Residues of complex analytic foliation singularities

By Tatsuo SUWA

(Received Nov. 15, 1982)

In [3], Baum and Bott defined the residues of complex analytic foliation singularities and proved a general residue formula using differential geometry based on the Bott vanishing theorem. Let M be a complex manifold. We define a foliation (of complete intersection type) on M to be a locally free subsheaf F of the cotangent sheaf Ω_M which satisfies the Frobenius integrability condition outside of the singular set (=the singular set of the coherent sheaf $\Omega_F = \Omega_M/F$). In this note, we express ((3.4) Theorem) a certain class of residues of F in terms of the Chern classes of F and the local Chern classes of the sheaf $\mathcal{E} \times t_0^1(\Omega_F, \mathcal{O})$, which appeared in the unfolding theory ([7]). As a corollary, the rationality of these residues is shown (cf. [3] p.287 Rationality Conjecture). In a number of cases, the Riemann-Roch theorem for analytic embeddings (Atiyah-Hirzebruch [2]) can be used to compute the residues. The results of this paper were announced in [9].

This work was done while I was visiting University of Illinois at Chicago. I would like to thank especially J. Heitsch and P. Wagreich for their interest and helpful conversations. I am also grateful to H. Suzuki of Hokkaido University for reading the manuscript carefully and correcting some mistakes.

1. Residues.

We briefly review how the residues are defined in Baum-Bott [3]. Let M be an n-dimensional complex manifold. We denote by \mathcal{O}_M (or simply by \mathcal{O}), Θ_M and Ω_M , respectively, the structure sheaf, the tangent sheaf and the cotangent sheaf of M. In [3] pp. 281-282, a foliation is defined to be a full integrable coherent subsheaf ξ of Θ_M . Let Q be the quotient sheaf Θ_M/ξ ;

$$(1.1) 0 \longrightarrow \xi \longrightarrow \Theta_M \longrightarrow Q \longrightarrow 0.$$

The singular set S of the foliation is defined by

$$(1.2) S = \{ z \in M \mid Q_z \text{ is not a free } \mathcal{O}_z \text{-module} \},$$

This work was partially supported by the National Science Foundation.

T. Suwa

where for a sheaf S on M, S_z denotes the stalk of S over Z. The sheaf ξ defines an ordinary foliation on M-S, whose codimension is denoted by Q. Let Z be a connected component of S and assume that Z is compact. Take an open neighborhood U of Z in M such that Z is a deformation retract of U. Let $\sigma_1, \dots, \sigma_n$ be the elementary symmetric functions in n variables X_1, \dots, X_n . On U-Z, the sheaf Q is locally free and it admits a basic connection D_{-1} , which determines a closed 2i-form $\sigma_i(K_{-1})$ on U-Z for each i, $1 \le i \le n$. There exists a closed 2i-form ω_i on U which coincides with $\sigma_i(K_{-1})$ outside of a compact set in U containing Z in its interior (cf. [3] p.312 Proof of (0.23)).

If ϕ is a symmetric and homogeneous polynomial of degree d in X_1, \dots, X_n , there is a polynomial $\tilde{\phi}$ in $\sigma_1, \dots, \sigma_n$ with $\phi = \tilde{\phi}(\sigma_1, \dots, \sigma_n)$. We set $\phi(Q) = (\sqrt{-1}/2\pi)^d \tilde{\phi}(\omega_1, \dots, \omega_n)$, which is a closed 2d-form on U. Note that in [3], the cohomology class of $\phi(Q)$ is denoted by $\phi(Q)$, however here the form itself is denoted by $\phi(Q)$. If d > q, then by the Bott vanishing theorem ([3](3.27)), $\phi(Q)$ has compact support and defines a cohomology class $[\phi(Q)]$ in $H_c^{2d}(U; C)$ (cohomology with compact support). We denote by L the composition of the two isomorphisms

$$(1.3) \qquad H_c^{2d}(U; C) \xrightarrow{D_U} H_{2n-2d}(U; C) \xrightarrow{i_*^{-1}} H_{2n-2d}(Z; C),$$

where D_U denotes the Poincaré duality map and i is the embedding $Z \subseteq U$. Then the residue is defined by

$$\operatorname{Res}_{\phi}(\xi, Z) = L([\phi(Q)])$$
.

