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§1. Introduction.

An Hadamard matrix H of order n is a {—1, 1}-matrix of degree n such
that HH'=H'H=nl, where t denotes the transposition. It is known that n
equals one, two or a multiple of four. In this paper we assume that n is greater
than eight. For the basic fact on Hadamard matrices see or[7] Let P be
the set of 2n points 1, 2, ---, n, 1*, 2% ---, n*, Then we define an n-subset a;
of P as follows: a; contains j or j* according as the (7, j)-entry of H equals
+1 or —1 (1=i, j=n). Let af=P—a;. We call a; and af blocks (1=i=n).
Let B be the set of 2n blocks a;, a,, -, a., af, a¥, ---, a. Then M(H)=(P, B)
is called the matrix design of H. By definition each point belongs to exactly n
blocks. By the orthogonality of columns of H each point pair not of the shape
{a, a*} belongs to exactly n/2 blocks, and each point trio not containing a point
pair of the shape {a, a*} belongs to exactly n/4 blocks. {a, a*} does not belong
to any block. Similarly by the orthogonality of rows of H each block pair not
of the shape {a, a*} intersects in exactly n/2 points, and each block trio not
containing a block pair of the shape {a, a*} intersects in exactly n/4 points.

We assume that a**=a. Then a**=a. Let & be the group of all permuta-
tions ¢ on P such that ¢ leaves B as a whole. Then we call & the automor-
phism group of M(H). Obviously ® is isomorphic to the automorphism group of

k2 n
H. Since {= H1 (a, a*)= IIl(ai, a¥) belongs to the center of ®, ® is imprimitive
a= i=

on P. For the basic facts on permutation groups see [9] or [10]. Now let P
and B be the set of point pairs a={a, a*} and block pairs @={a, a*}, where
asP and a< B, respectively. Then & may be considered as permutation groups
on P and on B. We notice that ¢ is trivial on P and on B, and that there is
no apparent incidence relation between P and B. In this paper we assume that
® on P is doubly transitive and that & on P contains a regular normal subgroup

% on P. Then % on P is an elementary Abelian 2-group of order 7, and so
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is a power of 2; n=2" (m=4). For the case where & on P is a doubly transitive
permutation group not containing a regular normal subgroup see and [4]

EXAMPLE 1. Let V be an (m-+1)-dimensional vector space over GF(2), M a
maximal subspace of V and v a vector of V outside M. Then V contains 2™
maximal subspaces N not containing v (including M). Let R be the set of all
N’s. Now we consider the following incidence matrix H(m): Columns and rows
of H(m) are labeled by vectors of M and elements of R, respectively. The
(N, w)-entry of H(m) equals +1 or —1 according as weN or wé&EN, where Ne
N and weM. We may assume that the first column and row correspond to O
and M respectively. Then the first column and row are all 1 vectors respec-
tively. Let N; be any three distinct elements of M (=1, 2, 3). Then, since N; does
not contain v, we have that dim (N,N\N,N\Ns;)=m—2. So it is easy to check that
H(m) is an Hadamard matrix of order n=2™. Let M(m) be the matrix design of
H(m). Then the set P(m) of points of M (m) equals V={w, w+v; weM} and the
set B(m) of blocks of M (m) equals {N, N+v; NeR}. Let &(m) be the automorphism
group of M (m). For x<V define the mapping ¢, by wo,=w-+=x, weV. Then
No,=N or N+v, and so o, belongs to &(m). Let I(m) be the subgroup of all
o,’s, x€V. We notice that if we put w*=w+v, we M, then it is easy to see
that ¢, coincides with £, and that if we put N={N, N+v} and Bm)={N; N
N}, then I(m) is trivial on B(m). Now let s =®(m) such that Oo=0. Since
O*=yp, vo=v. Now we show that ¢ is linear. In fact, first let ¢, b= M and
consider N B(m) such that ¢, b N. Then the intersection of such N’s equals
{0, a, b, a-+-b} and that of Ng’s equals {0, ac, bo, ac+bs}. So we can conclude
that (a+b)o=ao-+bo. Secondly if ac M and b#£M, then we consider {a, b*}
and get (a+b¥)o=ao-+b*oc=ao-+bo+v. Since (a+b¥)o=(a+b+v)o=((a-+b)*)c
=(a+b)o+v, we get ac+bo=(a+b)o. The rest is similar. Now it is easy to
see that (m) is a normal elementary Abelian 2-group of &(m). Thus &(n) is
a subgroup of the split extension T(m)GL(V) of T(m) by GL(V), the general
linear group on V. It is not difficult to see that &(m) is the centralizer of o,
in ¥m)GL(V). Put w={w, w+v} and P(m)={w, weM}. Then &(m) on P(m)
is the split extension of T(m)/<o,> by GL(V/{v)). Thus &(m) on P(m) is triply
transitive and ¥(m)/{o,» is a regular normal subgroup.

