Non-separating incompressible tori in 3-manifolds

By Tsuyoshi KOBAYASHI

(Received Aug. 23, 1982) (Revised Oct. 28, 1982)

1. Introduction.

In [1] Haken has shown that if a closed, connected 3-manifold M is not irreducible, then there exists such an essential 2-sphere in M that intersects a fixed Heegaard surface of M in a circle. Ochiai [4] has extended this result for a 2-sided projective plane in M. In this direction, we shall show that for a 2-sided, non-separating, incompressible torus and a genus two Heegaard splitting of M, the same result holds.

THEOREM 1. Let M be a closed, connected (possibly, non-orientable) 3-manifold with a Heegaard splitting $(V_1, V_2; F)$ of genus two. Assume that M contains a 2-sided, non-separating, incompressible torus T. Then there exists a 2-sided, non-separating, incompressible torus T' which intersects F in a circle.

As an application, we shall show that any orientable, closed 3-manifold which has a Heegaard splitting of genus two and contains a non-separating, incompressible torus is obtained by pasting boundary components of two bridge link space by a certain type of homeomorphism and performing a Dehn surgery along the two meridian loops of this link (Theorem 2).

As a consequence of Theorem 2, we have

COROLLARY. If an orientable, closed 3-manifold M with a Heegaard splitting of genus two contains a non-separating, incompressible torus, then M is a 2-fold branched covering space of $S^2 \times S^1$ branched along a 1-manifold.

I would like to express my gratitude to Prof. M. Ochiai for helpful conversations.

2. Preliminaries.

Throughout this paper, we will work in the piecewise linear category. A Heegaard splitting of a closed, connected 3-manifold M is a pair $(V_1, V_2; F)$, where V_i (i=1, 2) is a three dimensional orientable or nonorientable handlebody such that $M=V_1\cup V_2$ and $V_1\cap V_2=\partial V_1=\partial V_2=F$. Then F is called a Heegaard surface of M. The first Betti number of V_1 is called the genus of the splitting.

It is known that any closed, connected 3-manifold has a Heegaard splitting.

For the definition of standard terms in three dimensional topology and link theory, we refer to [2], [6]. For the definition of a hierarchy for a 2-manifold and an isotopy of type A, we refer to [3].

3. Proof of Theorem 1.

Let $T_i = T \cap V_i$ (i=1, 2). Since T is incompressible in M, we may suppose that T_i is incompressible in V_i . Furthermore, by moving T by a sequence of isotopies of type A, we may suppose that each component of T_1 is a disk. Then as in [3] we have the hierarchy $(T_2^{(0)}, \alpha_0), \cdots, (T_2^{(m)}, \alpha_m)$ for T_2 which gives rise to a sequence of isotopies of T in M where the first isotopy is of type A at α_0, \cdots , and the (m+1)-st isotopy is of type A at α_m . In addition, we may suppose that $\alpha_i \cap \alpha_j = \emptyset$ $(i \neq j)$. So, we consider each α_i to be an arc on T_2 .

We say that α_i is of type 1 if α_i joins distinct components of ∂T_2 , α_i is of type 2 if α_i joins one component S of ∂T_2 and there is an arc β in S such that $\partial \beta = \partial \alpha_i$, $\beta \cup \alpha_i$ bounds a disk on T, α_i is of type 3 if α_i joins one component S of ∂T_2 and there is an arc β in S such that $\partial \beta = \partial \alpha_i$, $\beta \cup \alpha_i$ cuts T into an annulus. We easily see that each α_i must be one of type 1, type 2, or type 3.

We say that α_i is a *d-arc* if α_i is of type 1 and there is a component S of ∂T_2 such that α_i is an only arc that joins S (see Figure 1).

Figure 1.

Now, suppose that T_1 has more than one components.

LEMMA 3.1. If some α_i is a d-arc, then there is an ambient isotopy h_t $(0 \le t \le 1)$ of M such that each component of $h_1(T) \cap V_1$ is a disk and the number of the components of $h_1(T) \cap V_1$ is less than that of $T \cap V_1$.

PROOF. This can be proved by using the argument of the inverse operation of an isotopy of type A defined in [4].

LEMMA 3.2. If α_0 is of type 1 or type 2, then there is an ambient isotopy $h_t(0 \le t \le 1)$ of M such that each component of $h_1(T) \cap V_1$ is a disk and the number of the components of $h_1(T) \cap V_1$ is less than that of $T \cap V_1$.

PROOF. If α_0 is of type 1, then the conclusion follows immediately by performing an isotopy of type A at α_0 . Assume that α_0 is of type 2. Then there is an arc β in ∂T_2 such that $\partial \beta = \partial \alpha_0$, $\alpha_0 \cup \beta$ bounds a planar surface P in T_2 . Since each α_i is an essential arc of T_2 , some α_j on P is a d-arc. Hence, the conclusion follows by Lemma 3.1.

Lemma 3.3. Suppose that α_0 is of type 3 and one of the following conditions is satisfied:

- (i) α_1 is of type 1,
- (ii) α_1 is of type 2,
- (iii) α_1 is of type 3 and α_1 intersects the same component of ∂T_2 that α_0 intersects. Then there is an ambient isotopy h_t $(0 \le t \le 1)$ of M such that each component of $h_1(T) \cap V_1$ is a disk and the number of the components of $h_1(T) \cap V_1$ is less than that of $T \cap V_1$.

PROOF. If (i) holds, then the Lemma can be proved using the argument of the inverse operation of an isotopy of type A defined in [4]. If (ii) holds, then the conclusion follows by the same argument of the proof of Lemma 3.2. If (iii) holds, then $\alpha_0 \cup \alpha_1$ cuts T_2 into two planar surfaces or one planar surface. In either case, we see that some α_i is a d-arc. Hence, the conclusion follows by Lemma 3.1.