2. The sheaf $\mathcal{E} \times t^1_{\mathcal{O}}(\Omega_F, \mathcal{O})$.

In [7](1.2), a (reduced) foliation is defined to be a full coherent subsheaf F of Ω_M satisfying the integrability condition. Let Ω_F be the quotient sheaf Ω_M/F ;

$$(2.1) 0 \longrightarrow F \longrightarrow \Omega_M \longrightarrow \Omega_F \longrightarrow 0.$$

The two definitions are equivalent if we set ([7](1.5)) $\xi = F^a = \{\theta \in \Theta_M | \omega(\theta) = 0, \forall \omega \in F\}$ or $F = \xi^a = \{\omega \in \Omega_M | \omega(\theta) = 0, \forall \theta \in \xi\}$. Note that F^a is identical with the dual sheaf $\mathcal{H}_{om_{\mathcal{O}}}(\Omega_F, \mathcal{O})$ of Ω_F . The singular set S(F) of F is defined by

(2.2)
$$S(F) = \{z \in M \mid \Omega_{F,z} \text{ is not a free } \mathcal{O}_z\text{-module}\}$$

and is identical with S in (1.2). By taking the duals of (2.1), we obtain the exact sequence

$$(2.3) \qquad 0 \rightarrow \mathcal{H}\mathit{om}_{\mathcal{O}}(\varOmega_{F},\,\mathcal{O}) \rightarrow \mathcal{H}\mathit{om}_{\mathcal{O}}(\varOmega_{M},\,\mathcal{O}) \rightarrow \mathcal{H}\mathit{om}_{\mathcal{O}}(F,\,\mathcal{O}) \rightarrow \mathcal{E}\mathit{xt}_{\mathcal{O}}^{1}(\varOmega_{F},\,\mathcal{O}) \rightarrow 0 \text{.}$$

By (2.2), the support of the sheaf $\mathcal{E}_{\times} t_{\mathcal{O}}^{1}(\Omega_{F}, \mathcal{O})$ is in S. Comparing (1.1) and (2.3), we get the exact sequence

$$(2.4) 0 \longrightarrow Q \longrightarrow F^* \longrightarrow \mathcal{E} \times t^1_{\mathcal{O}}(\Omega_F, \mathcal{O}) \longrightarrow 0.$$

From now on we consider only foliations of complete intersection type ([7](1.10)), i.e., we assume that F is a locally free \mathcal{O} -module (of rank q). We do not distinguish locally free sheaves from holomorphic vector bundles. Thus (2.4) can be viewed as a "decomposition" of the sheaf Q into the vector bundle part F^* and the singular part $\mathcal{E} \times t_{\mathcal{O}}^1(\Omega_F, \mathcal{O})$.

3. Residues and the local Chern classes of $\mathcal{E} \times t^1_{\mathcal{O}}(\Omega_F, \mathcal{O})$.

Let F be a codim q foliation (of complete intersection type) and let Z be a compact connected component of the singular set S. In this section, analytic objects on M are restricted to the open set U considered in section 1. Since $\mathcal{E} \times t_{\mathcal{O}}^1(\Omega_F, \mathcal{O})$ is a coherent sheaf on U with support in Z, there is the associated "Grothendieck element" $\gamma_Z(\mathcal{E} \times t_{\mathcal{O}}^1(\Omega_F, \mathcal{O}))$, which we simply denote by \mathcal{E} , in $K^0(U, U-Z)([1] \S 4, [4]$ Ch. I, cf. also [5]). The Chern character gives a mapping

ch:
$$K^0(U, U-Z) \longrightarrow H^*(U, U-Z; \mathbf{Q})$$
.

Since Z is a deformation retract of U, there is a canonical isomorphism

$$H^*(U, U-Z: \mathbf{Q}) \xrightarrow{\sim} H^*(U: \mathbf{Q})$$
.

