Studies on Hadamard matrices with "2-transitive" automorphism groups By Noboru ITO*) and Hiroshi KIMURA (Received March 10, 1981) (Revised Dec. 7, 1982) #### § 1. Introduction. An Hadamard matrix H of order n is a $\{-1, 1\}$ -matrix of degree n such that $HH^t=H^tH=nI$, where t denotes the transposition. It is known that n equals one, two or a multiple of four. In this paper we assume that n is greater than eight. For the basic fact on Hadamard matrices see [1] or [7]. Let P be the set of 2n points $1, 2, \cdots, n, 1^*, 2^*, \cdots, n^*$. Then we define an n-subset α_i of P as follows: α_i contains j or j^* according as the (i, j)-entry of H equals +1 or -1 $(1 \le i, j \le n)$. Let $\alpha_i^* = P - \alpha_i$. We call α_i and α_i^* blocks $(1 \le i \le n)$. Let B be the set of B blocks B, B, B, B definition each point belongs to exactly B blocks. By the orthogonality of columns of B each point pair not of the shape B, B belongs to exactly B blocks, and each point trio not containing a point pair of the shape B, B blocks. Similarly by the orthogonality of rows of B each block pair not of the shape B, B intersects in exactly B points, and each block trio not containing a block pair of the shape B, B intersects in exactly B, B. We assume that $a^{**}=a$. Then $\alpha^{**}=\alpha$. Let $\mathfrak B$ be the group of all permutations σ on P such that σ leaves B as a whole. Then we call $\mathfrak B$ the automorphism group of M(H). Obviously $\mathfrak B$ is isomorphic to the automorphism group of H. Since $\zeta = \prod_{a=1}^n (a, a^*) = \prod_{i=1}^n (\alpha_i, \alpha_i^*)$ belongs to the center of $\mathfrak B$, $\mathfrak B$ is imprimitive on P. For the basic facts on permutation groups see $[\mathfrak P]$ or $[\mathfrak 10]$. Now let \overline{P} and \overline{B} be the set of point pairs $\overline{a} = \{a, a^*\}$ and block pairs $\overline{\alpha} = \{\alpha, \alpha^*\}$, where $a \in P$ and $\alpha \in B$, respectively. Then $\mathfrak B$ may be considered as permutation groups on \overline{P} and on \overline{B} . We notice that ζ is trivial on \overline{P} and on \overline{B} , and that there is no apparent incidence relation between P and \overline{B} . In this paper we assume that $\mathfrak B$ on \overline{P} is doubly transitive and that $\mathfrak B$ on \overline{P} contains a regular normal subgroup $\mathfrak M$ on \overline{P} . Then $\mathfrak M$ on \overline{P} is an elementary Abelian 2-group of order n, and so n ^{*)} This author is partially supported by NSF Grant MCS-7902750. is a power of 2; $n=2^m$ $(m \ge 4)$. For the case where \mathfrak{G} on \overline{P} is a doubly transitive permutation group not containing a regular normal subgroup see [3] and [4]. EXAMPLE 1. Let V be an (m+1)-dimensional vector space over GF(2), M a maximal subspace of V and v a vector of V outside M. Then V contains 2^m maximal subspaces N not containing v (including M). Let \Re be the set of all N's. Now we consider the following incidence matrix H(m): Columns and rows of H(m) are labeled by vectors of M and elements of \mathfrak{N} , respectively. The (N, w)-entry of H(m) equals +1 or -1 according as $w \in N$ or $w \notin N$, where $N \in$ $\mathfrak R$ and $w \in M$. We may assume that the first column and row correspond to O and M respectively. Then the first column and row are all 1 vectors respectively. Let N_i be any three distinct elements of $\Re (i=1, 2, 3)$. Then, since N_i does not contain v, we have that $\dim(N_1 \cap N_2 \cap N_3) = m-2$. So it is easy to check that H(m) is an Hadamard matrix of order $n=2^m$. Let M(m) be the matrix design