depending only on $k$ (not $K$).

To verify (6-1), first in the (FF) case, write

(6-2)
$\zeta_{K}(s)=\frac{\prod_{\nu=I}^{g(K)}(1-\pi_{\nu}q^{-S})(1-\overline{\pi}_{\nu}q^{-S})}{(1-q^{-\theta})(1-q^{1- s})}$

,

with

(6-3) $|\pi_{v}|=|\overline{\pi}_{\nu}|=q^{1/2}$

(the Weil’s Riemann hypothesis for curves). Put

(6-4) $N_{i}=$
$\sum_{P_{K}\in \mathfrak{P}(K)}$

$\deg P_{K}=q^{i}+1-\sum_{\nu=1}^{(K)}(\pi_{\nu}^{i}+\overline{\pi}_{\nu}^{i})g$ $(i\geqq 1)$ .
$\deg P_{K}|i$

Then, as $\log N(P_{K})=(\log q)\deg P_{K}$ , we have

(6-5) $\psi_{K(x)=(\log q)}i=1g_{N_{t}}$ $(y=[ \frac{\log x}{\log q}])$

$=( \log q)\{\frac{q(q^{y}-1)}{q-1}+y-\Sigma\Sigma^{y}(\pi_{\nu}^{i}+\overline{\pi}_{\nu}^{i})\}$ .
$g(K)$

$\nu=1i=1$

Therefore,

(6-6) $\psi_{K}^{0}(x)=(\log q)[K:k]^{-1}\{y-\sum_{\nu=1}^{g(K)}\sum_{i=1}^{y}(\pi_{v}^{i}+\overline{\pi}_{v}^{i})\}$

From (6-3) (6-6) and the Hurwitz formula
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(6-7) $g(K)-1=[K:k](g-1)$ ,

it follows directly that

(6-8) $|\psi_{K}^{0}(x)|\leqq[K:k]^{-1}(\log x+2x^{1/2}\log x)+2(g-1)x^{1/2}\log x$ ;

which implies (6-1). (In the (FF) case, log need not be squared.)

To check (6-1) in the (NF) case, we use the Lagarias-Odlyzko estimate for
$\psi_{K}(x)$ based on the explicit formula

(6-9)
$\psi_{K}(x)=x-\ovalbox{\tt\small REJECT}_{(K)}|{\rm Im}(\rho)|<T^{\frac{x^{\rho}}{\rho}-\frac{r_{1}(K)}{2}}\rho\in$ log $(x^{2}-1)-r_{2}(K)\log(x-1)$

$+\log x+\log|d(K)|-[K:Q](\gamma+\log 2\pi)+\gamma_{K}+R(x, T)$ ,

with $R(x, T)arrow 0$ for $Tarrow\infty,$ $|R(x, T)|<\cdots$ . Here, $\mathfrak{Z}(K)$ is the set of all non-
trivial zeros of $\zeta_{K}(s)$ , the sum $\sum_{\rho}$

being taken with multiplicity, $r_{1}(K)$ (resp.

$r_{2}(K))$ is the number of real (resp. imaginary) primes of $K,$ $d(K)$ is the discri-
minant of $K$, and

$\gamma_{K}=-\lim_{sarrow 1}(Z_{K}(s)-\frac{1}{s-1})$ .

By giving an explicit estimate for the remainder term $R(x, T)$ and putting $T=$

$x^{1/2}+1$ , Lagarias-Odlyzko obtained the following universal estimate for $\psi_{K}(x)$

(assuming the (GRH)) (cf. [8] Theorem 9.1):

(6-10) $|\psi_{K}(x)-x|\leqq C\{[K:Q]x^{1/2}(\log x)^{2}+\log|d(K)|x^{1/2}\log x\}$

for all $x\geqq 2$ , where $C$ is a positive absolute constant. Since

(6-11) logl $d(K)|=[K:k]\log|d|$

($K/k$ being unramified), we obtain (6-1) by dividing (6-10) by $[K:k]$ .