Also there is a canonical homomorphism

(3.1)
$$\kappa: H_c^*(U; \mathbf{Q}) \longrightarrow H^*(U; \mathbf{Q}).$$

Thus $ch(\mathcal{E})$ determines the local Chern classes $c_1(\mathcal{E})$, \cdots , $c_n(\mathcal{E})$ in $H^*(U, U-Z; \mathbf{Q})$ = $H_c^*(U; \mathbf{Q})$ such that $1+\kappa(c_1(\mathcal{E}))+\cdots+\kappa(c_n(\mathcal{E}))$ is the total Chern class of the coherent sheaf $\mathcal{E}_{\times t_C^1}(\Omega_F, \mathcal{O})$ on U. For each integer k with $1 \leq k \leq n$, we set

(3.2)
$$d_k(\mathcal{E}) = \sum_{r=1}^k (-1)^r \sum_{\substack{j_1 + \dots + j_r = k \\ j_\nu > 0}} c_{j_1}(\mathcal{E}) \cdots c_{j_r}(\mathcal{E}) .$$

Let $c(F^*)=1+c_1(F^*)+\cdots+c_n(F^*)$ be the (rational) total Chern class in $H^*(U; \mathbf{Q})$ of F^* . Note that $c_i(F^*)=0$, $q+1 \le i \le n$, since F^* is a locally free sheaf of rank q. Also note that there is a canonical pairing

$$H^*(U; \mathbf{Q}) \times H_c^*(U; \mathbf{Q}) \longrightarrow H_c^*(U; \mathbf{Q})$$
.

(3.3) Definition. For each integer j with $q < j \le n$, $c_j(F^* - \mathcal{E})$ denotes the element

$$c_{q}(F^{*})d_{i-q}(\mathcal{E}) + \cdots + c_{1}(F^{*})d_{i-1}(\mathcal{E}) + d_{i}(\mathcal{E})$$

40 T. Suwa

in $H_c^{2j}(U; \mathbf{Q})$, and for each integer j with $1 \le j \le q$, it denotes the element

$$c_i(F^*) + c_{i-1}(F^*)\kappa(d_i(\mathcal{E})) + \cdots + c_1(F^*)\kappa(d_{i-1}(\mathcal{E})) + \kappa(d_i(\mathcal{E}))$$

in $H^{2j}(U; \mathbf{Q})$.

(3.4) THEOREM. Let F be a foliation (of complete intersection type) of codim q on M and let U and Z be as above. If $\phi = \sigma_{j_1} \cdots \sigma_{j_r}$ with $j_{\nu} > q$ for some ν , then

$$\operatorname{Res}_{\phi}(F, Z) = L(c_{j_1}(F^* - \mathcal{E}) \cdots c_{j_r}(F^* - \mathcal{E}))$$
,

where $\operatorname{Res}_{\phi}(F, Z) = \operatorname{Res}_{\phi}(F^a, Z)$ and L is the composition of two isomorphisms in (1.3).

PROOF. Let D_{-1} be a basic connection for Q on U-Z. Since $Q=F^*$ on U-Z and F^* is locally free on U, by [3] (4.41), the connection D_{-1} can be modified to obtain a connection \widetilde{D}_{-1} for F^* on U such that

$$\widetilde{D}_{-1} = D_{-1} \quad \text{on} \quad U - \Sigma \,,$$

where Σ is a compact set in U containing Z in its interior. The connection \widetilde{D}_{-1} determines, for each i with $1 \le i \le q$, a closed 2i-form $\sigma_i(F^*)$ on U such that the class of $(\sqrt{-1}/2\pi)^i \sigma_i(F^*)$ in $H^*(U; \mathbb{C})$ is $c_i(F^*)$. The equation

$$(3.6) \qquad (1+\sigma_1(Q)+\cdots+\sigma_n(Q))(1+\sigma_1(\mathcal{E})+\cdots+\sigma_n(\mathcal{E}))$$

$$=1+\sigma_1(F^*)+\cdots+\sigma_o(F^*)$$

can be solved to find $\sigma_1(\mathcal{E})$, \cdots , $\sigma_n(\mathcal{E})$ such that, for each j, $1 \le j \le n$, $\sigma_j(\mathcal{E})$ is a closed 2j-form on U. By (3.5), $\sigma_j(Q) = \sigma_i(F)$, $1 \le i \le q$ on $U - \Sigma$. Also by the Bott vanishing theorem, $\sigma_{q+1}(Q)$, \cdots , $\sigma_n(Q)$ have compact support. Hence each $\sigma_j(\mathcal{E})$, $1 \le j \le n$, has compact support. Moreover, the class of $(\sqrt{-1}/2\pi)^j \sigma_j(\mathcal{E})$ in $H_c^*(U; \mathbf{C})$ is $c_j(\mathcal{E})$. If we set, for $k = 1, \dots, n$,

$$\tau_k(\mathcal{E}) = \sum_{r=1}^k (-1)^r \sum_{\substack{j_1 + \dots + j_r = k \\ j_{\nu} > 0}} \sigma_{j_1}(\mathcal{E}) \cdots \sigma_{j_r}(\mathcal{E}) ,$$

then we have $(1+\tau_1(\mathcal{E})+\cdots+\tau_n(\mathcal{E}))(1+\sigma_1(\mathcal{E})+\cdots+\sigma_n(\mathcal{E}))=1$. From (3.6), we have

