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Introduction.

In the theory of elliptic modular forms, it is known that every modular form
whose Fourier coefficients lie in Z is represented as an isobaric polynomial in
E, E, 4 with coefficients in Z, where E, is the normalized Eisenstein series
of weight £ and 4=2-%.3"%E,—E). On the other hand, in his paper
J. Igusa gave a minimal set of generators over Z of the graded ring of Siegel
modular forms of degree two whose Fourier coefficients lie in Z. Also, some
related topics and problems on the finite generation of an algebra of modular
forms were discussed by W. L. Baily, Jr. in his recent paper [2].

In this paper, we give analogous results for symmetric Hilbert modular forms
for the real quadratic fields Q(n/2) and @(+/5). Let K be a real quadratic field
and A;(I'x), denote the Z-module of symmetric Hilbert modular forms of even
weight % with rational integral Fourier coefficients and we put Az;(I'x)=@BAz(k) .
Denote by G, the normalized Eisenstein series for the Hilbert modular group
I'y=SL(2, 0g). In the case of K=Q(+/2), we put

H,=27%.3"2.11(G;*—G,),
Hy=—2"8.3"%.13"1.5.7*G,*+27%.3"2.5-1.13"*-11-59G,G,
—277.37%.571.1371-19°G, .

Our first main result can be stated as follows :

THEOREM 1. The modular forms G, H, H; all have integral Fourier co- .
efficients, namely, G, Az(I'k)s, Hys Az(I'x), (k=4, 6). Furthermore, the elements
Gs, H,, Hy form a minimal set of generators of Az(I'x) over Z.

In the case of K=Q(+/5), we put

Js=275.372.5"2.67(G,*—Go) ,
J10=2710.375.575.7-1(412751G,,—5-67-2293G > G+ 22-3-7-4231G,5) ,
12— _2(]62— Gz]m) .

The second main theorem is
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THEOREM 2. The four modular forms Gs, Jo Ji, Jiz all have rational inte-
gral Fourier coefficients, namely, Go€ Az(I'k)s, Jr€ Az(I'x), (B=6, 10, 12). Further-

more, the. elements G Js, Jio, Jio form a minimal set of generators of Az(I'k)
over Z.

As we state in §4 and §5, the forms H, and J,, have the expressions as
polynomials of theta series and their restrictions to the diagonal line vanish.

The author would like to thank Professor W. L. Baily, Jr. for his encourage-
ment, and the referee for his valuable comments.

Notations.

We ‘denote by Z, @, R, C the ring of rational integers, the field of rational
numbers, the field of real numbers, the field of complex numbers, respectively.
For any subring B of C, we denote by M,(B) the ring of all matrices of size n
with entries in B. For any element A of M,(B), we denote the transpose of A
by t*A. For a symmetric matrix ¥ in M,(R), we write Y >0 if Y is positive
definite. Let H, denote the Siegel upper-half space of degree n, namely the
space of all complex symmetric matrices Z=X-+:Y of degree n with imaginary
parts Y>>0. For an element « in'a totally real algebraic number field K, we
write a>0 if a is totally positive. For a real number s, we denote by [s] the
largest integer =s.

§1. Hilbert modular forms for real quadratic fields.

Let K be a real quadratic field and let ox denote the ring of integers in K.
We put H?=H,x H,, as we stated in Notations, H; is the upper-half plane. For
any element « in K, we write the conjugation of « by @& Then the Hilbert
modular group I'x=SL(2, 0g) acts on H? by:

az,+b dzgt§>, :(a b)eFK.

(21 20— 7 (an 2= cz+d’ Cz+d c d

For an element A in K and for a point t=(z, z,) in H? we denote
(1.1) At=(Az,, 225), N(7)=2125, tr(t)=z;+2,.

DEFINITION 1.1. A holomorphic function f(z) on H? is called a symmetric

Hilbert modular form of weight k for K if it satisfies the following conditions :

(1) For any element rz(? 5) of Ik, f(z) satisfies a functional equation of

the form
fao)=N(ct+d)* f(z);

2) f(zy, 2= (22, 21)).
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We denote by Ac(['x): the set of such functions. In this paper, we shall only
consider the case of even weight 2. We shall write dx the different of K. We
define a subset A of K by

1.2) Ax={1€K | 2€bdx™, 2>0 or 0}.
Then any element f(zr) in A¢(I'x), admits a Fourier expansion of the form:

(1.3) f@)= EA as(v)exp[2ritr(vr)], a;(v)eC.
ve K

For any subring R in C, we define an R-module Az([x): by:

(1.4) AR(FK)k:{fEAc(FK)k I (lf(l))ER for all DEAK}.

Then the sum Ax(I'x)= P Ar([x), forms a graded ring over R. Similarly we
kzo

denote by A¢(SL(2, Z)), a C-vector space of elliptic modular forms of weight k.
It is well known that any element f(2) in Ac((SL(2, Z)), has the following
Fourier expansion :

fz)= éoaf(n)exp (2rinz) .

