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Residues of complex analytic foliation singularities

By Tatsuo SUWA

(Received Nov. 15, 1982)

In Baum and Bott defined the residues of complex analytic foliation
singularities and proved a general residue formula using differential geometry
based on the Bott vanishing theorem. Let M be a complex manifold. We define
a foliation (of complete intersection type) on M to be a locally free subsheaf F
of the cotangent sheaf 2, which satisfies the Frobenius integrability condition
outside of the singular set (=the singular set of the coherent sheaf Q2,=Qy/F).
In this note, we express ((3.4) a certain class of residues of F in terms
of the Chern classes of F and the local Chern classes of the sheaf &€xt}(2r, O),
which appeared in the unfolding theory ([7]). As a corollary, the rationality of
these residues is shown (cf. [3] p.287 Rationality Conjecture). In a number of
cases, the Riemann-Roch theorem for analytic embeddings (Atiyah-Hirzebruch [27)
can be used to compute the residues. The results of this paper were announced
in [9].
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1. Residues.

We briefly review how the residues are defined in Baum-Bott [3] Let M
be an n-dimensional complex manifold. We denote by Oy (or simply by ©), @Oy
and £, respectively, the structure sheaf, the tangent sheaf and the cotangent
sheaf of M. In [3] pp.281-282, a foliation is defined to be a full integrable
coherent subsheaf & of ©4. Let Q be the quotient sheaf @, /¢;

(1.1) 0 3 Ox Q 0.

The singular set S of the foliation is defined by

(1.2) S={zeM| @, is not a free ©,-module},
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where for a sheaf S on M, S, denotes the stalk of S over z. The sheaf &
defines an ordinary foliation on M—S, whose codimension is denoted by q. Let
Z be a connected component of S and assume that Z is compact. Take an open
neighborhood U of Z in M such that Z is a deformation retract of U. Let
oy, "+, 0, be the elementary symmetric functions in n variables X;, ---, X,. On
U—Z, the sheaf @ is locally free and it admits a basic connection D.;, which
determines a closed 2:-form o¢;(K.;) on U—Z for each 7, 1=</<n. There exists
a closed 2i-form w; on U which coincides with ¢,(K_;) outside of a compact set
in U containing Z in its interior (cf. p. 312 Proof of (0.23)).

If ¢ is a symmetric and homogeneous polynomial of degree d in X;, -+, X,,
there is a polynomial ¢ in oy, -+, 6, with ¢g=g(oy, -, 6,). We set ¢(Q)=
(v/=1/27)%@(w,, -+, w,), which is a closed 2d-form on U. Note that in [3], the
cohomology class of ¢(Q) is denoted by ¢(Q), however here the form itself is
denoted by ¢(Q). If d>g, then by the Bott vanishing theorem ([3](3.27)), ¢(Q)
has compact support and defines a cohomology class [¢(Q)] in HZ%(U ; C) (coho-
mology with compact support). We denote by L the composition of the two
isomorphisms

DU Z;l
(1.3) H U ; C) —> Hyn-2a(U; C) —> Hyno0o(Z; C),

where Dy denotes the Poincaré duality map and 7 is the embedding Zc.U. Then
the residue is defined by

Resy(€, Z)=L([$(Q)]).

2. The sheaf &xt4(2y, O).

In [7](1.2), a (reduced) foliation is defined to be a full coherent subsheaf F
of 02, satisfying the integrability condition. Let £ be the quotient sheaf 2,/F;

2.1) 0 F Qu Qp 0.

The two definitions are equivalent if we set ((7](1.5)) é=F*={0€0y|w(0)=0,
YocF} or F=¢={w=sQy|w(d)=0, V8<&}. Note that F'* is identical with the
dual sheaf Home(Q2p, ©) of 2z The singular set S(F) of F is defined by

2.2) S(FY={zeM | 2F,, is not a free ©,-module}

and is identical with S in (1.2). By taking the duals of [2.I], we obtain the
exact sequence

(23) 0— ‘ﬂ[omo(gp, O) — Homep (QM, O) — Home(F, O) — 5xfé(QF, 0)—0,

I | I
Fe Ou F*
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By (2.2), the support of the sheaf &xt}(2p, ©) is in S. Comparing and
(2.3), we get the exact sequence

(2.4) 0 Q F* Exty(Rr, ©) — 0.