Now W. M. Kantor characterized H(m) as follows [6]; If 8 on P is not
faithful on B, then H is equivalent to H(m). So from now on we assume that
® on P is faithful on B.

NOTATION. Let X be a permutation group on £2. Then for WC £, ¥, denotes
the stabilizer of W in ¥. LetY bea finite set. Then |Y| denotes the number
of elements in Y. Let ® be a finite group and © a subgroup of ®%. If X is a
character of %, then X|& denotes the restriction of X to ©. If ¢ is a character
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of &, then ¢” denotes the character of % induced by ¢. 1s denotes the trivial
character of ®. Let X and & be characters of ®. Then (X, &) denotes the inner

product 3 X(x)&(x).
XeRr

§2. Some results on H.

LEMMA 1. Let & be the kernel of & on P. Then 8 is an elementary Abelian
2-group containing {. If R#<KL, then H is equivalent to H(m).

PROOF. Since every non-identity element of & has order two, & is an ele-
mentary Abelian 2-group. Assume that 8+#<{>. Let 6=8—<{>. Then ¢ has
a fixed point and transfers some point a to a*. Hence ao+#a, a* for any a< B.
Let a be a fixed block. Then (aNao)Ula*Na*as) is the set of fixed points of
o and |aNac|=|a*Na*s|=n/2. So ¢ has n fixed points. Let F(o)={a@<P;
ac=a}. Then |F(¢)|=n/2. Clearly ¢ is uniquely determined by F(s). So the
number x of distinct F(o)’s equals |f®]—2. Let @ and b be distinct elements of

P and y the number of distinct F(s)’s containing ¢ and . Since ® on P is 2-

transitive, we have that x(nz/z): y(Z) This implies that x(n/2—1)=2(n—1)y.

Since ¢ is uniquely determined by ac, x<2(n—1). So we have that x=2(n—1).
Then every block B+a, a* can be expressed as f=aoc for some g &8—<.
Now we have that aNfNy=anfNye for any r+a, a*, B, * So by a theorem
of C. Norman [6, Theorem 6] it is easy to see that H is equivalent to H(m).
So from now on we assume that 8=<&>.
Let ¥ be a subgroup of G. Then let £=%<>/<O.

LEMMA 2. N is elementary Abelian.

PROOF. Deny. Let ¢ be an element of N of order 4. Then since N is
elementary Abelian, ¢?={. Since & is 2-transitive and R is a regular normal
subgroup of &, all the non-identity elements of 9 are conjugate with <{>o.
Hence { is the unique involution of M. So N is a quaternion group and n=4.
This is against our assumption that n>8.

LEMMA 3. T is regular on B and & is 2-transitive on B.