7. By (6-1), it follows immediately that the integral expression

(7-1) $s^{-1}Z_{K}^{0}(s)= \int_{1}^{\infty}\psi_{K}^{0}(x)x^{-s-1}dx$

for $Z_{K}^{0}(s)$ is valid for ${\rm Re}(s)>1/2$ .
Now we shall obtain an estimate of $\psi_{M}(x)$ . Since

(7-2)
$\psi_{M}(X)=_{P\in ,N(P)^{f()m}}\S_{\dot{p}^{m\geqq 1}<x}^{\log N(P)\leqq}$

$\sum_{P\in \mathfrak{P}(k)m\geqq 1}.\log N(P)$

$N(P)^{f(PK)m}<x$

$=[K:k]^{-1}\psi_{K}(x)$ ,

we have
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(7-3) $\psi_{M}(x)\leqq\psi_{K}^{0}(x)+[K:k]^{-1}\frac{q\log q}{q-1}(q^{y}-1)$ (FF),

$\leqq\psi_{K}^{0}(x)+[K:k]^{-1}x$ (NF)

for any $K$. Therefore, by (6-1),

(7-4) $\psi_{M}(x)\leqq C_{k}x^{1/2}(\log x)^{2}+[K:k]^{-1}\frac{q\log q}{q-1}(q^{y}-1)$ $(FF)$ ,

$\leqq C_{k}x^{1/2}(\log x)^{2}+[K:k]^{-1}x$ (NF).

Therefore, by (fixing $x$ and) letting $Karrow M$, we obtain

(7-5) $\psi_{M}(x)\leqq C_{k}x^{1/2}(\log x)^{2}$ $(x\geqq 2)$ .

(In the (FF) case, combination of (6-8) and (7-3) actually gives

(7-6) $\psi_{M}(x)\leqq 2(g-1)x^{1/2}$ log $x$ $(x>1).)$

By (7-5), the integral on the right side of (5-7):

$s^{-1}Z_{M}(s)= \int_{1}^{\infty}\psi_{M}(x)x^{-s-1}dx$

also converges absolutely and uniformly in wider sense on ${\rm Re}(s)>1/2$ , and thus
gives a holomorphjc continuation of $Z_{M}(s)$ to ${\rm Re}(s)>1/2$ .

8. Now we shall prove the rest of the key lemma. By \S 7, we have

(8-1) $s^{-1}(Z_{K}^{0}(s)-Z_{M}(s))= \int_{1}^{\infty}(\psi_{K}^{0}(x)-\psi_{M}(x))x^{-S-1}dx$

for ${\rm Re}(s)>1/2$ . Let $\mathfrak{F}$ be a compact set in ${\rm Re}(s)>1/2$ , and $\delta$ be the distance
from $\mathfrak{F}$ to the line ${\rm Re}(s)=1/2$ . For any given $\epsilon>0$ , take $x_{0}\geqq 2$ so large that

(8-2) $2C_{k} \cdot\int_{x_{0}}^{\infty}(\log x)^{2}x^{-1-\delta}dx<\epsilon$ .

Then take $K$ so large that

$[K:k]^{-1}\psi_{K}(x)=\psi_{M}(x)$ ,
Then

all $x\leqq x_{0}$ (see (5-4)).

(8-3) $\int^{\infty}(\psi_{K}^{0}(x)-\psi_{M}(x))x^{-S-1}dx=\int_{x_{0}}^{\infty}(\psi_{K}^{0}(x)-\psi_{M}(x))x^{-S-1}dx1$

$-\{\begin{array}{ll}[K:k]^{-1}\int_{1}^{x_{0}}\frac{(\log q)q}{q-1}(q^{y}-1)x^{-S-1}dx (FF)[K:k]^{-1}\int_{1}^{x_{0}}x\cdot x^{-S- 1}dx (NF).\end{array}$



702 Y. IHARA

If $K$ is further sufficiently large, the second term on the right side becomes
arbitrarily small in absolute value (uniformly for $s\in \mathfrak{F}$), say $<\epsilon$ . On the other
hand, by (6-1) (7-5) and (8-2), the absolute value of the first term on the right
side of (8-3) also does not exceed $\epsilon$ . Therefore, the right side of (8-1) tends to
$0$ as $Karrow M$, uniformly for $s\in \mathfrak{F}$ This settles the proof of the lemma.