(3.7)
$$\sigma_{j}(Q) = \sum_{\substack{i+k=j\\i,k\geq 0}} \sigma_{i}(F^{*})\tau_{k}(\mathcal{E}), \qquad j=1, \dots, n,$$

where we set $\sigma_0(F^*) = \tau_0(\mathcal{E}) = 1$ and $\sigma_{q+1}(F^*) = \cdots = \sigma_n(F^*) = 0$. Thus if j > q, each term in the right hand side of (3.7) has compact support and the class of $\left(\frac{\sqrt{-1}}{2\pi}\right)^j \sigma_j(Q)$ in $H_c^{2j}(U; \mathbf{Q})$ is $c_j(F^* - \mathcal{E})$ (see (3.3) Definition). Therefore, if $\phi = \sigma_{j_1} \cdots \sigma_{j_r}$ with $j_{\nu} > q$ for some ν , then $c_{j_1}(F^* - \mathcal{E}) \cdots c_{j_r}(F^* - \mathcal{E})$ is in $H_c^{2j}(U; \mathbf{Q})$, $j = j_1 + \cdots + j_r$, and is the class of $\phi(Q)$, Q. E. D.

(3.8) COROLLARY. Let F and Z be as above and let ϕ be a symmetric and homogeneous polynomial of degree d in X_1, \dots, X_n . If each monomial in the expression $\phi = \tilde{\phi}(\sigma_1, \dots, \sigma_n)$ contains σ_j with j > q, then $\operatorname{Res}_{\phi}(F, Z)$ is rational, i.e. it is in $H_{2n-2d}(Z; Q)$ (cf. [3] p. 287 Rationality Conjecture).

Suppose now that Z is non-singular and that there is a holomorphic vector bundle E on Z such that $\mathcal{E}_{\times t_{\mathcal{O}}^1}(\Omega_F, \mathcal{O}) = i_! \mathcal{O}_Z(E)$ (=the sheaf $\mathcal{O}_Z(E)$ of germs of holomorphic sections of E extended by zero on U-Z), where i is the embedding $Z \subseteq U$. Then (the finer version of) the Riemann-Roch theorem for analytic embeddings (Atiyah-Hirzebruch [2] Theorem (3.1), see also the proof of Theorem (3.3)) gives the local Chern classes of $\mathcal{E} = \gamma_Z(\mathcal{E}_{\times t_{\mathcal{O}}^1}(\Omega_F, \mathcal{O}))$;

$$\operatorname{ch}(\mathcal{E}) = i_{*}(\operatorname{td}(N)^{-1}\operatorname{ch}(E))$$

or

$$(3.10) c_1(\mathcal{E}) + \cdots + c_n(\mathcal{E}) = i_* \left(\frac{c(\lambda_{-1}(N^*)) * c(E) - 1}{c_r(N)} \right),$$

where N is the normal bundle of Z in U, $r = \operatorname{rank} N = \operatorname{codim} Z$ in U, $\lambda_{-1}(N^*) = \sum_{i=0}^r (-1)^i \lambda^i(N^*)$ ($\lambda^i(N^*) = i$ -th exterior power of N^*), $c(\lambda_{-1}(N^*)) * c(E)$ is the total Chern class of the tensor product $\lambda_{-1}(N^*) \otimes E$ and i_* is the Thom-Gysin homomorphism

$$(3.11) i_*: H^*(Z; \mathbf{Q}) \longrightarrow H^*(U, U-Z; \mathbf{Q}) = H_c^*(U; \mathbf{Q}).$$