From now on we consider only foliations of complete intersection type ([[7](1.10)),
i.e., we assume that F is a locally free ©-module (of rank ¢). We do not dis-
tinguish locally free sheaves from holomorphic vector bundles. Thus can
be viewed as a “decomposition” of the sheaf Q into the vector bundle part F*
and the singular part &xt}(2F, ©).

3. Residues and the local Chern classes of &xt} (25, O).

Let I be a codim ¢ foliation (of complete intersection type) and let Z be a
compact connected component of the singular set S. In this section, analytic
objects on M are restricted to the open set U considered in section 1. Since
Exty(2p, O©) is a coherent sheaf on U with support in Z, there is the associated
“Grothendieck element” 7;(€xt3(2F, ©)), which we simply denote by &, in
KU, U—-Z)([1] §4, Ch. I, cf. also [5]. The Chern character gives a
mapping

ch: KU, U—-Z)— H¥U,U—-Z; Q).

Since Z is a deformation retract of U, there is a canonical isomorphism
H*U,U—-Z; @)= H¥U; Q).

Also there is a canonical homomorphism

(3.1) £: HYU; Q — H¥U; Q).

Thus ch(€) determines the local Chern classes ¢,(€), -+, ¢n(&) in H*U, U—Z; Q)
=H¥U; @) such that 1-+k(c,(E)+ -+ +r(c.(€)) is the total Chern class of the
coherent sheaf €xt}(Qr, ©) on U. For each integer &k with 1=<k=n, we set

(3.2) d (&)= Zf,l (=7 2 enl@) e (e).
1+,‘7:;;0T~

Let ¢(F*)=14-c,(F*)4 -+« +c,(F*) be the (rational) total Chern class in H*{U ; Q)
of F*. Note that ¢;,(F*)=0, ¢+1=i=<n, since F* is a locally free sheaf of rank
g. Also note that there is a canonical pairing

HYU; @xH¥U; Q — H¥U; Q).

(3.3) DErFINITION. For each integer j with ¢<j<n, ¢;(F*—¢&) denotes the
element

CFNd ;- (&) - +ey(FF)d ;- (&) +d (&)
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in H¥(U ; Q), and for each integer ; with 1=<;=g, it denotes the element
cH{F*) i (FRR(d(E)+ - +el(FFe(d;-1(8)+r(d &)
in H¥U ; Q).

(3.4) THEOREM. Let F be a foliation (of complete intersection type) of codim
g on Mand let U and Z be as above. If ¢p=o;, -+ 0;, with j,>q for some v, then

Resy(F, Z)=L(c;,(F*—¢&) - ¢; (F*=&)),

where Resy(F, Z)=Resy4(F¢, Z) and L is the composition of two isomorphisms in
(1.3).

PrOOF. Let D_, be a basic connection for Q on U—Z. Since Q=F* on
U—Z and F* is locally free on U, by (4.41), the connection D_; can be
modified to obtain a connection D_, for F* on U such that

(3.5) D..=D., on U-2%,

where Y is a compact set in U containing Z in its interior. The connection D,
determines, for each 7 with 1=</=g¢q, a closed 2/-form ¢;(F*) on U such that the
class of (v —1/2x)te(F*) in H¥U ; C) is ¢;(F*). The equation

(3.6) I+ @)+ -+ +on(@)1+0:E)+ - +0a(E))
=140,(F*)+ - +0,(F%

can be solved to find ¢,(&), -+, 04(€) such that, for each j, 1=7=mn, g,&) is a
closed 2j-form on U. By 0i{(Q)=0F), 1=i<q on U—2. Also by the
Bott vanishing theorem, ¢,.,(Q), -+, 0,(Q) have compact support. Hence each
di(&), 1=j=<n, has compact support. Moreover, the class of (v —1/2x)/¢,(€) in
H¥U; C) is ci(&). If we set, for k=1, ---, n,