PROOF. Since : is faithful on B, ¥ moves some @ in B. Then |RNs|=2°
<|M|=2m. Now we show that |§s|=<2'y|B; ;|, where @ and b are two distinct
elements of P and y divides 2'—1. Let l@al:Z“mgzp“‘p’ and |G, ;=

2@ 1;[2p”‘1” be the prime power decomposition of |@z] and |Gs;5|. If a(p)<b(p)
D

for all odd p, then, since |G|=n(n—1)|G.5=[6: §;1|6z|, n—1 divides [&:

®z]. Since [6: G;1<n, we have that [§: Gz]=n—1. So &; contains a

Sylow 2-subgroup of ®. Since M is normal in &, RX=N,. This is a contradic-

tion. So there exists an odd prime p such that a(p)>b(p). Let p be such an
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odd prime and & a Sylow p-subgroup of ®;. Since p is odd, & fixes some
element @ of P. Now SR, is a subgroup where R is normal. We consider
B-conjugacy class decomposition of M. Notice that every &-conjugacy class
consists of a power of p (possibly 1) elements. Let 4 be an &-conjugacy class
#<{> consisting of fewest elements. Let g be an element of 4. Then |&|=
|4]1Cs(3)|. Let ag=b. Then, since g#<&>, a=b. Since a(p)>b(p), S fixes
no other point than 4. Since Ce(3)S6a35 ©+#Ce(g). So |4]|>1 and |4
divides 2'—1. Thus |&| divides (2'—1)|®s,;5|. The same argument holds for
R and we have that |&| divides (2"—1)|®4.5]. This is true for every odd
prime p such that a(p)>b(p). Let x=TJp™in@®.2®  Then |Gz =2%®xy,

P52
and y divides 2!'—1 and 2™—1. So y divides 2™-'—1. Let T be a Sylow 2-
subgroup of ®;. Then RT=RRITNG,). Since RzTNE; isa 2-group and |P|
=2™, it fixes another element b (@) of P. Thus RTNG;=NRTNG;; Now
IRTENG ;5| =IRT/N|=|Z/MNx|=2°®-L, Thus we obtain that |8z =<2'y|G; 5|.
Now we have that

18] _ 2m@m—1)|8as] . 27@m—1)

R :’21(2m—l_1) .

2z e =
]@al 2lyl®d,bl

\%

This implies that [=0. So ¢ is regular transitive on B, and GE=NE;.

Now & is 2-transitive on P (or B) if and only if & decomposes into exactly
two double cosets of &, (or §;). Since M is normal in &, and G=NE;=NG;
and RNG,=NNG;=<T>, the latter holds if and only if all the non-identity
elements of 9N are conjugate in ®; (or Gz). Since N is elementary Abelian, all
the non-identity elements of N are conjugate in ®; if and only if they are con-
jugate in ®,. Since ® is 2-transitive on P, ® is 2-transitive on B.

LEMMA 4. Let M be a maximal subgroup of N not containing {. Let 4 be
n++n

an M-orbit on P. Then for every block a of B we have that |dNa|= 5

n—+v'n
2
PrOOF. Put x=|4dNa| and y=|4Nea*|. By [Lemma3, N is regular on B.
So for every involution ¢ of M we have that ao#a* and |a*N\ao|=n/2. Since
[dNa*Nac | = |4*Nana*e | =|L*Na*Nac|, we have that |dNa*Nas|=n/4.
Thus the cycle structure of every involution of M has n/4 transpositions of the
form (a, b*), where acand and b*ca*N4d. Since M is regular on 4, M con-
tains a unique element ¢ such that ae=>b* for a=4dNa and b*dNa*. There-

fore we have that x+y=n and xy:_’?(”ll“l) ]

or In particular, n is a perfect square.

So the lemma follows.

PROPOSITION 1. If n is not a square, then H is equivalent to H(m).
PrOOF. This is a corollary to
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LEMMA 5. Let n=2™. Then there exists no prime factor of (@], 2m-1—1)
which does not divide 2t—1 for every i such that 1=i<m—2.

PrOOF. Deny. Let p be such a prime factor and & a Sylow p-subgroup of
®. Since © acts on N by conjugation, & may be considered as a subgroup of
GL(m, 2). By the assumption on p we have that |C3(©)|=2. So we have that
|Cx(®&)|=4. Thus p divides n—4. Since n—4=2(2™"'—1)—2, this is a con-
tradiction. :

PROPOSITION 2. If ® is 3-transitive on P, then H is equivalent to H(m).
PrROOF. If & is 3-transitive on P, then n—2 divides the order of G.