By similar way, for any subring R, we can define Ax(SL(2, Z)), and Ax(SL2, Z)).
Let ~ denote an equivalence relation in 0x Xog defined by:

(a, B)~(a’, B) if a=¢e'a’, B=¢'B’ for some unit ¢ in K.
For any even integer k=2, we define a series Gi(z) on H? as

Gir)= 2 NQ@r+p)*,
(4, p)€0g X0 g/~
where the summation runs through a set of representatives (4, p)#(0, 0) with
respect to the above equivalence relation. It is known that the series is absolutely
convergent and represents a symmetric Hilbert modular form of weight % for K.
We normalize Gi(r) as: ” ’

Gr(@)=Lx(R)-Gilr),

where ((s) is the Dedekind zeta function of K. The function G,.(r) is called
the normalized Eisenstein series of weight k for 'y and it has the following
Fourier expansion :

(1.5) ' Gio)=1+ X b0 exp2ritr(vo)],

vedg -10}

biw)=rr 2 IN®)[*?,

(U)DKCB

kr=Cx(B) 2 Qr)?* - [(k—=1)1] 2. d g2 *
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where dg is the discriminant of K. From Hecke’s result it follows that

Cx(k)=m?*.d x'/?-(rational number),

therefore we have Gi(t)E AL k).
LEMMA 1.1 [3,4]. (1) In the case of K=Q(~/2), we have

k,=2%.3, £,=2°-3-5-11"%, gg=2*-32-7-197%.
(2) In the case of K=Q(\/5), we have

k,=2°-3:5, £,=2*3.5 k,=2°-32-5.7-67°},

Kp=2%-3-5%-11-412751-*.

(Further numerical examples can be obtained by the method of Siegel [9]).

Let E.(z) be the Eisenstein series of weight 2 for SL(2, Z) which is norm-
alized as the constant term of the Fourier expansion is equal to unity.

The following Fourier expansions of E, are well known:

E(@=1+20 5, 0i(n)g",  Eo2)=1-504 3 o(n)g”,

Ey()=11+480 3 0.(n)g",  om(n)= 3 d", g=exp(2riz).
n=1 o<din
Now we define 4(z)=27%-3"*(Ej (z)—E:z)). As is well known, 4(z) is a
cusp form of weight 12 and has the following expression :

d(z)=q i[l(l—q")“ .

From this, we see easily that 4(z) is an element of Az(SL(2, Z));,. The classical
theory of elliptic modular forms tells us the following theorem.

THEOREM 1.1. The modular forms E, E; 4 form a set of generators of
AZSLQ2, Z)) over Z, i.e., every element f€Az(SL2, Z)), can be wriiten as an
isobaric polynomial in E, E, 4 with integral coefficients. In particular, if k=0
(mod4), then every element feAz(SL(2, Z)), can be expressed as an isobaric
polynomial in E,, 4 with integral coefficients.

For any function f((z;, z:)) on H?, we define a function D(f)(z) on H, by
D(f)z)=f((z, 2)). It is known that the map D induces an R-linear map
D: A(I'c) v Ar(SL(2, Z))ss. In fact, for an element f(z)= 3 a,(v)exp[2ritr(vr)]
in Ar(I'g):, the following formula holds:

D))= ic Amexp@ring), M= a,0).

Direct calculation shows the following results.
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ProposITION 1.1. (1) If K=Q(\/2), then we have
D(G,)=E, D(G)=Es=E.; D(Gs’—Gs=2"-3"-5-13-19724.
(2) If K=Q(/5), then we have
D(Gy)=E, D(G)=Es, D(G;’—Gg=2°-3-567"4.

§2. Theta constants.

In this section, we shall recall some properties of theta constants and we
give some results which is required later. As we stated, let H, denote the Siegel
upper-half space of degree n and Z a point of H,; then the Siegel modular
group Sp(n, Z) acts discontinuously on H,. Let m’, m” denote elements of Z"
and put m=0n'm”); then the theta constant #,(Z) with “characteristic” m is a
holomorphic function on H, defined as

2.1 0un(Z)= ZZ) explri{(p+m'/2)ZXp+m'/2)+(p+m’/2)'m"}].
pEZ™

The function @, is different from the constant 0 if and only if m is even in the
sense that the integer m’'m” is even. If n=(n'n”) is another element of Z?",
then we have Ougisn=(—1)""*""8,.. Therefore we have only to consider theta
constants with even characteristic in which entries are 0, 1. There are 2*-*(2"-1)
such characteristics; they are (00), (01), (10) for n=1 and (0000), (0001), (0010),
(0011), (0100), (0110), (1000), (1001), (1100), (1111) for n=2.

EXAMPLE 2.1. (64000.1010)=2%4, where 4 is the elliptic cusp form of weight
12 introduced in §1 (e.g. cf. [7).

Now, in the case n=2 we give an expression of ¢, as Fourier series intro-
duced by Igusa; cf. [7], pp. 155-156. First we put »=exp(rniz), z€ H,. Further-
more if we put

oo oo

(2.2) Fr)= X »?*, Fin)= ) re-u»?
p=1 p=1

then we have

2.3) Oo=1+2F(r), 00=142F—r), 6,,=2Fr).