9. By definition, we have

(9-1) $Z_{M}(s)= \sum_{P\in S.m\geqq 1}\frac{\log N(P)}{N(P)^{f(P)ms}}$

for ${\rm Re}(s)>1$ , and $Z_{M}(s)$ is holomorphic on ${\rm Re}(s)>1/2$, as we have shown. Since
the right side of (9-1) is a Dirichlet series with real non-negative coefficients, we
conclude via Landau’s lemma (cf. e.g. [13] Ch. VI Prop. 7) that the right side
of (9-1) converges also for ${\rm Re}(s)>1/2$ , and (9-1) is valid for ${\rm Re}(s)>1/2$ .

10. So, for $s=\sigma>1/2$, we have

(10-1) $Z_{M}( \sigma)=\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)\sigma}-1}=\lim_{Karrow M}Z_{K}^{0}(\sigma)$ .

Now let $a_{K}(\sigma)$ be the positive number defined by (2-6). We shall show that

(10-2) $Z_{K}^{0}( \sigma)=\frac{\log q}{[K:k]}(\frac{1}{q^{\sigma}-1}+1)+(\log q)(g-1)-\frac{\log q}{[K:k]}(q^{2\sigma-1}-1)a_{K}(\sigma)$ (FF)

$= \frac{11}{[K:k]\sigma}+\log A_{k}+\frac{r_{1}}{2}g(\frac{\sigma}{2})+r_{2}g(\sigma)-\frac{2\sigma-1}{[K:k]}a_{K}(\sigma)$ (NF)

for $\sigma>1/2$ , where $r_{1}$ (resp. $r_{2}$ ) is the number of real (resp. imaginary) primes
of $k,$ $A_{k}=\pi^{-r_{1/2}}(2\pi)^{-r_{2}}\cdot|d|^{1/2}$ , and $g(s)=\Gamma’(s)/\Gamma(s)$ .

In the (FF) case, we have (by (6-2))

(10-3) $Z_{K}(s)=( \log q)\{\frac{1}{q^{s}-1}+\frac{1}{q^{S-1}-1}-\sum_{\nu=1}^{g(K)}(\frac{\pi_{\nu}}{q^{s}-\pi_{\nu}}+\frac{\overline{\pi}_{\nu}}{q^{s}-\overline{\pi}_{\nu}})\}$ ;

hence

(10-4) $Z_{K}^{0}( \sigma)=\frac{(\log q)}{[K:k]}\{\frac{1}{q^{\sigma}-1}-\sum_{\nu=1}^{g(K)}(\frac{\pi_{\nu}}{q^{\sigma}-\pi_{\nu}}+\frac{\overline{\pi}_{\nu}}{q^{\sigma}-\overline{\pi}_{\nu}})\}$ .

But since

(10-5) $\frac{\pi_{\nu}}{q^{\sigma}-\pi_{\nu}}+\frac{\overline{\pi}_{\nu}}{q^{\sigma}-\overline{\pi}_{\nu}}=-1+\frac{q^{2\sigma}-q}{(q^{\sigma}-\pi_{\nu})(q^{\sigma}-\overline{\pi}_{\nu})}$

and $g(K)-1=[K:k](g-1)$ , we obtain (10-2). In the $(NF)$ case, we use the
partial fractional decomposition of $Z_{K}(s)$ (used extensively by Stark and Odlyzko;
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cf. [15], [9]):

(10-6) $Z_{K}(s)= \log A_{K}+\frac{r_{1}^{(K)}}{2}g(\frac{s}{2})+r_{2}^{(K)}g(s)+(\frac{1}{s}+\frac{1}{s-1})’$ ,

where the terms for $\rho$ and $\overline{\rho}$ should be summed together. Since log $A_{K},$ $r_{1}^{(K)}$ ,
$r_{2}^{(K)}$ are proportional with $[K:k]$ ($K/k$ being unramified), we obtain

(10-7) $Z_{K}^{0}( \sigma)=\log A_{k}+\frac{r_{1}}{2}g(\frac{\sigma}{2})+r_{2}g(\sigma)+\frac{1}{[K:k]}\cdot\frac{1}{\sigma}-\frac{1}{[K:k]}\sum_{\rho\in 3^{(K)}}’\frac{1}{\sigma-\rho}$ .
But since

(10-8) $\frac{1}{\sigma-\rho}+\frac{1}{\sigma-\overline{\rho}}=\frac{2\sigma-I}{(\sigma-\rho)(\sigma-\overline{\rho})}$ ,

we obtain (10-2) also for the (NF) case.