By a theorem of Zsigmondy there exists a prime factor p of (l@l, n~2—2)

which does not divide 2°—1 for every ¢ such that 1=/=m—2. It is against

§ 3. Further analysis.

Let @ and b be two distinct elements of P. Then we have the following
diagram where ¢=1 or 2.

LEMMA 6. The rank of & on P equals three or four according as e=2 or 1.

Proor. If e=2, then the orbits of &, on P are {a}, {¢*} and P—a. If ¢
=1, then P—a decomposes into two orbits of &, of length n—1.

We assume that the rank of & on P equals three. So the permutation
character 1ga decomposes into the sum of three characters:

18, =ls+2+¢,

where X is the irreducible character of & of degree n—1 in the 2-transitive per-
mutation representation of & on P and the degree of ¢ equals n.

LEMMA 7. &, 7s transitive on a and on a*, where a< B.
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Proor. If @&, is not transitive on a, &, has at least four orbits on P. So
the permutation character lga has degree at least 1+3(n—1). Since [&: G,.]
=2n by this is a contradiction.

From it follows that &; is transitive on P. Thus we have the

following diagram, where @ and b are two distinct elements of P such that «
contains ¢ and b:

/

(Sa, a,b"'®ﬂ’, a,b

So @, is 2-transitive on a. Since all 2-transitive permutation groups not contain-
ing a regular normal subgroup are known, by [3, Proposition 2] &, contains a
regular normal subgroup L. Then ML is a normal 2-subgroup of & such that
NNL=1. Since N is a minimal normal subgroup of &, N is contained in the
center of NY. Since N is transitive on P, this implies that T=<>. This is a
contradiction.

So the rank of & on P equals four.

Since ® has rank 4 on P, the permutation character 1&; decomposes into the
sum of four irreducible character of ®:

lga:1®+x+¢1+¢2 -

Let f; be the degree of ¢; (=1, 2). Then f,+f,=n. Let F be the family of
maximal subgroups of M not containing {. Then |F|=n. Let M be an element
of F and let I'and I'* be orbits of M on P. Then exactly one of ¢,|M and

@.|M contains 1y with multiplicity 1. We say that M is of type 7 if @;|M
contains 1y (7=1, 2).

LEMMA 8. N consists of four &.-conjugacy classes: {1}, {{}, €, and €,=(E,,
where |€;]|=n—1

PROOF. @, has four orbits on P: {a}, {a*}, 2, and Q,, where |2;|=n—1
(i=1, 2). &, has two orbits on P. So we have that 2,=0% For any b in 2,
there exists a unique element p(b) of N such that ap(b)=>b. Let b, and b, be
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two elements of £2,. Then there exists an element ¢ of &, such that b,0=b,.
Now we have that ap(b;)o=ap(b,). So there exists an element r of &, such
that p(byop(b:)"'=C. Then o7 'p(b)o=0""rp(b,). Since NNG,=1 and since N
is normal in @, we have that o={. So p(b;) and p(b,) are conjugate in ©.
Since the argument may be reversed, we get the lemma.

LEMMA 9. Let WM, be an element of Fof typel. Put |MMNG;|=x; (=1, 2).
Then we have the following:

f1+x1¢1(61)+x2¢1(cz):n ’ 1)
f2+x1¢2(61)+x2¢2(62):0 s 2)
¢i(C):_‘fiy and ¢i(01)+¢i(62):0 ’ 3)

where ¢;=MNE,.
PROOF. Since (¢;|My, 1n)=1, ngbl(u): 2 lw,(u)=n. This proves (1).
= 1

uciy
Since (@,| My, 1m,)=0, we have (2). Put ¢;|<{>=dl<«>+di2n, where dy; are
integers and 7 is the non-trivial linear character of <{>. Then ¢;(1)=d+d;,
and ¢,{)=du—d«w Since ¢1(C)+¢2(C)———<1ga—lgd)<C>=—-n=—¢1<1)—¢2<1), da
=0. Thus ¢L)=—fs; Since di;=0, ¢;|<c;, £ does not contain a trivial
character of <{c;, {>. Thus ¢,(1)+@ic)+@i(c.0)+¢:(£)=0. This proves (3).