212
22
qiz=€exp(2xiz,5). Furthermore we put

z . .
Next, for any element Z :( ! ) in H,, we put r,=exp(riz,), r.=exp(wiz.).
12

2.4) Fi(ry, r)=Fy(r)+ Filr)+ ;f Ap, i,
1. 2=

Apl’ p2:q12p1pz+q12-171p2 R
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(-]
2 - 2
Fl(rl, 7’2)=F1(7’2)+p E ) Bp]_.Pzrlpl 7/2(172 1/2) s

1o P2=

— (pe-1/2) -p1(pe-1/2)
Bpl,pz*(h2p1 pe-1/ +(]12 p1(p2-1/ ,

Fyry, vo)=F\(rs 1),

o0
- 2 - 2
Fyry, ro)= X lcpl’pzrlml 122y (pa-1/D2
P1, pg=
— -1/2 - —(p1- -1/2
Cpl,pz—(]m(pl 1/2)(pe 1/2)_{_4712 (p1-1/2)(pg-1/2) R
o0
— +pg~1 (p1-1/2)2, (pay-1/2)2
F (r,, 72)_p1§2=1(—1)p1 Pem1D) ) oy (PITUD (pem1/DE

— (p1-1/2)(pg—-1/2) ___ -(p1-1/2)(pa—-1/2)
Dy, py=q12'P1 2 Giz” "t 2 .

Then we have

(2.5) 00000=1+2F(ry, 72), 00001 =1+2F(ry, —7s),
Ooo10=1+2F (=71, 73), Ooon=1+2F(—ry, —73),
Oo100=2F (71, 72), Oo110=2F (=711, 13),
O1000=2F,(ry, 75), 01001=2F,(ry, —1,),
01100=2F4(r1, 75), 011:11:=2F(ry, 73) .

Now we introduce some functions on H, defined as polynomial with theta con-
stants and study their properties. First, we put

(2.6) _ ﬁ10:2—121}6m2:

where the product runs over ten even characteristics. On the other hand, it is
known that, in the case n=2, there are fifteen syzygous quadruples (cf. [7], p.
158). We put

@7 715=275 5 (O, Ouny Oy -+ Oy

in which the summation is extended over the set of fifteen complements of
syzygous quadruples. From transformation law of theta constants, it follows
that %, and 7;, are Siegel modular forms of degree 2 and of respective weights
10 and 12. For later purposes, we prepare some results.

THEOREM 2.1 (J. Igusa [7]). Under the above definitions, we have

Ni0= 77125(F111’121’13)4 (mod 2%),

where F; is the power series defined in (2.4) and the notation = means the Fourier
coefficient-wise congruence as Fourier series in ri'/%, r;''%, qi2''%. '

ProoF. For the proof, we refer to [7], Lemma 3, and a comment which
was stated in [7], p. 159, line 22.
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Next, we put
(2.8) §4=27"%(0 00000 0011011000 1111)% ,
&6=2""{(0 0000000116 1100)* + (00000 60116 1111)*
+(000110 11000 1111)* +(Fo0000 11000 1111)*} -

LEMMA 2.1. &, and &; have integral Fourier coefficients (as Fourier series in
M, rtt, qint'Y).  Furthermore, we have

2.9) §,=&  (mod 2°%).
ProoF. From ((2.5), we have
(00000000110110001111)2
=(1+2F(ry, v2)))(A+2F (=711, —12)*2Fs(ry, 75))*CF (ry, 75))%.

We recall that Fy(+r,, *7r,), Fs(ry, 7,), F.ry, r,) all have integral Fourier co-
efficients (as Fourier series in r,'4, 7,'%, ¢;,"/*). Since in any commutative ring
a=b (mod 2) implies a®=b% (mod 22) and since Fy(ry, ro)=F(—1r;, —7s), Fs(ri, vs)
=F,(ry, v5) (mod 2), if we put 2B(r,, ro)=F (r,, r.)—F4(r,, v,); then we get

(2.10) =A2Fo(ry, 7)) {Fo(y, 7o) (Fo(ry, 75)+2B(ry, 75)}
=Fy(ry, 1) +4Fs(ry, v2) B(ry, r5)+4F(ry, v5)?B(ry, 75)* (mod 2°).
On the other hand, we get
26 =(142F o(ry, r))*(A+2F(—r1, —712))*Q2F4(ry, 75))*
F+(L+2Fo(ry, 7o) A42F (=11, —72)) QCF (ry, 72))*

=2{Fy(ry, ro)*+4F3(ry, 72)2B(ry, 75)-+12F(ry, v,)?B(ry, v5)?% (mod 2%).
Therefore we have
(2.11) Es=Fy(ry, 1) HAFy(ry, v2)2B(ry, 15)+12F(ry, v:2)°B(ry, r,)* (mod 2°).

Consequently, from and (2.11), we obtain &,=& (mod 2%). g.e.d.

§3. Modular imbeddings and modular forms.