By our assumption, Z is non-singular. Thus we have a commutative diagram

$$H^{p}(Z; \mathbf{Q}) \xrightarrow{i_{*}} H_{c}^{p+2r}(U; \mathbf{Q})$$

$$D_{Z} \downarrow \qquad \qquad \downarrow D_{U}$$

$$H_{2n-2r-p}(Z; \mathbf{Q}) \xrightarrow{\sim} H_{2n-2r-p}(U; \mathbf{Q})$$

where D_Z is the Poincaré duality map, and i_* in (3.11) is an isomorphism. In particular, if the singularity is isolated, we have

(3.12) PROPOSITION. Let U be a polydisk about the origin 0 in \mathbb{C}^n and let $F=(\omega)$ be a codim 1 foliation on U with an isolated singularity at 0. We denote the stalks $\mathcal{O}_{\mathbb{C}^n,0}$ and $\Omega_{F,0}$ simply by \mathcal{O} and Ω_F , respectively. Then we have

$$\operatorname{Res}_{\sigma_n}(F, \{0\}) = (-1)^n (n-1)! \dim_{\mathcal{C}} \operatorname{Ext}_{\mathcal{O}}^1(\Omega_F, \mathcal{O}) \text{ in } H_0(\{0\}; \mathbf{Q}) = \mathbf{Q}.$$

PROOF. Since $H_c^{2j}(U; \mathbf{Q})=0$ for $j \neq n$, we have $c_j(\mathcal{E})=0$ for $1 \leq j \leq n$. Also $c_i(F^*)=0$ for i>0. Hence by (3.4) Theorem and (3.2), we have

$$\operatorname{Res}_{\sigma_n}(F, \{0\}) = L(d_n(\mathcal{E})) = -L(c_n(\mathcal{E})).$$

T. Suwa

On the other hand, for a point z in U,

$$\mathcal{E}_{\mathsf{x}t^{\mathbf{1}}_{\mathcal{O}}}(Q_{F}, \mathcal{O})_{z} = \left\{ egin{array}{ll} \operatorname{Ext}^{1}_{\mathcal{O}}(Q_{F}, \mathcal{O}), & & ext{if} & z = 0, \\ 0, & & ext{if} & z
eq 0. \end{array}
ight.$$

We set $E=\operatorname{Ext}_{\mathcal{O}}^1(\Omega_F,\mathcal{O})$ and think of it as a vector bundle over $Z=\{0\}$ of rank $\mu=\dim_{\mathbf{C}}E$. Then we have $\operatorname{Ext}_{\mathcal{O}}^1(\Omega_F,\mathcal{O})=i_1\mathcal{O}_Z(E)$. In (3.9), we have $\operatorname{td}(N)=1$ and $\operatorname{ch}(E)=\mu$ in $H^0(\{0\}; \mathbf{Q})=\mathbf{Q}$. Thus denoting by θ the image of 1 by the isomorphism $i_*: H^0(\{0\}; \mathbf{Q}) \to H^{2n}_{\mathcal{O}}(U; \mathbf{Q})$, we have

$$\cosh(\mathcal{E}) = \mu \theta.$$

Writing formally $1+c_1(\mathcal{E})+\cdots+c_n(\mathcal{E})=\prod_{i=1}^n(1+\gamma_i)$, we have $\operatorname{ch}(\mathcal{E})=\sum_{i=1}^n(e^{\gamma_i}-1)$. From (3.13),

$$\gamma_1^j + \cdots + \gamma_n^j =
\begin{cases}
0, & \text{if } 1 \leq j \leq n-1, \\
n! \, \mu\theta, & \text{if } j=n.
\end{cases}$$

Thus we have $n\gamma_1 \cdots \gamma_n + (-1)^n (\gamma_1^n + \cdots + \gamma_n^n) = 0$. Hence $c_n(\mathcal{E}) = \gamma_1 \cdots \gamma_n = (-1)^{n+1} (n-1)! \ \mu\theta$. Q. E. D.

(3.14) REMARK. In the situation of (3.12), if we write $\omega = \sum_{i=1}^{n} f_i(z) dz_i$, then $\operatorname{Ext}_{\mathcal{C}}^1(\Omega_F, \mathcal{O}) = C\{z_1, \dots, z_n\} / (f_1, \dots, f_n)$,

where $\mathcal{O}=C\{z_1,\cdots,z_n\}$ is the ring of convergent power series in z_1,\cdots,z_n and (f_1,\cdots,f_n) is the ideal generated by the germs of $f_1(z),\cdots,f_n(z)$ at 0 ([7](4.5)). Especially, if $\omega=df$ for some f, then $f_i=\frac{\partial f}{\partial z_i}$. Thus (3.12) can be viewed as a formula for the "generalized" multiplicity (cf. [6]). For the significance of $\operatorname{Ext}_{\mathcal{O}}^1(\Omega_F,\mathcal{O})$, see also [8].