of H(m). Then the set P(m) of points of M(m) equals $V = \{w, w+v; w \in M\}$ and the set B(m) of blocks of M(m) equals $\{N, N+v : N \in \mathfrak{N}\}$. Let $\mathfrak{G}(m)$ be the automorphism group of M(m). For $x \in V$ define the mapping σ_x by $w \sigma_x = w + x$, $w \in V$. Then $N\sigma_x=N$ or N+v, and so σ_x belongs to $\mathfrak{G}(m)$. Let $\mathfrak{T}(m)$ be the subgroup of all σ_x 's, $x \in V$. We notice that if we put $w^* = w + v$, $w \in M$, then it is easy to see that σ_v coincides with ζ , and that if we put $\overline{N} = \{N, N+v\}$ and $\overline{B(m)} = \{\overline{N}; N \in \mathbb{N}\}$ \mathfrak{R} , then $\mathfrak{T}(m)$ is trivial on $\overline{B(m)}$. Now let $\sigma \in \mathfrak{G}(m)$ such that $O\sigma = O$. Since $O^*=v$, $v\sigma=v$. Now we show that σ is linear. In fact, first let $a, b\in M$ and consider $N \in B(m)$ such that $a, b \in N$. Then the intersection of such N's equals $\{0, a, b, a+b\}$ and that of No's equals $\{0, a\sigma, b\sigma, a\sigma+b\sigma\}$. So we can conclude that $(a+b)\sigma = a\sigma + b\sigma$. Secondly if $a \in M$ and $b \notin M$, then we consider $\{a, b^*\}$ and get $(a+b^*)\sigma = a\sigma + b^*\sigma = a\sigma + b\sigma + v$. Since $(a+b^*)\sigma = (a+b+v)\sigma = ((a+b)^*)\sigma$ $=(a+b)\sigma+v$, we get $a\sigma+b\sigma=(a+b)\sigma$. The rest is similar. Now it is easy to see that $\mathfrak{T}(m)$ is a normal elementary Abelian 2-group of $\mathfrak{G}(m)$. Thus $\mathfrak{G}(m)$ is a subgroup of the split extension $\mathfrak{T}(m)GL(V)$ of $\mathfrak{T}(m)$ by GL(V), the general linear group on V. It is not difficult to see that $\mathfrak{G}(m)$ is the centralizer of σ_v in $\mathfrak{T}(m)GL(V)$. Put $\overline{w} = \{w, w+v\}$ and $\overline{P(m)} = \{\overline{w}, w \in M\}$. Then $\mathfrak{G}(m)$ on $\overline{P(m)}$ is the split extension of $\mathfrak{T}(m)/\langle \sigma_v \rangle$ by $GL(V/\langle v \rangle)$. Thus $\mathfrak{G}(m)$ on $\overline{P(m)}$ is triply transitive and $\mathfrak{T}(m)/\langle \sigma_v \rangle$ is a regular normal subgroup. Now W. M. Kantor characterized H(m) as follows [5]; If \mathfrak{G} on \overline{P} is not faithful on \overline{B} , then H is equivalent to H(m). So from now on we assume that \mathfrak{G} on \overline{P} is faithful on \overline{B} . NOTATION. Let \mathfrak{X} be a permutation group on Ω . Then for $W \subset \Omega$, \mathfrak{X}_W denotes the stabilizer of W in \mathfrak{X} . Let Y be a finite set. Then |Y| denotes the number of elements in Y. Let \mathfrak{R} be a finite group and \mathfrak{S} a subgroup of \mathfrak{R} . If χ is a character of \mathfrak{R} , then $\chi|\mathfrak{S}$ denotes the restriction of χ to \mathfrak{S} . If ϕ is a character of \mathfrak{S} , then $\phi^{\mathfrak{R}}$ denotes the character of \mathfrak{R} induced by ϕ . $1_{\mathfrak{R}}$ denotes the trivial character of \mathfrak{R} . Let \mathfrak{X} and ξ be characters of \mathfrak{R} . Then (\mathfrak{X}, ξ) denotes the inner product $\sum_{X \in \mathfrak{R}} \mathfrak{X}(x) \xi(x)$. ## $\S 2$. Some results on H. LEMMA 1. Let \Re be the kernel of \Im on \overline{P} . Then \Re is an elementary Abelian 2-group containing ζ . If $\Re \neq \langle \zeta \rangle$, then H is equivalent to H(m). PROOF. Since every non-identity element of \Re has order two, \Re is an elementary Abelian 2-group. Assume that $\Re \neq \langle \zeta \rangle$. Let $\sigma \in \Re - \langle \zeta \rangle$. Then σ has a fixed point and transfers some point a to a^* . Hence $\alpha\sigma \neq \alpha$, α^* for any $\alpha \in B$. Let α be a fixed block. Then $(\alpha \cap \alpha\sigma) \cup (\alpha^* \cap \alpha^*\sigma)$ is the set of fixed points of σ and $|\alpha \cap \alpha\sigma| = |\alpha^* \cap \alpha^*\sigma| = n/2$. So σ has n fixed points. Let $F(\sigma) = \{\bar{a} \in \bar{P}; a\sigma = a\}$. Then $|F(\sigma)| = n/2$. Clearly σ is uniquely determined by $F(\sigma)$. So the number x of distinct $F(\sigma)$'s equals $|\Re| - 2$. Let \bar{a} and \bar{b} be distinct elements of \bar{P} and y the number of distinct $F(\sigma)$'s containing \bar{a} and \bar{b} . Since \Im on \bar{P} is 2-transitive, we have that $x\binom{n/2}{2} = y\binom{n}{2}$. This implies that x(n/2-1) = 2(n-1)y. Since σ is uniquely determined by $\alpha\sigma$, $x \leq 2(n-1)$. So we have that x = 2(n-1). Then every block $\beta \neq \alpha$, α^* can be expressed as $\beta = \alpha\sigma$ for some $\sigma \in \Re - \langle \zeta \rangle$. Now we have that $\alpha \cap \beta \cap \gamma = \alpha \cap \beta \cap \gamma \sigma$ for any $\gamma \neq \alpha$, α^* , β , β^* . So by a theorem of G. Norman G, Theorem G it is easy to see that G is equivalent to G. So from now on we assume that $\Re = \langle \zeta \rangle$. Let \mathfrak{X} be a subgroup of G. Then let $\bar{\mathfrak{X}} = \mathfrak{X}\langle \zeta \rangle / \langle \zeta \rangle$. LEMMA 2. N is elementary Abelian. PROOF. Deny. Let σ be an element of $\mathfrak R$ of order 4. Then since $\overline{\mathfrak R}$ is elementary Abelian, $\sigma^2 = \zeta$. Since $\overline{\mathfrak G}$ is 2-transitive and $\overline{\mathfrak R}$ is a regular normal subgroup of $\overline{\mathfrak G}$, all the non-identity elements of $\overline{\mathfrak R}$ are conjugate with $\langle \zeta \rangle \sigma$. Hence ζ is the unique involution of $\mathfrak R$. So $\mathfrak R$ is a quaternion group and n=4. This is against our assumption that n>8. LEMMA 3. $\overline{\mathfrak{R}}$ is regular on \overline{B} and $\overline{\mathfrak{G}}$ is 2-transitive on \overline{B} . PROOF. Since $\overline{\mathbb{N}}$ is faithful on \overline{B} , $\overline{\mathbb{N}}$ moves some $\overline{\alpha}$ in \overline{B} . Then $|\overline{\mathbb{N}}_{\overline{\alpha}}|=2^t < |\overline{\mathbb{N}}|=2^m$. Now we show that $|\underline{\mathbb{S}}_{\overline{\alpha}}| \leq 2^t y |\underline{\mathbb{S}}_{\overline{\alpha},\overline{b}}|$, where \overline{a} and \overline{b} are two distinct elements of \overline{P} and y divides 2^t-1 . Let $|\underline{\mathbb{S}}_{\overline{\alpha}}|=2^{a(2)}\prod_{p>2}p^{a(p)}$ and $|\underline{\mathbb{S}}_{\overline{\alpha},\overline{b}}|=2^{b(p)}\prod_{p>2}p^{b(p)}$ be the prime power decomposition of $|\underline{\mathbb{S}}_{\overline{\alpha}}|$ and $|\underline{\mathbb{S}}_{\overline{\alpha},\overline{b}}|$. If $a(p)\leq b(p)$ for all odd p, then, since $|\underline{\mathbb{S}}|=n(n-1)|\underline{\mathbb{S}}_{\overline{\alpha},\overline{b}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S}}|=|\underline{\mathbb{S$ odd prime and $\[Earrowvertex]$ a Sylow p-subgroup of $\[Earrowvertex]$ $\[Earrowvertex]$ is a subgroup where $\[Earrowvertex]$ $\[Earrowvertex]$ is a subgroup where $\[Earrowvertex]$ $\[Earrowvertex]$ is normal. We consider $\[Earrowvertex]$ $\[Earrowvertex]$ of $\[Parrowvertex]$ is a subgroup where $\[Earrowvertex]$ is normal. We consider $\[Earrowvertex]$ conjugacy class consists of a power of p (possibly 1) elements. Let $\[Parrowvertex]$ be an $\[Earrowvertex]$ -conjugacy class $\[Earrowvertex]$ consisting of fewest elements. Let $\[Earrowvertex]$ be an element of $\[A$. Then $\[Earrowvertex]$ $\[Earrowvertex]$ is an element of $\[A$. Then $\[Earrowvertex]$ $\[Earrowvertex]$ is an element of $\[A$. Then $\[Earrowvertex]$ $\[Earrowvertex]$ is an element of $\[A$. Then $\[Earrowvertex]$ is an element of $\[Earrowvertex]$ is an element of $\[A$. Then $\[Earrowvertex]$ is an element of $$2^m \geqq \frac{|\bar{\mathfrak{G}}|}{|\bar{\mathfrak{G}}_{\bar{a}}|} = \frac{2^m (2^m-1)|\bar{\mathfrak{G}}_{\bar{a},\bar{b}}|}{2^l y |\bar{\mathfrak{G}}_{\bar{a},\bar{b}}|} \geqq \frac{2^m (2^m-1)}{2^l (2^{m-l}-1)}.