In this section, we shall describe the modular imbeddings of H? For the
precise definition and the properties, we refer to [5]. First we consider the
case of K=Q(+/2). If we put ¢;=1+4++/2, then ¢, is the fundamental unit of
K=Q(/2). We put
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@.1) a=(% ‘7), a=Ve IV Z, a=v_z/vZ.

a —a
Then we see that A=‘A=A4"'. We now denote by @, the mapping @,: H*=
H, x H— H, defined as
_ Y Z
(3.2) 0,(0=0:((z, z)=4(7' )4
_(tr((al/Z\/7)r) tr ((1/24/2)7) )
T \tr ((1/242)7) tr ((—&,/24/ 2)7)/°
Furthermore, we denote by ¥'; the mapping I'x=SL(2, 0x)—Sp(2, Z) defined as

@3 v )=w((CTlvE T

a;+a; a, by+b, b.
a: Q1—0Q; b, by—b,

cite, Ce d,+d, d,
Co C1—Ce d: di—d,

Then the pair (@,, ¥';) defines a modular imbedding of (H?, I'x) into (H,, Sp(2, Z)).
Next, we consider the case of K=Q(+/5). If we put e,=(1++/5)/2, then e,
is the fundamental unit in K. We put

_ :8 .E T = R T o
34 B=(; _o) B=Vea/Vs, F=V=E/V5.
We denote by @, the mapping @,: H*=H, X H,— H, defined as
3.5 0.0=0dz 2)=B(y  )B

:(tr((ez/«/ﬁ)r) tr((1/+/5)7) )
tr((l/v/5)0)  tr((—&/+/5))/

Furthermore, we denote by ¥, the mapping I'x=SL(2, 0x)—Sp(2, Z) defined as

36 r((¢ D)=w((@ies bibey)

a;+a; as b, +0b, b
as a, : bz b1

c1+¢s Co d1+d2 dz .
Cg C] : d2 dl

The pair (@,, ¥',) defines a modular imbedding of (H? [) into (H,, Sp(2, Z)).
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If f is a holomorphic function on H,, then by f* we shall denote the restriction
of f to the image of @; (=1, 2), i.e., f*=f-®,; (=1, 2). From this, if we put

3.7 X10:7710*:7]10°¢2, X12:771z*:7712°@2y

(where 7, was defined in §2), then X,, and X,, are symmetric Hilbert modular
forms of respective weights 10 and 12 for K=Q(/5).

PROPOSITION 3.1. We assume K=Q(\/5). If we put Xy=n*=7,D,, then
X.eAclx), (=10, 12).

In the following we consider the case K=@Q(+/2). First we define a sub-

group Sp(2, Z, j) of Sp(2, Z) as follows. Let j:(_(l) (1)> and we put ]:(é ?)

We define
Sp2, Z, N={MeSp2, Z)| ' JM]=M (mod 2)}.

An integral row vector m with two components will be called mod 2 diagonal if
mj=m (mod 2). Further, a characteristic m=(m’m”) will be called mod 2 diagonal
if the row vectors m’ and m” are mod2 diagonal. For instance, the set of
mod 2 diagonal characteristics for n=2 is given by

&= {(0000), (0011), (1100), (1111)}.

THEOREM 3.1 (Hammond [5]). (1) If f s a holomorphic function on H,
which satisfies the functional equation for a modular form of weight k with re-
spect to the operations on H, of the elements of Sp2, Z, j), then f*=f-@, is a
symmetric Hilbert modular form of weight k for K=Q(~/2).

(2) The set of mod2 diagonal characteristics is stable under the operations
of the group Sp2, Z, 7).

Now we put

(3-8) 91’4:54*:54“@1 ’ S[’e:Es*:Ee“@u

where &, and &; were defined in §2. As an easy consequence of the above
theorem, we get the following proposition.

PROPOSITION 3.2. We assume K=Q(+/2). If we put ¢,=&*=E,°D,, then
we have ¢ Ac(l'x)r (k=4 6).

From the definition of modular imbedding and the form of Fourier expan-
sions of symmetric Hilbert modular forms for K, we obtain the following lemma.

LEMMA 3.1. Let f and g be functions on H;, which are expressed as poly-
nomials of theta constants of degree two. We assume that f*€ Ac(I'x)r and g*e
Acl'g)s. Then we have:

(1) If f has rational integral coefficients as Fourier series in ri*/*, ro'’*, qie
then f*€ Az(I'k)s.

(2) If f=g (mod n) for an integer n, then f*=g* (mod n).

1/4
’
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LEMMA 3.2. Let D be the mapping defined in §1. Then we get
D((amlmzmimé)*)zﬁmlm' :

Oy, -

2

PrOOF. From the result of [7], p. 157 and the definitions of @;, it follows
that '

D0 mymymym))= mlmzmlmz((g 2)):ﬁm1m’1<2)0m2mrz(2).l g.e.d.

THEOREM 3.2. We assume that K=Q(~/2). Let ¢, and ¢ be the functions
defined in (3.8). ‘Then we have the followings.

1) $€Asw)s  Pee Az s

(2) ¢y=¢ (mod 2°).

(3) D=0, D(¢e)=2°4.

Proor. (1) and (2) are consequences of Lemma 3.1l and Lemma 2.1. From
Lemma 3.2, we know D(0%,,)=0. Therefore, we have

D(p)=27*D(0500)* D(07511)* D(0%100)* D(0111)° =0 .

If we also note that (640600.010)°=2%4 (see Example 2.1), then we get
D(pe)=272D(000)* D(07011)* D(0F100)* =275(6 000 010 10)®
=2%4. qg.e.d.