HO= BV B 040 0,0,
55

then we have (1+47,(&)+ - +r . (@) 1+0.(&)+ - +0,.(&)=1. From (3.6}, we
have

3.7) Uj(Q>:i§__j0'i(F*)Tk(8>; J=1, -, n,

t,k20
where we set g, (F*)=7(€)=1 and o6, ,(F*)= " =0¢,(F*)=0. Thus if j>gq,
each term in the right hand side of has compact support and the class of
1/»2-%—)’0,@ in H¥(U; Q) is c;(F*—¢&) (see (3.3) Definition). Therefore, if ¢=
oj, - 05, with j,>q for some v, then ¢;,(F*—&) - ¢; (F*—€) is in HYU; @),
J=J1+ - +J, and is the class of ¢(Q), Q.E.D.
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(3.8) COROLLARY. Let F and Z be as above and let ¢ be a symmetric and
homogeneous polynomial of degree d in X,, ---, X,. If each monomial in the
expression ¢:g3(al, o+, 04) contains o; with j>q, then Resy(F, Z) is rational, i.e.
it 1s in Hyn-9a(Z ; Q) (cf. p. 287 Rationality Conjecture).

Suppose now that Z is non-singular and that there is a holomorphic vector
bundle E on Z such that &€xt}(Qr, 0)=i,0,(E)(=the sheaf ©z(E) of germs of
holomorphic sections of E extended by zero on U—Z), where 7 is the embedding
ZoU. Then (the finer version of) the Riemann-Roch theorem for analytic em-
beddings (Atiyah-Hirzebruch [2] [3.1), see also the proof of
(3.3)) gives the local Chern classes of &€=yz(€xt(L2Fr, O));

3.9 ch (&)=74(td(N) ch (E))
or

: L C(A(NF) xc(E)~1
(3.10) &)+ +en@)=in( SOV )

where N is the normal bundle of Z in U, r=rank N=codim Z in U, A-,(N%*)
= ﬁ‘, (—1)AYN*) (Z4(N*)=i-th exterior power of N*), ¢c(A_;(N*))*c(E) is the total
1=0

Chern class of the tensor product A, (N*)QXE and 74 is the Thom-Gysin homo-
morphism

(3.11) ix: HYZ; Q) —> H*U,U—Z; Q=H!U; Q).

By our assumption, Z is non-singular. Thus we have a commutative diagram

HZ : Q) ____l{_> H (U ; Q)

Dy zl / leU
T

}I‘ZIL'-ZT-])(Z; Q) I H2n—2r—p(U; Q) )

where D is the Poincaré duality map, and ix in [3.11) is an isomorphism.
In particular, if the singularity is isolated, we have

(3.12) PROPOSITION. Let U be a polydisk about the origin 0 in C" and let
F=(w) be a codim 1 foliation on U with an isolated singularity at 0. We denote
the stalks Ocn.o and Qr, o simply by © and Qp, respectively. Then we have

Res, (F, {0H)=(—D"(n—1)! dimcExt5(2r, ©) in H,({0}; @)=Q.

PROOF. Since H¥(U ; Q)=0 for j#n, we have c¢;(&)=0 for 1=<;=<n. Also
¢i(F¥)=0 for i>0. Hence by (3.4) and [3.2), we have

Res, (F, {0})=L(d.(€))=—L(ca(&)).
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On the other hand, for a point z in U,
Ext}(Q2F, ), if z=0,

Sxté(QF) O)z:{
0 , if z+0.

We set E=Ext{(2F, ©) and think of it as a vector bundle over Z={0} of rank
p=dimc¢E. Then we have €xt}(L2p, 0)=i,0(E). In [3.9), we have td(N)=1
and ch(E)=pg in H°({0}; @=Q. Thus denoting by & the image of 1 by the
isomorphism 74 : H°({0} ; @) — H2*(U; ), we have

(3.13) ch(€)=pb .

n n

Writing formally 1+cy(€)+ - +ca@)=1IL(1+70), we have ch(e)= 2 (eT—1).
From [3.13),

AN

0, it 1=;=n—-1,

|

rH~~+m={ _
n!ub, it j=n.

Thus we have ny,- 7, +(—=1L*@1+ - +7r72)=0. Hence c (&)=, 7=
(=D (n—1)! p6. Q.E.D.