LEMMA 10. For i=1, 2 there exists an element W; of type 1.

PROOF. Assume that all elements of F are of type 1. We notice that each
element of M—{1, {} appears exactly n/2 elements of F. So if we sum up the
equation (1) for all elements of F, then we have that f,n=n?% which is a con-
tradiction.

LEMMA 11. [@: NW)]=f: =1, 2). In particular, F consists of two con-
Jjugacy classes.

PrOOF. Let I3 and I'f be orbits of M; on P (i=1, 2). Then [N(M): &r,]
=2(=1, 2). Since léY',‘,“;“i’le(mi)—l—ei, where ¢; is a non-trivial linear character
of N(M;), ¢; appears in e (=1, 2). This shows that [&: NM)]I=f; (=1, 2).
Since [G: NM)I+[S : N(WMy)]=f,+f.=n, we have the lemma.

Let M, be an element of Fof type 2. Put | M,NC;l=v; =1, 2). Then we
have that

fz+(y1—yz)¢z(01):n 4)
and

f2+(x1_x2)¢2(cl>20 . )
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By the equalities (2) and (5) we have that

(yx—yz_xl“l‘xz)ébz((:l):n . (6)

Now let €; be the class sum of €, in the group ring C[&] over C, the field
of complex numbers. Put

Cg%:(n—].)l—{"zl@l'_{_Zg@g .
Then we have that
. 2 .
(108 140,29 £ )
for i=1, 2. Since ¢, has no fixed points on P and on P, we have that ¢,(c,)+
¢s(c1)=0. So from (7) we have that

(n—1)¢1(01>2:f1f2 . 8)

Since fi+f,=n, we may put f,=2"g; with odd g; (=1, 2). So by (6) and (8)
we have that g,g,=n—1 and |¢.(c,)|=2". Thus we may state the following
lemma.

LEMMA 12. We may put f,=2"g; with odd g,. Moreover we have that g,g.
:n"‘l and |¢1<C1)I:2T.

LEMMA 13. It holds that {f,, fo}={n—1, 1} or {ﬁ%‘/»", ”fz‘/ ’i},,

PrROOF. Since g;+g,=2™"" and g,g,=2™—1, we have that x:—2mTx-+2™
—1=0 for x=g, and g,, which implies that (x—2m"""1)2=22m-r-bD_9m L1 Put
t=|x—2™"""'|. Then we have that ({—1)(¢t+1)=2m2™"*2*—1). If t=1, then

m=2r+2, (r—2*¢=1 and {g, g}={2"*+1, 2~1). Since 2=""", we have

— = 2
that {f, fg}:{nj}z\/n; n—zx/n } So we assume that t>1. If =1 (mod4),

then t—1=2™"'s with s an odd integer. Then we have that s (2™ 25-}-1)=2m-2r-2
—1. Obviously this is a contradiction. So t=3 (mod 4) and {+1=2""1s with s
an odd integer. Then we have that s(2™-2s—1)=2""%~2—1 which implies that
s=land »r=0. So f;=g; (=1, 2), f1+f.=2™ and f,f,=2™—1. Thus we have
that {f,, fo}={n—1, 1}.

LEMMA 14. For a in B &, has four orbits on P.

PROOF. First we show that &; is not transitive on P. Assume that ®; is
transitive on P. Then for acanf (a+ ) we have the following diagram :
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/\
/\{@
N A

aﬁa

@, a

a ﬁ“g

This contradicts |aNg|=n/2. Since [@: Bz]=n, we have that 1§, =142 So
®; has two orbits on P. Therefore &, has four orbits on P. Since [&: &,]
=2n, we have that 1§ =14+X+¢;+¢,.