11. Now, from (10-1) and (10-2) we see, by letting $Karrow M$, that the limit
$a_{M}( \sigma)=\lim_{Karrow M}[K:k]^{arrow 1}a_{K}(\sigma)\geqq 0$ exists and that

(11-1) $Z_{M}(\sigma)=(\log q)(g-1)-(\log q)(q^{2\sigma-1}-1)a_{M}(\sigma)$ (FF)

$= \log A_{k}+\frac{r_{1}}{2}g(\frac{\sigma}{2})+r_{2}g(\sigma)-(2\sigma-1)a_{M}(\sigma)$ (NF)

for all $\sigma>1/2$ . Since $a_{M}(\sigma)\geqq 0$, this implies

(11-2) $\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)\sigma}-1}\leqq(\log q)(g-1)$ (FF),

$\leqq\log A_{k}+\frac{r_{1}}{2}g(\frac{\sigma}{2})+r_{2}g(\sigma)$ (NF),

for all $\sigma>1/2$ . Therefore, for any finite subset $S’$ of $S$, we have (11-2) with $S’$

in place of $S$ . Letting $\sigmaarrow 1/2$ then gives

(11-3) $\sum_{P\in S},$
$\frac{\log N(P)}{N(P)^{f\langle P)/2}-1}\leqq(\log q)(g-1)$ (FF)

$\leqq\log A_{k}+\frac{r_{1}}{2}g(\frac{1}{4})+r_{2}g(\frac{1}{2})$ (NF).

Since $S’$ is an arbitrary finite subset of $S,$ $(11- 3)$ is valid for $S$ in place of $S’$,
the series over $S$ being convergent. Since $\log N(P)=(\log q)\deg P$ (FF), $g(1/2)=$

$-\log 4-\gamma$ and $g(1/4)=-\gamma-\log 8-\pi/2$ , we obtain our Theorem 1.
Finally, the convergence of the series

(114) $\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)/2}-1}$
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just proved implies that

(11-5) $\lim_{\sigmaarrow 1/2}Z_{M}(\sigma)$

exists and is equal to (11-4), since they are essentially the Dirichlet series

$\sum_{P\in S,}\sum$

$m\geqq 1$

Therefore, by letting $\sigmaarrow 1/2$ in (11-1), we obtain the rest of Theorem 2.

12. For the proof of Proposition 1, we look at (10-6) just for $s=\sigma>1$ . Since

$Z_{M}( \sigma)=\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)\sigma}-1}\leqq[K:k]^{-1}Z_{K}(\sigma)$ ,

and since

$\frac{1}{\sigma-\rho}+\frac{1}{\sigma-\overline{\rho}}>0$ for $\sigma>1$ (unconditionally),

we obtain (by letting $Karrow M$ )

$Z_{M}( \sigma)\leqq\log A_{k}+\frac{r_{1}}{2}g(\frac{\sigma}{2})+r_{2}g(\sigma)$ $(\sigma>1)$ .

So, by the same argument as above, we obtain

$\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)}-1}\leqq\log A_{k}+\frac{r_{1}}{2}g(\frac{1}{2})+r_{2}g(1)$ .

Since $g(1)=-\gamma$ , this gives Proposition 1.