By similar way, we can obtain the following theorem.
THEOREM 3.3. We assume that K=Q(\/5). Let X, and Xy, be the functions
defined in (3.7). Then we have: '

(1) Xw€AzTk)1, Y€ Az k)1

(2) X10=X;» (mod 2%). )

(3) DX1)=0, DX,)=2%-34%

Proor. (1) and (2) are derived from and [Theorem 2.1. -Since
D(0%:,)=0, we see that DX, =DII(6HH=TI(D(0¥)*=0. In order to show
that D(X,,)=22-34%, we observe that, if we denote ten characteristics in the order
we have written in §2 by 1, 2, 3, -+, 9, 0, then only the complements of (1490),
(1680), (2390), (2670), (3580), (4570) have non zero contributions to D(X,.), because
the other complements contain the characteristic (1111). Thus we have

D(Xy5)=2""5{D(0%01)* D(0%10)* D(0100)* D(05110)* D(0F500)* D(0F01)*
+D(073501)* D(05510)* D(05011)* D(0100) D(0100)* D(GF100)*
+D(0300)* D(07311)' D(0100)* D(05110)* D(0Fo00)* D(0Fy01)*
+D(60%00) D(0%10)* D(0%:)* D(0:00)* D(0%501)* D(0F100)*
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+ D(675000)* D(03500)* D(08o11)* D(075110)* D(0Fo00)* D(0F100)*
+D(0300) D(05501)* D(05010) D(0F110)* D(0501)* D(0T100)}
=271.6(00000:010)"*, by
=22.342, by Example 1.1. q. e. d.

§4. Integral Hibert modular forms for Q(/2).

In this section we shall construct a set of generators of Az(['x) over Z in
the case K=Q(+/2). Until the end of this section, we assume K=Q(+/2). In

this case, we have dx=8, dx=(2+/2). Therefore, from §1, the Fourier ex-
pansion of the Eisenstein series G, is given by

(4.1) G:(o)=14k, X biv)exp[2ritr(v7)],

vEAEK - 10}

biv)= > |N(|**.

() av2y
From Cemma 1.1, (1), since x,=2!-3, we see that G,(r)e4;(['x),. Now we put
4.2) H,=2%32%11(G.*—G,) .

LEMMA 4.1. H,cA;(I%)..
ProOF. From [Lemma 1.1, (1), we can write

Gy(r)=1+42*-32 by(v)exp[2rmitr (v7)],

Gir)=1+2%-3-5-11"1 3 bi(viexp2ritr(vr)].
Hence we have

G(z)=142°-33 bi(v) exp[Zaitr 7]
+28.3%( 2 by(v) exp[2ritr (vr)])2.
By comparing the terms of G,? and G,, it suffices to show that
4.3) 2°.3-11b4(v)=2%-3-5b4(v) (mod2°-3?)  for all vedg.
If we note that 11n=5n° (mod 2-3) for any integer n, then we have
25-3-11|N(p)| =2°-3-5|N(p)|® (mod 2°-3?)  for all p<ok.

Thus is proved. gq.e.d.
The direct calculation shows the following lemma.
-LEMMA 4.2. H,=¢,, where ¢, is the Hilbert modular form of weight 4 for
K=Q(\/2) defined in (3.8).
We define a Hilbert modular form H, for K=Q(,/2) as:
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(44) He=2“3(¢)e—Gz¢4) .

LEMMA 4.3. H,e Az;(Ix)s.
PrRoOF. We first note that ¢,=¢, (mod2®), (Theorem 3.2). Since G.=1
(mod 2%), we get
¢GE¢4EG2¢4 (mod 2°).

From this, we obtain 2-%(¢s— G Az(I'k)e. q.e.d.

By using Hammond’s structure theorem for A¢(I'x) (cf. [5]), we get the fol-
lowing polynomial expression of H; by Eisenstein series.

LEMMA 4.4,

Hy=-—-2"%.3"%.13"1.5-7*G,*+27%-3°2.571.1371-11-59G,G,
—277.37%.571-1371-19°G, .

From these lemmas and we have the following theorem.
THEOREM 4.1. The above-defined modular forms G, H, Hy have integral
Fourier coefficients. Furthermore, we have

D(Gz):E«n D(H4):0; D(Hs):A-

In the following, we shall show that the modular forms G, H, H, form a
minimal set of generators over Z of A,(I'x). First, we recall the Fourier ex-
pansion of symmetric Hilbert modular form for K=Q(4/2). For the set Agx
defined in §1, we shall define a linear order among the elements v in Ax as
follows: For any element v in Ag, we write

v=(a+p+/2)/24/2, @ BEZ.
Then the conjugation § of v is given as §=(—a+£+/2)/24/2 and tr(v)=4.

(4.5) 1. We arrange v in order of tr(v).
2. When the traces are equal, we arrange them in order of « in ».