$$ This implies that l=0. So $\overline{\mathfrak{R}}$ is regular transitive on \overline{B} , and $\overline{\mathfrak{G}}=\overline{\mathfrak{R}}\overline{\mathfrak{G}}_{\overline{a}}$. Now $\bar{\mathbb{G}}$ is 2-transitive on \bar{P} (or \bar{B}) if and only if $\bar{\mathbb{G}}$ decomposes into exactly two double cosets of $\bar{\mathbb{G}}_{\bar{a}}$ (or $\bar{\mathbb{G}}_{\bar{a}}$). Since $\bar{\mathbb{R}}$ is normal in $\bar{\mathbb{G}}$, and $\bar{\mathbb{G}}=\bar{\mathbb{R}}\bar{\mathbb{G}}_{\bar{a}}=\bar{\mathbb{R}}\bar{\mathbb{G}}_{\bar{a}}$ and $\bar{\mathbb{R}}\cap\bar{\mathbb{G}}_{\bar{a}}=\bar{\mathbb{R}}\cap\bar{\mathbb{G}}_{\bar{a}}=\langle\bar{1}\rangle$, the latter holds if and only if all the non-identity elements of $\bar{\mathbb{R}}$ are conjugate in $\bar{\mathbb{G}}_{\bar{a}}$ (or $\bar{\mathbb{G}}_{\bar{a}}$). Since $\bar{\mathbb{R}}$ is elementary Abelian, all the non-identity elements of $\bar{\mathbb{R}}$ are conjugate in $\bar{\mathbb{G}}_{\bar{a}}$ if and only if they are conjugate in $\bar{\mathbb{G}}_{\bar{a}}$. Since $\bar{\mathbb{G}}$ is 2-transitive on \bar{P} . Lemma 4. Let $\mathfrak M$ be a maximal subgroup of $\mathfrak N$ not containing ζ . Let Δ be an $\mathfrak M$ -orbit on P. Then for every block α of B we have that $|\Delta \cap \alpha| = \frac{n + \sqrt{n}}{2}$ or $\frac{n - \sqrt{n}}{2}$. In particular, n is a perfect square. PROOF. Put $x=|\varDelta\cap\alpha|$ and $y=|\varDelta\cap\alpha^*|$. By Lemma 3, N is regular on B. So for every involution σ of M we have that $\alpha\sigma\neq\alpha^*$ and $|\alpha^*\cap\alpha\sigma|=n/2$. Since $|\varDelta\cap\alpha^*\cap\alpha\sigma|=|\varDelta^*\cap\alpha\cap\alpha^*\sigma|=|\varDelta^*\cap\alpha^*\cap\alpha\sigma|$, we have that $|\varDelta\cap\alpha^*\cap\alpha\sigma|=n/4$. Thus the cycle structure of every involution of $\mathfrak M$ has n/4 transpositions of the form (a,b^*) , where $a\in\alpha\cap\varDelta$ and $b^*\in\alpha^*\cap\varDelta$. Since $\mathfrak M$ is regular on $\mathfrak A$, $\mathfrak M$ contains a unique element σ such that $a\sigma=b^*$ for $a\in\varDelta\cap\alpha$ and $b^*\in\varDelta\cap\alpha^*$. Therefore we have that x+y=n and $xy=\frac{n(n-1)}{4}$. So the lemma follows. PROPOSITION 1. If n is not a square, then H is equivalent to H(m). PROOF. This is a corollary to Lemma 4. LEMMA 5. Let $n=2^m$. Then there exists no prime factor of $(|\mathfrak{G}|, 2^{m-1}-1)$ which does not divide 2^i-1 for every i such that $1 \le i \le m-2$. PROOF. Deny. Let p be such a prime factor and $\mathfrak S$ a Sylow p-subgroup of $\mathfrak S$. Since $\mathfrak S$ acts on $\overline{\mathfrak R}$ by conjugation, $\mathfrak S$ may be considered as a subgroup of GL(m,2). By the assumption on p we have that $|C_{\overline{\mathfrak R}}(\mathfrak S)|=2$. So we have that $|C_{\mathfrak R}(\mathfrak S)|=4$. Thus p divides n-4. Since $n-4=2(2^{m-1}-1)-2$, this is a contradiction. PROPOSITION 2. If $\bar{\mathbb{G}}$ is 3-transitive on \bar{P} , then H is equivalent to H(m). PROOF. If $\bar{\mathbb{G}}$ is 3-transitive on \bar{P} , then n-2 divides the order of $\bar{\mathbb{G}}$. By a theorem of Zsigmondy [11] there exists a prime factor p of $\left(|\mathfrak{G}|, \frac{n-2}{2}\right)$ which does not divide 2^i-1 for every i such that $1 \leq i \leq m-2$. It is against Lemma 5. ## § 3. Further analysis. Let \bar{a} and \bar{b} be two distinct elements of \bar{P} . Then we have the following diagram where e=1 or 2. LEMMA 6. The rank of $\mathfrak S$ on P equals three or four according as e=2 or 1. PROOF. If e=2, then the orbits of $\mathfrak S_a$ on P are $\{a\}$, $\{a^*\}$ and $P-\bar a$. If e=1, then $P-\bar a$ decomposes into two orbits of $\mathfrak S_a$ of length n-1. We assume that the rank of \mathfrak{G} on P equals three. So the permutation character $1_{\mathfrak{G}_q}^{\mathfrak{G}}$ decomposes into the sum of three characters: $$1_{\mathbf{S}_a}^{\mathbf{S}} = 1_{\mathbf{S}} + \mathbf{\chi} + \mathbf{\phi}$$, where χ is the irreducible character of $\mathfrak B$ of degree n-1 in the 2-transitive permutation representation of $\mathfrak B$ on $\overline P$ and the degree of ϕ equals n. LEMMA 7. \mathfrak{G}_{α} is transitive on α and on α^* , where $\alpha \in B$. PROOF. If \mathfrak{G}_{α} is not transitive on α , \mathfrak{G}_{α} has at least four orbits on P. So the permutation character $1_{\mathfrak{G}_{\alpha}}^{\mathfrak{G}}$ has degree at least 1+3(n-1). Since $[\mathfrak{G}:\mathfrak{G}_{\alpha}]=2n$ by Lemma 3, this is a contradiction. From Lemma 7 it follows that $\mathfrak{G}_{\bar{a}}$ is transitive on \bar{P} . Thus we have the following diagram, where \bar{a} and \bar{b} are two distinct elements of \bar{P} such that α contains a and b: So \mathfrak{G}_{α} is 2-transitive on α . Since all 2-transitive permutation groups not containing a regular normal subgroup are known, by [3, Proposition 2] \mathfrak{G}_{α} contains a regular normal subgroup \mathfrak{L} . Then \mathfrak{NL} is a normal 2-subgroup of \mathfrak{G} such that $\mathfrak{N} \cap \mathfrak{L} = 1$. Since $\overline{\mathfrak{N}}$ is a minimal normal subgroup of $\overline{\mathfrak{G}}$, $\overline{\mathfrak{N}}$ is contained in the center of $\overline{\mathfrak{NL}}$. Since $\overline{\mathfrak{N}}$ is transitive on \overline{P} , this implies that $\overline{\mathfrak{L}} = \langle \zeta \rangle$. This is a contradiction. So the rank of \mathfrak{G} on P equals four. Since \mathfrak{G} has rank 4 on P, the permutation character $1_{\mathfrak{G}_a}^{\mathfrak{G}}$ decomposes into the sum of four irreducible character of \mathfrak{G} : $$1_{\mathfrak{G}_a}^{\mathfrak{G}} = 1_{\mathfrak{G}} + \chi + \phi_1 + \phi_2$$. Let f_i be the degree of ϕ_i (i=1, 2). Then $f_1+f_2=n$. Let F be the family of maximal subgroups of $\mathfrak N$ not containing ζ . Then |F|=n. Let $\mathfrak M$ be an element of F and let Γ and Γ^* be orbits of $\mathfrak M$ on P. Then exactly one of $\phi_1|\mathfrak M$ and $\phi_2|\mathfrak M$ contains $1_{\mathfrak M}$ with multiplicity 1. We say that $\mathfrak M$ is of type i if $\phi_i|\mathfrak M$ contains $1_{\mathfrak M}$ (i=1, 2). LEMMA 8. \mathfrak{R} consists of four \mathfrak{G}_a -conjugacy classes: {1}, { ζ }, \mathfrak{C}_1 and $\mathfrak{C}_2 = \zeta \mathfrak{C}_1$, where $|\mathfrak{C}_1| = n - 1$. PROOF. \mathfrak{G}_a has four orbits on $P: \{a\}$, $\{a^*\}$, Ω_1 and Ω_2 , where $|\Omega_i| = n-1$ (i=1, 2). \mathfrak{G}_a has two orbits on \overline{P} . So we have that $\Omega_2 = \Omega_1^*$. For any b in Ω_1 there exists a unique element $\rho(b)$ of \mathfrak{R} such that $a\rho(b)=b$. Let b_1 and b_2 be two elements of Ω_1 . Then there exists an element σ of \mathfrak{G}_a such that $b_1\sigma=b_2$. Now we have that $a\rho(b_1)\sigma=a\rho(b_2)$. So there exists an element τ of \mathfrak{G}_a such that $\rho(b_1)\sigma\rho(b_2)^{-1}=\zeta$. Then $\sigma^{-1}\rho(b_1)\sigma=\sigma^{-1}\tau\rho(b_2)$. Since $\mathfrak{N}\cap\mathfrak{G}_a=1$ and since \mathfrak{N} is normal in \mathfrak{G} , we have that $\sigma=\zeta$. So $\rho(b_1)$ and $\rho(b_2)$ are conjugate in \mathfrak{G} . Since the argument may be reversed, we get the lemma. LEMMA 9. Let \mathfrak{M}_1 be an element of F of type 1. Put $|\mathfrak{M}_1 \cap \mathfrak{C}_i| = x_i$ (i=1, 2). Then we have the following: $$f_1 + x_1 \phi_1(c_1) + x_2 \phi_1(c_2) = n$$, (1) $$f_2 + x_1 \phi_2(c_1) + x_2 \phi_2(c_2) = 0$$, (2) $$\phi_i(\zeta) = -f_i$$, and $\phi_i(c_1) + \phi_i(c_2) = 0$, (3) where $c_i \in \mathfrak{M}_1 \cap \mathfrak{C}_i$. PROOF. Since $(\phi_1|\mathfrak{M}_1, 1_{\mathfrak{M}_1})=1$, $\sum_{u\in\mathfrak{M}_1}\phi_1(u)=\sum_{u\in\mathfrak{M}_1}1_{\mathfrak{M}_1}(u)=n$. This proves (1). Since $(\phi_2|\mathfrak{M}_1, 1_{\mathfrak{M}_1})=0$, we have (2). Put $\phi_i|\zeta\zeta\rangle=d_{i1}1_{<\zeta\rangle}+d_{i2}\eta$, where d_{ij} are integers and η is the non-trivial linear character of $\langle\zeta\rangle$. Then $\phi_i(1)=d_{i1}+d_{i2}$ integers and η is the non-trivial linear character of $\langle \zeta \rangle$. Then $\phi_i(1) = d_{i1} + d_{i2}$ and $\phi_i(\zeta) = d_{i1} - d_{i2}$. Since $\phi_1(\zeta) + \phi_2(\zeta) = (1_{\mathfrak{S}_a}^{\mathfrak{S}} - 1_{\mathfrak{S}_a}^{\mathfrak{S}}) \langle \zeta \rangle = -n = -\phi_1(1) - \phi_2(1)$, $d_{i1} = 0$. Thus $\phi_i(\zeta) = -f_i$. Since $d_{i1} = 0$, $\phi_i(\zeta) = 0$, does not contain a trivial character of $\langle c_1, \zeta \rangle$. Thus $\phi_i(1) + \phi_i(c_1) + \phi_i(c_1) + \phi_i(\zeta) = 0$. This proves (3). LEMMA 10. For i=1, 2 there exists an element \mathfrak{M}_i of type i. PROOF. Assume that all elements of F are of type 1. We notice that each element of $\mathfrak{R}-\{1,\zeta\}$ appears exactly n/2 elements of F. So if we sum up the equation (1) for all elements of F, then we have that $f_1n=n^2$, which is a contradiction. LEMMA 11. $[\mathfrak{G}: N(\mathfrak{M}_i)] = f_i$ (i=1, 2). In particular, F consists of two conjugacy classes. PROOF. Let Γ_i and Γ_i^* be orbits of \mathfrak{M}_i on P(i=1,2). Then $[N(\mathfrak{M}_i):\mathfrak{G}_{\Gamma_i}]=2(i=1,2)$. Since $1_{\mathfrak{G}_i}^{N(\mathfrak{M}_i)}=1_{N(\mathfrak{M}_i)}+\varepsilon_i$, where ε_i is a non-trivial linear character of $N(\mathfrak{M}_i)$, ϕ_i appears in $\varepsilon_i^{\mathfrak{G}}$ (i=1,2). This shows that $[\mathfrak{G}:N(\mathfrak{M}_i)]\geq f_i$ (i=1,2). Since $[\mathfrak{G}:N(\mathfrak{M}_1)]+[\mathfrak{G}:N(\mathfrak{M}_2)]=f_1+f_2=n$, we have the lemma. Let \mathfrak{M}_2 be an element of F of type 2. Put $|\mathfrak{M}_2 \cap \mathfrak{C}_i| = y_i$ (i=1, 2). Then we have that $$f_2 + (y_1 - y_2)\phi_2(c_1) = n \tag{4}$$ and $$f_2 + (x_1 - x_2)\phi_2(c_1) = 0$$ (5) By the equalities (2) and (5) we have that $$(y_1 - y_2 - x_1 + x_2)\phi_2(c_1) = n. (6)$$ Now let $\hat{\mathbb{C}}_i$ be the class sum of \mathbb{C}_i in the group ring $C[\mathfrak{G}]$ over C, the field of complex numbers. Put $$\hat{\mathbf{G}}_{1}^{2} = (n-1)\mathbf{1} + z_{1}\hat{\mathbf{G}}_{1} + z_{2}\hat{\mathbf{G}}_{2}$$. Then we have that $$(n-1) \frac{\phi_i(c_1)^2}{f_i^2} = 1 + (z_1 - z_2) \frac{\phi_i(c_1)}{f_i}$$ (7) for i=1, 2. Since c_1 has no fixed points on \bar{P} and on P, we have that $\phi_1(c_1) + \phi_2(c_1) = 0$. So from (7) we have that $$(n-1)\phi_1(c_1)^2 = f_1 f_2. (8)$$ Since $f_1+f_2=n$, we may put $f_i=2^rg_i$ with odd g_i (i=1, 2). So by (6) and (8) we have that $g_1g_2=n-1$ and $|\phi_1(c_1)|=2^r$. Thus we may state the following lemma. LEMMA 12. We may put $f_i=2^rg_i$ with odd g_i . Moreover we have that $g_1g_2=n-1$ and $|\phi_1(c_1)|=2^r$. LEMMA 13. It holds that $$\{f_1, f_2\} = \{n-1, 1\}$$ or $\{\frac{n+\sqrt{n}}{2}, \frac{n-\sqrt{n}}{2}\}$. PROOF. Since $g_1+g_2=2^{m-r}$ and $g_1g_2=2^m-1$, we have that $x^2-2^{m-r}x+2^m-1=0$ for $x=g_1$ and g_2 , which implies that $(x-2^{m-r-1})^2=2^{2(m-r-1)}-2^m+1$. Put $t=|x-2^{m-r-1}|$. Then we have that $(t-1)(t+1)=2^m(2^{m-2r-2}-1)$. If t=1, then m=2r+2, $(x-2^{r+1})^2=1$ and $\{g_1,g_2\}=\{2^{r+1}+1,2^{r+1}-1\}$. Since $2^r=\frac{\sqrt{n}}{2}$, we have that $\{f_1,f_2\}=\left\{\frac{n+\sqrt{n}}{2},\frac{n-\sqrt{n}}{2}\right\}$. So we assume that t>1. If $t\equiv 1\pmod{4}$, then $t-1=2^{m-1}s$ with s an odd integer. Then we have that $s(2^{m-2}s+1)=2^{m-2r-2}-1$. Obviously this is a contradiction. So $t\equiv 3\pmod{4}$ and $t+1=2^{m-1}s$ with s an odd integer. Then we have that $s(2^{m-2}s-1)=2^{m-2r-2}-1$, which implies that s=1 and r=0. So $f_i=g_i$ (i=1,2), $f_1+f_2=2^m$ and $f_1f_2=2^m-1$. Thus we have that $\{f_1,f_2\}=\{n-1,1\}$. LEMMA 14. For α in $B \otimes_{\alpha}$ has four orbits on P. PROOF. First we show that $\mathfrak{G}_{\bar{\alpha}}$ is not transitive on \bar{P} . Assume that $\mathfrak{G}_{\bar{\alpha}}$ is transitive on \bar{P} . Then for $a \in \alpha \cap \beta$ $(\alpha \neq \beta)$ we have the following diagram: This contradicts $|\alpha \cap \beta| = n/2$. Since $[\mathfrak{G}: \mathfrak{G}_{\bar{\alpha}}] = n$, we have that $1_{\mathfrak{G}_{\bar{\alpha}}}^{\mathfrak{G}} = 1 + \lambda$. So $\mathfrak{G}_{\bar{\alpha}}$ has two orbits on P. Therefore \mathfrak{G}_{α} has four orbits on P. Since $[\mathfrak{G}: \mathfrak{G}_{\alpha}] = 2n$, we have that $1_{\mathfrak{G}_{\alpha}}^{\mathfrak{G}} = 1 + \lambda + \phi_1 + \phi_2$. We may add a little more information. If $\{f_1, f_2\} = \{n-1, 1\}$, then we may assume that $f_1 = n-1$ and $f_2 = 1$. There exists exactly one maximal subgroup \mathfrak{M}_n of type 2. \mathfrak{M}_n is normal in \mathfrak{G} . We may assume that $\mathfrak{M}_n = 1 + \mathfrak{C}_2$ in $C[\mathfrak{G}]$. So we have that $\mathfrak{C}_2^2 = (n-1)1 + (n-2)\mathfrak{C}_2$. Furthermore, $\phi_2(c_2) = 1$ for $c_2 \in \mathfrak{C}_2$. If $\{f_1, f_2\} = \left\{\frac{n+\sqrt{n}}{2}, \frac{n-\sqrt{n}}{2}\right\}$, then we may assume that $f_1 = \frac{n+\sqrt{n}}{2}$ and $f_2 = \frac{n-\sqrt{n}}{2}$. Moreover we may assume that $\phi_1(c_1) = 2^r$. Then from (7) we get $\mathfrak{C}_1^2 = (n-1)1 + \frac{n-4}{2}\mathfrak{C}_1 + \frac{n}{2}\mathfrak{C}_2$. ## § 4. Another presentation of H(m). EXAMPLE 2. Let V be a (2r+1)-dimensional vector space over GF(2), where r is a positive integer, and $\{e_i, 0 \le i \le 2r\}$ the standard basis for V. Let $D(x)=x_0^2+x_1x_{1+r}+\cdots+x_rx_{2r}$ be a quadratic form on V, where $x=\sum_{i=0}^{2r}x_ie_i$. Let R=R(r) and N=N(r) be the sets of zeros and non-zeros of D(x) in V respectively. Since D(x)=0 if and only if $D(x+e_0)=1$, we have that $R+e_0=N$. Since $V=R\cup N$ and $R\cap N=\emptyset$, we have that $|R(r)|=|N(r)|=2^{2r}$. Now $x\in R$ belongs to $R+e_1$ if and only if $x_{r+1}=0$. Moreover $|\{x\in R\; ;\; x_1=x_{r+1}=0\}|=|\{x\in R\; ;\; x_1=0,\; x_{r+1}=1\}|=|\{x\in R\; ;\; x_1=1,\; x_{r+1}=0\}|=|R(r-1)|\; \text{and}\; |\{x\in R\; ;\; x_1=1,\; x_{r+1}=1\}|=|N(r-1)|$. Hence we have that $|R\cap R+e_1|=2|R(r-1)|=2^{2r-1}$. Let $\mathfrak{G}(D)$ be the orthogonal group corresponding to D(x). Then $\mathfrak{G}(D)$ is transitive on $R-\{0\}$ [2]. So we