13. Here, we shall indicate what modifications are necessary if we allow
some ramifications in $M/k$ . Assume now that a finite number of primes (includ-

ing possibly the archimedean ones) of $k$ are ramified in $M$, but tamely, with
ramification index $e(P)$ ($P$ : non-archimedean; $1\leqq e(P)\leqq\infty$ ) or $e(P_{\infty})(P_{\infty}$ : archi-
medean; $1\leqq e(P_{\infty})\leqq 2)$ . Then Theorem 1 holds under the following modifications:
(2-1) should be replaced by

(13-1) $\sum_{P\in S}\frac{1}{e(P)}\frac{\deg P}{N(P)^{f(P)/2}-1}\leqq{\rm Max}(g-1+\frac{1}{2}\sum_{P}(1-\frac{1}{e(P)})\deg P,$ $0)$ ,

and (2-2) by

(13-2) $\sum_{P\in S}\frac{1}{e(P)}\frac{\log N(P)}{N(P)^{f(P)/2}-1}+$
$\sum_{P\infty}$

$\alpha_{P_{\infty}}+$
$\sum_{P\infty}$

$\alpha_{P_{\infty}}’$

$e(P_{\infty})=1$ $e(P_{\infty})=2$

$\leqq\frac{1}{2}(\log|d|+\sum_{P}(1-\frac{1}{e(P)})\log N(P))$ ,
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where

(13-3) $\alpha_{P_{\infty}}’=\frac{1}{2}(\log 8\pi+\gamma)$ .

When $e(P)<\infty$ for all $P$, these formulae follow directly from (2-1) resp. (2-2) by
changing the base $k$ . When $e(P)=\infty$ for some $P$, this does not work, but our
proof carries through with but slight modifications. The modified zeta function
$Z_{M}(s)$ is given by

(13-4) $Z_{M}(s)= \sum_{P\in S}\frac{\log N(P)}{e(P)(N(P)^{f(P)s}-1)}$

$e(P)\neq\infty$

14. Now, we shall give some example of $M/k$ with $S\neq\emptyset$ in the (NF) case,
in connection with Golod- afarevi theory [12], [2]. Let $k$ be a number field,
$\mathfrak{S}$ be a given set of non-archimedean prime divisors of $k$ , and $l$ be any prime
number. Let $M$ be the maximum unramified pro l-extension of $k$ in which all
primes of $k$ belonging to $\mathfrak{S}$ decompose completely. Let $E$ be the group of units
of $k$ , and $E(\mathfrak{S})$ be the group of all elements $a\in k^{\cross}$ with the property that all
prime constituents of $(a)$ belong to $\mathfrak{S}$ . Put

(14-1) $\rho=rank_{l}(E(\mathfrak{S})/E(\mathfrak{S})^{l})$

$=H+rank_{l}(E/E^{l})=H+(r_{1}+r_{2}-1)+\delta$ ,

where $H=|\mathfrak{S}|$ and $\delta=1$ or $0$ , according to whether $k$ contains a primitive l-th
root of unity or not. Let $Cl(\mathfrak{S})$ be the quotient of the ideal class group of $k$

modulo the subgroup generated by the classes of elements of $\mathfrak{S}$, and put

(14-2) $t=rank_{l}(Cl(\mathfrak{S})/Cl(\mathfrak{S})^{l})$ .

Then the Gasch\"utz-Wienberg refinement of Golod- afarevi theory (cf. [11]) says
that if

(14-3) $\rho\leqq\frac{1}{4}t^{2}-t$ ,

then $M/k$ is infinite. (Actually, only the case $\mathfrak{S}=\emptyset$ is presented in [11], but
this generalization follows immediately just by considering the elements of $\mathfrak{S}$ as
additional “infinite primes“.) In particular, let $k=Q(\sqrt{d})$ be imaginary quadratic
and $l=2$ . Then $\rho=H+1$ and $t$ is calculated by the genus theory. For instance,
if $t=6$ and $H=2$ , then $M/k$ is infinite.