We may add a little more information. If {f,, f.}={n—1, 1}, then we may
assume that f,=n—1 and f,=1. There exists exactly one maximal subgroup
M, of type 2. M, is normal in . We may assume that M,=1+€, in C[G].
So we have that €=(n—1)14+(n—2)€,. Furthermore, ¢,(c;)=1 for ¢,=€, If

{f1, fal —{ n-{—z«/n , = ;/‘} then we may assume that f,= n—{—z«/n and f,
—-—2}£—. Moreover we may assume that ¢,(c;)=2". Then from (7) we get
6i=(n—1)1+ ”;4 (&1+%@2.

§4. Another presentation of H(m).

EXAMPLE 2. Let V be a (2r+1)-dimensional vector space over GF(2),
where r is a positive integer, and {e;, 0=</<2r} the standard basis for V.

2r
Let D(x)=x2+x,x14-+ -+ x,x5 be a quadratic form on V, where x= > x,e,.
i=0

Let R=R(r) and N=N(r) be the sets of zeros and non-zeros of D(x) in V respectively.

Since D(x)=0 if and only if D(x-+e¢,)=1, we have that R-+e¢,=N. Since
V=RUN and RNN=@, we have that |R(r)|=|N(r)|=2*. Now x<R belongs
to R+e, if and only if x,,;,=0. Moreover |[{xER; x;=x,,=0}|=|{x€ER; x,
=0, xr,=1}[=|{x€R; x,=1, x,,,=0}|=|R(r—1)| and | {xER; x,=1, x4, =1}
=|N(@r—1)|. Hence we have that |RN\R+e,|=2|R(r—1)|=2%"1 Let &(D) be
the orthogonal group corresponding to D(x). Then &(D) is transitive on R— {0}
[2] So we have that |R+4anR+b|=2%"! for a¢, b€V such that R+b+#R-aq,
R+-a+e,. Now let B be the family of all translates R—+a, a=V, of R. Then
we have a matrix design M(D)=(V, B) of an Hadamard matrix H(D).
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Now let R+R-+a, R+b, R+a+e,, R+b+e, and R+a#R-+b, R+b+e,. If
xeRNR+aNR-+b, then D(x+a+b)=abrey-+b1ari1+--+a:bs+bra,. Therefore
either RNR-+aNR+bSR+a+b or RNR+aNR+bESR+a+b+e, So by a
theorem of Norman [6] H(D) is equivalent to H(2r).

Let R;=R,(r) be the set of elements x of R such that x,=7(=0, 1). Then
we have that |R,(1)|—|R,(1)|=2 and that |R,()|=3|R,(r—1)|+|R,(r—1)| and
[|Ry(r)| =3|Ry(r—1)|+|Ro(r—1)|. So we have that | R(r)| —|Ry(r)| =2(] Ro(r—1)|
—|Ry(r—1)|)=2", which implies that |R,(»)|=2%"1+2""!and | R,(»)|=2%"1—2""1

Now let M, =<e;, 1=7=52¢) and M,=Mo(r)=<ey+ e, eri1teo, €5, Crii, 25157
Then we have that M,N\R=R, On the other hand, we have that M, (I)"\R=
{0} and |MNR|=3|M,r—1DNRFr—1)|+|M,r—1)NN|=3(22 3 =272+ (2 +
21‘—2):221'-—1__21'—1.

Let [G(D): Ngwpy(M;)]=w,; and consider the orbit of M;NR of (D) for i=
1, 2. Since &(D) has three orbits on V—{0}, and since the family of maximal
subgroups of V containing ¢, forms a union of orbits of &(D), we have that
wit+w,=2% by [8, (2.2)]. Moreover we have that w,(2?"-1+27"1—1)=0 (mod 2°"
—1) and w,(2¥~*—27"1—1)=0 (mod 2?"—1), which implies that w,=0 (mod 2"+41)
and w,=0 (mod2'—1). Put w,=(27+1)y; and w,=(2"—1)y,.

Let y;=2%z; with odd z; /=1, 2). Then we have that (2"41)y,+(2"—1)y,
=2?2"-%  which implies that y,—y,=0 (mod 27). The last congruence implies that
y:=y,=1 and s=r—1. So we have that w,=2?"'427"! and w,=2%"1—2""%

Finally we notice that &(D),=®(D)g, i.e., a point stabilizer coincides with
a block stabilizer.
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