We write the numbers v as v, v;, Vs, v, --- according to this order. We can
make a list of the numbers y; for tr(v;,)<2 as follows.

trace ve Ag
‘ e N
0 vo=0
1 vi=(=1+4/2)/24/2, v,=0++/2)/24/2, v»,=(1++/2)/24/2
2 vi=(—2422)/24/2, ws=(—14+24/2)/24/2, v=(0+24/2)/24/2
v =(1424/2)/2/ 2, ve=Q2+2+/2)/24/2
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If we write this order by <, then we see easily that v<y’ and p<y’ imply
y+p<v'+ .
The Fourier expansion of f(z) in A¢(I’kx), can be rewritten as:

f@)=3a,,)exp[2ritrp)].
j=0
ExAMPLE 4.1. From §1, we get the following formulas.

ac,W)=kr, Qg (v)=rx1+2%1),  ag,(vs)=ky,
a, W)=rp(1+2* 1451, ag,(ws)=k(1+7*),
ag,(ve)=rp(142% 144514851, ag, W)=k (1+7%),
g, (Vo) =K p(1+2571-4571),
EXAMPLE 4.2. If we write

(4.6) qg=exp[ri(z;--2,)], x=exp[ni(z;—2z,)/+/ 2], 2z, z.€H,,

then, for any element v=(a+3+/2)/24/2 in Ak, we obtain

4.7 exp[2ritr (vr)]=xq?.

For example, the Fourier expansion of f can be expressed as:

f=asvo)+a;v)x'g+a;(v)q+as(va)xq+as(v)x—>q®
+a;s)x g +a;(ve)q®+a (v)xq+a (ve)x®q®+ - .

This way of writing Fourier series of Hilbert modular forms is convenient if
one wants to see the effect of interchanging z, and z, (corresponding to x—x~?)
or of restricting to the diagonal line (corresponding to x=1).

By using the formulas in Example 4.1, we get the following numerical ex-
amples :

:=1+2%-3{(x"'+3+x)g+(7x~*+8x"'+15+8x+7x%)q*+ --}.
G,=142°-3-5:11"*{(x*4-94-x)g +(73x~*4-344x~*+585+344x +73x*)g*+ ---}.
e=1+424-32.7-19-2{(x"*+334-x)q+-(1057x~2+16808x '+ 33825
+16808x+4-1057x*)g*+ ---}.
H,=27%.3211(G*—G)=(x"1—2+x)q+(—4x"2—8x " 1+24—8x—4x?)q?
+(—2x"4426x*+16x"2—14x"'—52—14x+16x?
+26x*—2x*)q*+ - .
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Hy=—278.3"%.13"1.5.7*G,*+27%-372.571.13"*-11-59G, G,
—277.37%.571.1371-19°G, v
=q+(—2x"2—16x"1412—16x—2x%q*+ ---.
D(Hg)=q—24¢*+252¢°— ---, g=exp(2riz) .

Now we shall prove some lemmas which will be used later.

LEMMA 4.5. Let R be a subring of C. Suppose f€Ar('x)r, T2 Ar(l'k) s
(k=F’). Furthermore, we assume that the first non zero coefficieniiof g is inver-
tible in R. If f=gh, he Ac(I'k)s-1:, then we get h€ Ap(lk)p-1.

PROOF. Let g(r)= mﬁ:]nag(vm)exp [27itr (vmr)], (ag(va)#0), and A(z)= gah(»j)

-exp[2ritr(v;r)], (an(v)#0). By assumption, a,(v,) is invertible in R. Now
we suppose that A& Ar(l'k)r-r. We assume a,(v;) is the first coefficient which
does not belong to R. Then the coefficient of exp[2ritr(v,+v;)r] in the expan-
sion of f(z)=g(t)h(r) is az(vn)an(yy)+ 2 a(vs)an(v,), where the sum runs over
numbers v, and vy, (s>n and :>t) such that y;+v,=v,-+v;. By assumption, the
second sum of above expression must be contained in R. Hence we get
a,(vp)an(v;)eR. Since a,(v,) is invertible in R, we have a,(v;)€ R, which is
a contradiction. q.e.d.

LEMMA 4.6. Let R be a subring of C. If feAr(l'x): satisfies D(f)=0,
then f is divisible by H, in Ar({'x), i.e., f=H,f" with ' in Ag(lk)s-e

ProoF. From the result of Hammond [5], p. 514, we have known that the
ideal of symmetric Hilbert modular forms for K=@Q(+/2) of even weight which
vanish on the diagonal line is the principal ideal generated by H, and f/H,=
Ac(l'x) .. We can actually show that f'=f/H,cAx(I'x)s-,. Since the first
non zero Fourier coefficient of H, is one, we can take g=H, in the previous
lemma. So, from we get f'=f/H,€ Axl'x)s-s q.e.d.

By using this lemma, we can prove that the graded Z-algebra A;(['x)=
goAz(l’ ) is generated over Z by G., H,, H,.

THEOREM 4.2. The elements G,, Hy, Hy form a minimal set of generators of
Az(I'y) over Z.
Proor. If feA;(I'x): then we have

4.8) D) A, SLQ2, Z))ss, 2£=0 (mod 4).

From [Theorem 1.1, we can write

(4.9) » D(f)= 2 7raEld, rtwcZ.
4a+12b=2*k

On the other hand, since D(G,)=FE, and D(H,)=4, the element f/=
F=7aG."H® in Az(I'k), satisfies the condition D(f’)=0. Therefore, we can
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apply in the case R=Z, so we can express as f'=H,f” for some
"€ Az(I'k),-,. Consequently, we can express as:

f=Py(G,, H)+H.f", freAz(Ig)p-4.