For a numerical example, let

$d=-3.5.7.11.13.17.23.31$ $(\equiv 1(mod 8))$

and $\mathfrak{S}$ be the set of two distinct prime factors of (2). Then $H=2$ and $t=8-2$
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$=6$ . The contribution of $\mathfrak{S}$ on the left side of (2-2) is $2(\log 2)(\sqrt{2}-1)^{-1}=3.34681\cdots$ ,
and that of $S_{\infty}$ is $\log 8\pi+\gamma=3.80138\cdots$ ; hence the left side of (2-2) is at least
7.14819 $\cdots$ , while the right side is $(1/2)\log 181996815=9.50975\cdots$ . This ratio
7.14 $\cdots$ /9.50 $\cdots$ $=0.7517\cdots$ is the largest among the examples that I know1). On the
other hand, I do not know whether the set $S$ for this example contains any
primes outside $\mathfrak{S}$ .

15. In this section, we shall give some remarks and discussions.
(A) One may define $Z_{M}(s)$ also for ${\rm Re}(s)<1/2$ , in a rather obvious way

using $[K:k]^{-1}Z_{K}(s)$ for ${\rm Re}(s)<1/2$, and then one has a “functional equation”
which, $e.g.$ , in the (FF) case reads as $Z_{M}(s)+Z_{M}(1-s)=2(g-1)\log q({\rm Re}(s)\neq 1/2)$ .
But this does not give a part of a correct analytic continuation of $Z_{M}(s)$ even
when $M/k$ corresponds to a $\Gamma$-classfield, because then $Z_{K}(s)=H\cdot(q^{s}-1)^{-1}\log q$ .

(B) There is another aspect related to the difference $\delta(M/k)$ , (the right side)
$-$ (the left side) of our fundamental inequality (2-1) (resp. (2-2)). It is directly
connected with one of the explicit formulae. We state it only in the (NF) case.

PROPOSITION 2 ($NF$ ; under GRH). Let $K$ run over the intermediate fields
$k\subset K\subset M;[K:k]<\infty$ , and $\rho=(1/2)+\gamma i$ run over the set $\mathfrak{Z}(K)$ of non-trivial
zeros of $\zeta_{K}(s)$ . Let $x>1$ . Then the limit

$b(M, x)= \lim_{Karrow H}[K:k]^{-1}$
.

$\sum_{\rho\in \mathfrak{Z}(K)}$

$\frac{\sin(\gamma\cdot\log x)}{\gamma}$

exists, and its value is connected with $\delta(M1k)$ by:

(15-1) $b(M, x)=\delta(M/k)+$ $\sum_{P\in S.m\geq 1}$
$\frac{\log N(P)}{N(P)^{f(P)m/2}}$

$N(P)f(P)m>x$

$+ \frac{[k:Q]}{2}$ log $\frac{\sqrt{x}+1}{\sqrt{x}-1}+r_{1}Arc\tan\frac{1}{\sqrt{x}}$ .

Since the $second\sim fourth$ terms on the right side of (15-1) are positive and
tend to $0$ as $xarrow\infty$ , we obtain

COROLLARY. We have $b(M, x)>0$, and

(15-2) $\delta(M/k)=\lim_{xarrow\infty}b(M, x)$ .

Since $b(M, x)$ is an oscillating sum, the equality (15-2) alone does not seem
to give an alternative proof of $\delta(M/k)\geqq 0$ .

PROOF OF PROPOSITION 2. We use the following explicit formula:

1) Added in proof. Recently, K. Yamamura improved this to 0.9059 $\cdots$ . In his example,
$[k, Q]=52$ and $|\mathfrak{S}|=105$ .
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(15-3) $\sum_{P_{K}\in \mathfrak{P}(K).m\geqq 1}\frac{\log N(P_{K})}{N(P_{K})^{m/2}}=2(\sqrt{x}-\frac{1}{\sqrt x})-\sum_{\rho\in \mathfrak{Z}(K)}\frac{\sin(\gamma\cdot\log x)}{\gamma}$

$N(P_{K})m\leqq x$

$+ \frac{[K:Q]}{2}\log\frac{\sqrt{x}+1}{\sqrt{x}-1}+r_{1}^{(K)}$ Arctan $\frac{1}{\sqrt{x}}$

$+ \frac{1}{2}$ log $|d_{K}|- \frac{r_{\iota}^{(K)}}{2}(\log 8\pi+\gamma+\frac{\pi}{2})$

$-r_{2}^{(K)}(\log 8\pi+\gamma)$ $(x>1)$ .