(3.14) ReMARK. In the situation of (3.12), if we write w= ‘é fi{2)dz;, then
i=1

EXté(QF, O):C{Zl, Ty Zn}/(fh Ty fn);

where ©=C{z,, ---, z,} is the ring of convergent power series in z,, ---, z, and
(f1, ==+, fna) is the ideal generated by the germs of f,(z), -, fa(2) at 0 ([7](4.5)).
Especially, if w=df for some f, then fi:—g—g—. Thus (3.12) can be viewed as
a formula for the “generalized” multiplicity (cf. [6]). For the significance of
Ext}(2F, ©), see also [8].

Here is an example with non-isolated singular set.

(3.15) ExampPLE. Let P'=P(C) be the projective line with homogeneous
coordinates (&o: &,). It is covered by two coordinate neighborhoods U, and U,
with coordinates z,=(,/{, and z,=(,/{,, respectively. We denote by H the
hyperplane bundle over P’ Letting / and m be two integers, consider the vector
bundle N of rank 2 over P! given by N=H'@H™. Thus N can be expressed
as a union N=C*xXU \JC?*XU,, where a point (x,, vy, 2zo) in C*XU, is identified
with (x5, y5, z,) in C?*XU, if and only if

(3.16) X():Z‘l-lxl, y():Z'l-myl and ZQ:ZYI.

We identify P! with the zero section x;=y;=0,7=0, 1, in N. Let a and b be
positive integers satisfying [(a—1)=m(b—1). We set r=[(a—1)=m(b—1). C:
each W,=C?*xU,, i=0, 1, we consider two holomorphic 1-forms z; and w; given by
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7;=dz; and w;=y%dx;—x%dy;.

In the intersection W,\W,, we have

To —z7t 0 7y
(3.17) = ,
N X327 mx T =1y 270 )\ oy

where s=r+4/[+m. Thus we may consider the locally free sub-®y-module F of
Qy generated by 7; and w; on W;. Clearly F satisfies the integrability condition
and defines a codim 2 foliation on N with singular set the zero section P!. Now
we find the sheaf €xt},(2F, Oy). From (2.3), we have

ExtéN(‘QF: ON)IW‘LgO%VL/((O) yg)) (O) x%): (ly 0)) s
where the denominator in the right hand side denotes the sub-Oy,-module of
O%,; generated by (0, %), (0, x¢) and (1, 0). Hence we have
(3-18) gxt(le(QF; ON)IW,;EOWi/(x?; y?) ’

where (x¢, y?) is the ideal generated by the sections x¢ and y2. For an element
h in Ow, we denote by [A] its class in Ow,/(x¢, ¥?). The right hand side of
is a free Oy, module generated by [xfy#], 0Za=a—1, 0=8=b—1.
Moreover, by we have

x§yR=ay @ Em g yh

Hence we may write 8xtéN(.QF, Oy)=1,0p:(E), where E is the vector bundle over
P? of rank ab given by

We have

I
jm
~~
&

Il
™M

—_
+
=3
S

Q
N
W
3
il
)
=
—

+
~

N

where 7 is the first Chern class of H and is a generator of H*P'; @)=Q. On
the other hand, from N=H'@®H™, we have

td (ZV)_l:l——AA—R')?
Hence we have
td ) ch(B)=ab(1+ (r— T )p).

Z‘*
We have the Thom isomorphism HZ?(P*'; Q) = H?**(N, N—P'; Q). Setting 0,
=i ()€ HYN, N—P'; Q) and 6,=ix(n)e H(N, N—P*; Q), we have from
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ch(e)=ab(0:+(r— %’71)03).

Thus we have
c(€)=0, cy(&)=—abl, and cy&)=ab2r—(+m))f;.
From [3.2), we have

d,(&)=0, d,(&)=abl, and di&)=ab(i+m—2r)0,.
7*
Next we find ¢(F*). Since H*(N; Q) = H*(P*; Q), it suffices to find c(G*F*).
From we have *F*=H:!@PH®* Thus c@*F*)=14(s+2)p. Therefore,
c¢(F¥)=1+(s+2)o, where ¢ denotes /* 'y and is a generator of H*N; Q)=Q.
We have

c(F*—=8)=c,(F*)d (&) +c,(F*)dy(E)+ds(&)
=ab(s+2)00,+ab{l+m—2r)0,

=abQU+m+1)—r)b,;.
Therefore,

Res, (F, P)=ab2(/+m+1)—r) in Hy(P'; Q)=Q.
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