Then, by induction, we have the following expression :

f:P0<G2; He)+P1(Gz, HG)H4+ +PJ(G2, He)H4jy Pi(Xh Xz)EZ[Xl, Xz]-

The minimality is derived from Hammond’s structure theorem for Ac(Ix). This

completes the proof of [Theorem 4.2.

§5. Integral Hilbert modular forms for Q(\/5).

In this section we construct a minimal set of generators of Az(I'x) over Z
for K=Q(+/5). From now on, we assume K=@Q(/5). Then we have dg=5,
bx=(/5). The Fourier expansion of the Eisenstein series G, is given as fol-
lows:

(5.1) G.o)=14k, X biv)exp[2ritr(v)],

vEAR -0}

biwy= 2 1N B

From Lemma 1.1, (2), since x,=2%-3-5, we see that G.(c)e Az(I'c).. We put
(5.2) Je=275:37%.5"2-67(G.*—G,) .

LEMMA 5.1. J.e Az k).
ProoOF. From [Lemma 1.1, (2), we can write

Gy(1)=1+422-3-53 by(v)exp[2xitr v7)],

Go(r)=1+42%-32.5-7-67 2 bi(v)exp 2ritr(vz)].
So, we can obtain

Gl (r)=1+2%-3%-5> by(v)exp [2ritr(vr)]
4283253 (X by(v)exp [2ritr (vr)])*
+29.38- 53 by(v)exp [2nitr (vr)])® .
By comparing the terms of G,* and G, it suffices to show that
(5.3) 28.32.5-67b5(v)=2°-3%-5-Th¢(v) (mod 2°-3*-5%),  for all ve Ag.
Since 67n=7n% (mod 3-5) for any integer n, we see

(5.4) 67 N()| =7|N(p)|® (mod 3-5) for pcog.
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On the other hand, from the fact that |N(u)|#2 (mod 2%) for all p=ok, we see
that

(5.5) 67| N()| =T|N(¢)|® (mod 2%).

The congruence (5.3) is an immediate consequence of and [5.5] q.e.d.
For convenience of writing, we put

(5.6) Jio=%X10, J12=272(J*— GoXro),

where %;, is the modular form defined in [(3.7).

By calculating the Fourier coefficients of X;, and X;., we get the following
lemma (cf. Gundlach [3].

LEMMA 5.2. Let X and Xis be the modular forms defined in (3.7). Then
we have the following expressions.

X1p=2710.375.575.7-1(412751G,,—5-67-2293G,*G,+22-3-7-4231G,’) ,
X12:3]62_2G2%10 .
LEMMA 5.3. [ Az k)10, JioE Az(L k)12

ProOF. The result Jio= Az;(I'x)1 has been proved in [Theorem 3.3, (2). Since
X=X, (mod 2?) from (2) and since G.=1 (mod 2%), we see that
5.7 GoX10=%10=X;» (mod 22).

First we show that 4 1(3J:>+GyX10) € Az(I'k)1.. From we get
(58) 3]62'}‘ G2X10:(X12‘"G2X10)+4G2X10 .

Since X;.—GaX1o=0 (mod 2?%) from [(5.7) and since 4G.X;,=0 (mod 2%), from
we get 47 1(3/2+Gok)E Az(I'k)1.. If we note that 47Y(J32—GuXio)=]s*—47(3]s®
+GyX), then we obtain Ji,=4 Y J—GX10) € Az(I'x)s. This completes the proof
of g. e d.

From [Proposition 1.1, (2) and the definition of [, we see that D(J,)=24.
On the other hand, from we get D(J.0)=D)=0 and D(J;)=
41 D(J2—GoXyo)=2A*. Summing up these results, we obtain the following :

THEOREM b5.1. The modular forms Gs, Jo Ji, Jiz have rational integral
Fourier coefjicients. Furthermore we have

D<G2):E4; D(]G):ZA} D(]m):O; D(.]12>:AZ-

Now, following the same argument in §4, (4.5), we determine a linear order
among the elements in Ax for K=@Q(+/5). It should be noted that any element
y in Ag can be written as v=(a-+5+4/5)/24/5, a=5 (mod 2) and tr(v)=4.
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trace vedg
O V()ZO
1 vi=(—1++/5)/24/5, v,=(1++/5)/24/5
2 vo=(—4424/5)/24/5, v;=(—24+2+/5)/2/5, v;=(0+2+/5)/24/5
ve=02+24/5)/24/5, v;=(4+24/5)/24/5

For instance, a few examples of Fourier coefficients of Eisenstein series G (7)
are given as follows.
EXAMPLE 5.1.