This is a special case of Weil [17]; formula (11) for

(15-4) $\{\begin{array}{ll}F(t)=\{01/21 otherwise;t=0,ort=0<t<\log x, \log x,\Phi(s)=\frac{x^{s-(1/2)}-1}{s-1/2}. \end{array}$

Fix $x$ , divide the both sides by $[K:k]$ , and let $Karrow M$. Then the left side con-
verges to

(15-5) $N(P)^{f(P)m\leqq x^{\frac{\log N(P)}{N(P)^{f(P)m/2}}}}P\in F_{m\geqq 1}$

which is a partial sum for our

(15-6) $\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)/2}-1}=_{P\in}g_{m\geq 1^{\frac{\log N(P)}{N(P)^{f(P)m’ 2}}}}$ .

On the other hand, the right side converges to

(15-7) $-b(M, x)+ \frac{[k:Q]}{2}$ log $\frac{\sqrt{x}+1}{\sqrt{x}-1}+r_{1}Arc\tan\frac{1}{\sqrt{x}}+\frac{1}{2}\log|d|$

$- \frac{r_{1}}{2}(\log 8\pi+\gamma+\frac{\pi}{2})-r_{2}(\log 8\pi+\gamma)$ .

(The existence of the limit $b(M,$ $x)$ follows at this step.) Our Proposition follows
immediately from these. $q.e.d$ .

(C) Here, we discuss the effect of changing bases $M/karrow Mk’/k’$ , where
$k’/k$ is any finite separable extension. For this purpose, it is more convenient
to look at the ratio of the two sides of (2-1) (resp. (2-2)) instead of the difference.
Thus put

(15-8) $\rho(M/k)=\sum_{P\in S}\frac{\deg P}{N(P)^{f(P)/2}-1}/(g-1)$ (FF)

$= \{\sum_{P\in S}\frac{\log N(P)}{N(P)^{f(P)/2}-1}+\sum_{P_{\infty}\in S_{\infty}}\alpha_{P_{\infty}}\}/\frac{1}{2}$ log $|d|$ $(NF)$ .
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The trivial cases $g=0,1$ , or $k=Q$ will be excluded. Our fundamental inequality
implies

(15-9) $\rho(M/k)\leqq 1$

(assuming (GRH) for (NF)). First, it is easy to see that $\rho(M/k)$ is determined
only by $M$ and is independent of the choice of the base field $k$ satisfying (i) $k$

is a global field, (ii) $M/k$ is an infinite unramified Galois extension. So, we shall
write $\rho(M)$ instead of $\rho(M/k)$ . Secondly, note that any finite separable exten-
sion $M’/M$ is of the form $M’=Mk’$ with some finite separable extension $k’/k$ .
Since $M’/k’$ is also an inPnite unramified Galois extension, $\rho(M’)$ is dePned for
any such $M’$ . Note that the set $S’$ ( $S$ for $M’/k’$ ) consists of all extensions of
elements of $S$ to $k’$ . Thirdly, for each $M/k$ , let $\tilde{M}$ denote the maximum unram-
ified Galois extension of $k$ containing $M$ such that for each $P\in S$, the residue
extension degree of $P$ in $\tilde{M}$ coincides with that in $M$. When $M/k$ corresponds
to a discrete subgroup $\Gamma$ as in \S 2, we have $\tilde{M}=M$ (cf. [5] or [7]). In general,
we have

PROPOSITION 3. Let $M’$ be any finite separable extension of M. Then

(15-10) $\rho(M’)\leqq\rho(M)$ ,

and the equality holds if and only if $M’\subset\tilde{M}$.
The proof is straightforward and will be left to the readers. (Look at the

effect of the base change on the numerator and the denominator of $\rho(M/k)$

separately, and in calculating the effect on the numerator, use the inequality

$\frac{f}{t^{f}-1}\leqq\frac{1}{t-1}$ $(t>1, f=1, 2, )$ ;

with the equality $=if$ and only if $f=1.$ )

This Proposition suggests that the extensions $M/k$ satisfying $\rho(M)=1$ are
very rare.
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