Here is an example with non-isolated singular set.

(3.15) Example. Let $P^1 = P^1(C)$ be the projective line with homogeneous coordinates $(\zeta_0: \zeta_1)$. It is covered by two coordinate neighborhoods U_0 and U_1 with coordinates $z_0 = \zeta_1/\zeta_0$ and $z_1 = \zeta_0/\zeta_1$, respectively. We denote by H the hyperplane bundle over P^1 . Letting l and m be two integers, consider the vector bundle N of rank 2 over P^1 given by $N = H^1 \oplus H^m$. Thus N can be expressed as a union $N = C^2 \times U_0 \cup C^2 \times U_1$, where a point (x_0, y_0, z_0) in $C^2 \times U_0$ is identified with (x_1, y_1, z_1) in $C^2 \times U_1$ if and only if

(3.16)
$$x_0 = z_1^{-l} x_1, \quad y_0 = z_1^{-m} y_1 \text{ and } z_0 = z_1^{-1}.$$

We identify P^1 with the zero section $x_i = y_i = 0$, i = 0, 1, in N. Let a and b be positive integers satisfying l(a-1) = m(b-1). We set r = l(a-1) = m(b-1). C: each $W_i = C^2 \times U_i$, i = 0, 1, we consider two holomorphic 1-forms τ_i and ω_i given by

$$\tau_i = dz_i$$
 and $\omega_i = y_i^b dx_i - x_i^a dy_i$.

In the intersection $W_0 \cap W_1$, we have

(3.17)
$$\begin{pmatrix} \tau_0 \\ \omega_0 \end{pmatrix} = \begin{pmatrix} -z_1^{-2} & 0 \\ x_1 y_1 z_1^{-s-1} (m x_1^{a-1} - l y_1^{b-1}) & z_1^{-s} \end{pmatrix} \begin{pmatrix} \tau_1 \\ \omega_1 \end{pmatrix},$$

where s=r+l+m. Thus we may consider the locally free sub- \mathcal{O}_N -module F of Ω_N generated by τ_i and ω_i on W_i . Clearly F satisfies the integrability condition and defines a codim 2 foliation on N with singular set the zero section P^1 . Now we find the sheaf $\mathcal{E}_{\times t^1_{\mathcal{O}_N}}(\Omega_F, \mathcal{O}_N)$. From (2.3), we have

$$\mathcal{E} \times t_{\mathcal{O}_N}^1(\Omega_F, \mathcal{O}_N)|_{W_i} \cong \mathcal{O}_{W_i}^2/((0, y_i^b), (0, x_i^a), (1, 0)),$$

where the denominator in the right hand side denotes the sub- \mathcal{O}_{W_i} -module of $\mathcal{O}_{W_i}^2$ generated by $(0, y_i^b)$, $(0, x_i^a)$ and (1, 0). Hence we have

$$(3.18) \qquad \mathcal{E} \times t_{\mathcal{O}_N}^1(\Omega_F, \mathcal{O}_N)|_{W_i} \cong \mathcal{O}_{W_i}/(x_i^a, y_i^b),$$

where (x_i^a, y_i^b) is the ideal generated by the sections x_i^a and y_i^b . For an element h in \mathcal{O}_{W_i} , we denote by [h] its class in $\mathcal{O}_{W_i}/(x_i^a, y_i^b)$. The right hand side of (3.18) is a free \mathcal{O}_{U_i} -module generated by $[x_i^a y_i^b]$, $0 \le \alpha \le a - 1$, $0 \le \beta \le b - 1$. Moreover, by (3.16), we have

$$x_0^{\alpha} y_0^{\beta} = z_1^{-(\alpha l + \beta m)} x_1^{\alpha} y_1^{\beta}$$
.