ag,(v1)=a¢,(vo)=ag,(vs)=ag (Vi) =K,
a4, (Ws)=£(1+5%7), ag,(v)=ae,(ve)=ke(1+4%7).
EXAMPLE 5.2. In the same manner of Example 4.2, we write
(5.9) g=expl[ri(z;+z.)], x=explni(z;—z,)//5]1, 2z, z.€H,.
Then, for any element v=(a+8+/5)/24/5 in Ak, we get
(5.10) exp[2zitr(vr)]=x%q?, t=(z, z.)e H®.
Then the Fourier expansion of f in A¢(/'x), can be rewritten as:
(.11 f=a;)+a,)x"'q+a,;(v)xq+a;(vi)x'q®
+a;(v)x?¢*+a;(v:)g°+ a,(vo)x*q*+ a (v x'q*+ -
The  direct calculation shows the following numerical examples.
(5.12) 2=1-+2%-3-5{(x '+ x)g+(x"*-+5x"24+645x*+x*)g*+ ---}.
Je=(x" 't x)g+(x*+20x72—90+20x*+ x*)g>+ --- .
D(Js)=24=2q—48¢*+504¢>— --- .
Jio=(x"1—x)2q*—2(x " '—x)(x*+10x2—10x2—x*)q*+ ---.
Jio=@?+(x " —15x"°—10x"*—10x—15x°+x%)g*-+ --- .
D(Jio)=4=¢"—48¢°+ -

THEOREM 5.2. The elements G,, Js, Ji0, J12 form a minimal set of generators
of Az(I'yx) over Z.

In order to carry out the proof of this theorem, we shall prepare some results.

LEMMA 5.4. Let R be a subring of C. If f€Ax(I'k): satisfies D(f)=0,
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then f is divisible by [, in Ar(l'x), i.e., f=Jwf" with ' in Ag(I'k)k-10.
PrOOF. From Gundlach’s result [3], we can write f =/, f’ with f'€ Ac('k) ¢-10-
Since we can take g=],, in we see that f/€ Ag(['x)r-1. q.€.d.

LEMMA 5.5. Let f= i}obm(x“l, x)q™ be the Fourier expansion of f€ Az(I'k)

with bn(x™, x)=Z[x™%, x]. Let b,(x7Y, x) be the first term of bnp(x~!, X) such
that b,(x7, x)|=1#0. If n is odd, then

(5.13) D(f)=2cE 3" A"+ (the higher order terms of )€ Z[E,, 4]

with ce Z—{0}.
ProOOF. Since n is odd, we can write

ba(x™, X)=a1 (X7 +2)+ @5 (x 7+ x%)F -0 A oppa (67 FFY Hx2TH)

with a;=Z. Therefore, b,|.-; is 2 non zero even integer. We put b,|.-1=2c,
ceZ—{0}. Since D(f)=2cq"+ ---, we get [5.13). q.e.d.
LEMMA 5.6. For an element f in Az(I'x):, we have

D(f)=coE**+c,E 2244 -« +c,EF% 4+ ... e Z[E,, 4]

with ¢,;=c;=c¢=c¢;= - =0 (mod 2).

Proor. We put D(f)=P(E,, 4) with P(X,, X;)eZ[X,, X,]. Then we see
that deg P(E, 4)<[k/6]. Let n be the first integer such that ¢,#0. We
shall prove the assertion by induction on [2/6]—n. If [k/6]—n=0, the asser-
tion is immediate from Lemma 5%5. Let [2/6]—n=1 and

D(f):CnE4k/2—3nAn+cn+1E4k/2-3(n+1)An+1+ _!_CiE4k/2—3iAi+ eee
If n is even, then
D(f__anzklz-zin]lZn/Z):cn+1E4k/2—3(n+1)An+1+ s +ciE4k/2~3iAi+ e

satisfies the induction hypothesis. Hence we have ¢;=0 (mod 2) for any odd ;.
If n is odd, then we see by that ¢, is even.

D(f—(Cn/Z)sz/Z_gnjsjlz(n_1)/2):Cn+1E4k/2_3(n+l)An+l+

also satisfies the induction hypothesis. Therefore ¢;=0 (mod 2) for any odd ;.
q.e.d.
The following is a consequence of and
COROLLARY 5.1. D(Az;(T'x)=D(Z[Gs, Jo, J12]).
PROOF OF THEOREM 5.2. We take an element f in Az([kx),. From Corol-
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lary 5.1, we can write
D(f)=27 a0 D(G)*D( J)’D(]12)°

with 74 Z. Then, by Lemma b4, f— 3740.G:2J%].° is divisible by Jj, in
Az(I'x). Therefore, by similar argument in the proof of we can
write

f: Eaabcdcza]eb]mc]md

with d.sca€Z. Consequently, we obtain Az;(I'x)=Z[Gs, Js Ji0, J12). The mini-
mality of the generators G, J, Jio, Ji2 is derived from Gundlach’s structure
theorem of A¢(I'x) (Gundlach [3]) and the way of construction of the generators.
g.e.d.

REMARK 1. In [1IJ, W.L.Baily, Jr. proved that under certain conditions,
the graded ring of integral automorphic forms, with respect to an arithmetic
group operating on a tube domain, is generated as a graded algebra over C by
a finite number of automorphic forms having rational integral Fourier coefficients.
In our cases, from the structure theorems [3], [5], we see that

AcI')=C[G,, Hy, H],  for K=Q(v/2)
Acl'x)=C[Gs, Jo, Jul,  for K=Q(v'5).

REMARK 2. As Hammond has observed, modular imbeddings exist for
a given quadratic field if and only if the discriminant of the field is the sum of
two squares. Namely, the first few discriminants for which modular imbeddings
exist are 5, 8, 13 and 17. In connection with this problem, the author also studied
the structures of Az(I'x) for K=Q(/13), Q(+/17).
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