have that $|R+a\cap R+b|=2^{2r-1}$ for $a,b\in V$ such that $R+b\neq R+a$, $R+a+e_0$. Now let B be the family of all translates R+a, $a\in V$, of R. Then we have a matrix design M(D)=(V,B) of an Hadamard matrix H(D). Now let $R \neq R+a$, R+b, $R+a+e_0$, $R+b+e_0$ and $R+a\neq R+b$, $R+b+e_0$. If $x \in R \cap R+a \cap R+b$, then $D(x+a+b)=a_1b_{r+1}+b_1a_{r+1}+\cdots+a_rb_{2r}+b_ra_{2r}$. Therefore either $R \cap R+a \cap R+b \subseteq R+a+b$ or $R \cap R+a \cap R+b \subseteq R+a+b+e_0$. So by a theorem of Norman [6] H(D) is equivalent to H(2r). Let $R_i = R_i(r)$ be the set of elements x of R such that $x_0 = i$ (i = 0, 1). Then we have that $|R_0(1)| - |R_1(1)| = 2$ and that $|R_0(r)| = 3|R_0(r-1)| + |R_1(r-1)|$ and $|R_1(r)| = 3|R_1(r-1)| + |R_0(r-1)|$. So we have that $|R_0(r)| - |R_1(r)| = 2(|R_0(r-1)| - |R_1(r-1)|) = 2^r$, which implies that $|R_0(r)| = 2^{2r-1} + 2^{r-1}$ and $|R_1(r)| = 2^{2r-1} - 2^{r-1}$. Now let $\mathfrak{M}_1 = \langle e_i, 1 \leq i \leq 2r \rangle$ and $\mathfrak{M}_2 = \mathfrak{M}_2(r) = \langle e_1 + e_0, e_{r+1} + e_0, e_i, e_{r+i}, 2 \leq i \leq r \rangle$. Then we have that $\mathfrak{M}_1 \cap R = R_0$. On the other hand, we have that $\mathfrak{M}_2(1) \cap R = \{0\}$ and $|\mathfrak{M}_2 \cap R| = 3 |\mathfrak{M}_2(r-1) \cap R(r-1)| + |\mathfrak{M}_2(r-1) \cap N| = 3(2^{2r-3} - 2^{r-2}) + (2^{2r-3} + 2^{r-2}) = 2^{2r-1} - 2^{r-1}$. Let $[\mathfrak{G}(D): N_{\mathfrak{G}(D)}(\mathfrak{M}_i)] = w_i$ and consider the orbit of $\mathfrak{M}_i \cap R$ of $\mathfrak{G}(D)$ for i = 1, 2. Since $\mathfrak{G}(D)$ has three orbits on $V - \{0\}$, and since the family of maximal subgroups of V containing e_0 forms a union of orbits of $\mathfrak{G}(D)$, we have that $w_1 + w_2 = 2^{2r}$ by [8, (2.2)]. Moreover we have that $w_1(2^{2r-1} + 2^{r-1} - 1) \equiv 0 \pmod{2^{2r}}$ and $w_2(2^{2r-1} - 2^{r-1} - 1) \equiv 0 \pmod{2^{2r}}$, which implies that $w_1 \equiv 0 \pmod{2^r} + 1$ and $w_2 \equiv 0 \pmod{2^r}$. Put $w_1 = (2^r + 1)y_1$ and $w_2 = (2^r - 1)y_2$. Let $y_i=2^sz_i$ with odd z_i (i=1, 2). Then we have that $(2^r+1)y_1+(2^r-1)y_2=2^{2r-s}$, which implies that $y_1-y_2\equiv 0 \pmod{2^r}$. The last congruence implies that $y_1=y_2=1$ and s=r-1. So we have that $w_1=2^{2r-1}+2^{r-1}$ and $w_2=2^{2r-1}-2^{r-1}$. Finally we notice that $\mathfrak{G}(D)_0 = \mathfrak{G}(D)_R$, i.e., a point stabilizer coincides with a block stabilizer. #### References - [1] M. Hall, Jr., Combinatorial theory, Blaisdell, Waltham, Mass., 1967. - [2] J. Dieudonné, La géométrie des groupes classiques, Springer, Berlin, 1955. - [3] N. Ito, Hadamard matrices with "doubly transitive" automorphism groups, Arch. Math., 35(1980), 100-111. - [4] N. Ito and Jeffrey S. Leon, An Hadamard matrix of order 36, J. Combinatorial Theory Ser. A, 34(1983), 244-247. - [5] W. M. Kantor, Automorphisms of Hadamard matrices, J. Combinatorial Theory, 6(1969), 279-281. - [6] M. E. Kimberley, On the construction of certain Hadamard designs, Math. Z., 119 (1971), 41-59. - [7] Z. Kiyasu, Hadamard matrix and its applications, Denshi-Tsushin Gakkai, Tokyo, 1980 (Japanese). - [8] H. Lüneburg, Transitive Erweiterungen endlicher Permutationsgruppen, Lecture Notes in Math., 84, Springer-Verlag, Berlin, 1969. - [9] T. Oyama, Finite permutation groups, Shokabo, Tokyo, 1981 (Japanese). - [10] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964. - [11] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3(1892), 265-284. Noboru Ito Department of Applied Mathematics Konan University Kobe 658, Japan Hiroshi KIMURA Department of Mathematics Ehime University Matsuyama 790, Japan