Hence we may write $\mathcal{E}_{\times t_{\mathcal{O}_N}^1}(\mathcal{Q}_F, \mathcal{O}_N) = i_! \mathcal{O}_{P^1}(E)$, where E is the vector bundle over P^1 of rank ab given by

$$E = \bigoplus_{\substack{0 \le \alpha \le \alpha - 1 \\ 0 \le \beta \le b - 1}} H^{\alpha l + \beta m}.$$

We have

$$\mathrm{ch}\left(E\right)\!=\!\sum\limits_{\substack{0\leq\alpha\leq a-1\\0\leq\beta\leq b-1}}\!\!(1\!+\!\eta)^{\alpha\,l+\beta\,m}\!=\!a\,b(1\!+\!r\eta)$$
 ,

where η is the first Chern class of H and is a generator of $H^2(\mathbf{P}^1; \mathbf{Q}) \cong \mathbf{Q}$. On the other hand, from $N=H^1 \oplus H^m$, we have

$$td(N)^{-1}=1-\frac{l+m}{2}\eta$$
.

Hence we have

$$\operatorname{td}(N)^{-1}\operatorname{ch}(E) = \operatorname{ab}\left(1 + \left(r - \frac{l+m}{2}\right)\eta\right).$$

We have the Thom isomorphism $H^p(\mathbf{P}^1; \mathbf{Q}) \stackrel{i_*}{\simeq} H^{p+4}(N, N-\mathbf{P}^1; \mathbf{Q})$. Setting $\theta_2 = i_*(1) \in H^4(N, N-\mathbf{P}^1; \mathbf{Q})$ and $\theta_3 = i_*(\eta) \in H^6(N, N-\mathbf{P}^1; \mathbf{Q})$, we have from (3.9),

$$\operatorname{ch}(\mathcal{E}) = ab \Big(\theta_2 + \Big(r - \frac{l+m}{2} \Big) \theta_3 \Big).$$

Thus we have

$$c_1(\mathcal{E})=0$$
, $c_2(\mathcal{E})=-ab\theta_2$ and $c_3(\mathcal{E})=ab(2r-(l+m))\theta_3$.

From (3.2), we have

$$d_1(\mathcal{E}) = 0$$
, $d_2(\mathcal{E}) = ab\theta_2$ and $d_3(\mathcal{E}) = ab(l+m-2r)\theta_3$.

Next we find $c(F^*)$. Since $H^*(N; \mathbf{Q}) \stackrel{i^*}{\simeq} H^*(\mathbf{P}^1; \mathbf{Q})$, it suffices to find $c(i^*F^*)$. From (3.17), we have $i^*F^*=H^2\oplus H^s$. Thus $c(i^*F^*)=1+(s+2)\eta$. Therefore, $c(F^*)=1+(s+2)\sigma$, where σ denotes $i^{*-1}\eta$ and is a generator of $H^2(N; \mathbf{Q})\cong \mathbf{Q}$. We have

$$\begin{split} c_3(F^*-\mathcal{E}) &= c_2(F^*)d_1(\mathcal{E}) + c_1(F^*)d_2(\mathcal{E}) + d_3(\mathcal{E}) \\ &= ab(s+2)\sigma\theta_2 + ab(l+m-2r)\theta_3 \\ &= ab(2(l+m+1)-r)\theta_3 \,. \end{split}$$

Therefore,

$$\operatorname{Res}_{\sigma_3}(F, P^1) = ab(2(l+m+1)-r)$$
 in $H_0(P^1; Q) = Q$.

References

- [1] M.F. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds, Topology, 1 (1962), 25-45.
- [2] M. F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic embeddings, Topology, 1(1962), 151-166.
- [3] P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geometry, 7(1972), 279-342.
- [4] P. Baum, W. Fulton and R. MacPherson, Riemann-Roch for singular varieties, Publ. Math. IHES, 45 (1975), 101-167.
- 5 B. Iversen, Local Chern classes, Ann. Sci. École Norm. Sup., 9(1976), 155-169.
- [6] P. Orlik, The multiplicity of a holomorphic map at an isolated critical point, Real and Complex Singularities, Oslo 1976, edited by P. Holm, Sijthoff and Noordhoff, 1977, 405-474.
- [7] T. Suwa, Unfoldings of complex analytic foliations with singularities, Japan. J. Math., 9(1983), 181-206.
- [8] T. Suwa, A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math., 65(1981), 29-48.
- [9] T. Suwa, Singularities of complex analytic foliations, Proc. Symposia in Pure Math., 40(1983), Amer. Math. Soc., 551-559.

Tatsuo SUWA

Department of Mathematics
Hokkaido University
Sapporo 060
Japan