REMARK. There exists an example of a hierarchy $(T_2^{(0)}, \alpha_0), \dots, (T_2^{(m)}, \alpha_m)$ such that each α_i is not a *d*-arc (see Figure 2).

Figure 2.

Now, let T' be a 2-sided, non-separating, incompressible torus in M such that among all 2-sided, non-separating, incompressible tori in M which intersect V_1 in disks the number of the components of $T' \cap V_1$ is minimum.

Let $T_i'=T'\cap V_i$ (i=1,2). Assume that T_1' has more than one component. Then $T_1'=D_1\cup\cdots\cup D_n$ $(n\geq 2)$, where D_1,\cdots,D_n are mutually disjoint, properly embedded disks in V_1 . We have the hierarchy $(T_2'^{(0)},\alpha_0'),\cdots,(T_2'^{(l)},\alpha_l')$ for T_2' as above. By Lemmas 3.2 and 3.3, α_0' and α_1' are of type 3 and we may suppose that α_0' joins points on ∂D_1 and α_1' joins points on ∂D_2 .

LEMMA 3.4. For any i, j $(1 \le i < j \le n)$, $\{D_i, D_j\}$ is not a complete system of meridian disks of V_1 .

PROOF. Suppose that for some i, j, $\{D_i, D_j\}$ is a complete system of meridian disks of V_1 (i. e. $D_i \cup D_j$ cuts V_1 into a 3-cell D^s). Let $T^{(1)}$ be the image of T' after an isotopy of type A at α'_0 . Then $T^{(1)} \cap V_1 = A_1 \cup D_2 \cup \cdots \cup D_n$, where A_1 is an annulus properly embedded in V_1 .

We claim that A_1 can be pushed into D^3 . By the definition of an isotopy of type A, there is a disk D in V_2 such that $D \cap T_2 = \alpha_0'$, $D \cap \partial V_2 = \beta$ where $\alpha_0' \cap \beta = \partial \alpha_0' = \partial \beta \subset \partial D_1$, $\alpha_0' \cup \beta = \partial D$. Then β must join D_1 from one side of D_1 , for otherwise there exists a simple loop which is contained in a regular neighborhood of A_1 in V_1 and intersects A_1 transversely in a single point (see Figure 3) and this contradicts the fact that $T^{(1)}$ is 2-sided in M. Hence, by moving $T^{(1)}$ by a small isotopy we may suppose that $A_1 \cap D_k = \emptyset$ $(1 \le k \le n)$ and this establishes the claim.

Figure 3.

On the other hand A_1 is incompressible in V_1 for α'_0 is of type 3. This is a contradiction.

By Lemma 3.4 there are following three possible cases.

Case 1. $\{D_1, \dots, D_n\}$ has only one parallel class in V_1 , and each D_i cuts V_1 into two solid tori.

Case 2. $\{D_1, \dots, D_n\}$ has two parallel classes in V_1 , and one of them is

represented by a meridian disk of V_1 , the other is represented by a disk which cuts V_1 into two solid tori.

Case 3. $\{D_1, \dots, D_n\}$ has only one parallel class in V_1 , and each D_i is a meridian disk of V_1 .

Let $T^{(1)}$, A_1 be those defined in the proof of Lemma 3.4. A_1 is an incompressible annulus properly embedded in V_1 . By Haken's theorem (see Corollary II. 10 of [3]) and the fact that M has a Heegaard splitting of genus two, we see that M is irreducible. Hence, each 2-sided, nonseparating torus in M is incompressible.

Now, we shall derive a contradiction in each of above cases. Then we complete the proof of Theorem 1.

Case 1. In this case, there is an annulus A_1' in F such that $A_1' \cap T^{(1)} = A_1' \cap A_1 = \partial A_1' = \partial A_1$ (see Figure 4). We get a 2-sided, non-separating torus \overline{T} by exchanging A_1 on $T^{(1)}$ for A_1' . We can move \overline{T} by a small isotopy so that each component of $\overline{T} \cap V_1$ is a disk and the number of components of $\overline{T} \cap V_1$ is less than that of $T' \cap V_1$. This contradicts the minimality of T'.

Figure 4.

Case 2. Since A_1 is an incompressible annulus in V_1 , D_1 must separate V_1 into two solid tori. So we have a contradiction as in Case 1.

Case 3. Let $T^{(2)}$ be the image of $T^{(1)}$ after an isotopy of type A at α'_1 . Then $T^{(2)} \cap V_1 = A_1 \cup A_2 \cup D_3 \cup \cdots \cup D_n$, where A_2 is an incompressible annulus properly embedded in V_1 . We have two subcases.

Case 3.1. A_1 and A_2 are parallel in V_1 .

In this case, there is an annulus A such that A is contained in the interior of V_1 , $A \cap T^{(2)} = \partial A$ and one component of ∂A is in A_1 and the other is in A_2

(see Figure 5). The annulus A cuts $T^{(2)}$ into two annuli A^1 and A^2 . By pasting A^i (i=1, 2) and A along its boundary, we get a 2-sided torus T^i in M. Then either T^1 or T^2 , say T^1 , is nonseparating in M. Then $T^1 \cap V_1 = A^1 \cup D_{i1} \cup \cdots \cup D_{ik}$, where A^1 is an annulus and $\{D_{i1}, \cdots, D_{ik}\}$ ($k \le n-2$) is a subset of $\{D_3, \cdots, D_n\}$. We easily see that by moving T^1 by an isotopy of type A there is a 2-sided, non-separating torus which intersects V_1 in k+1 disks. This contradicts the minimality of T'.

Case 3.2. A_1 and A_2 are not parallel in V_1 .

In this case, there is an annulus A' in F such that $A' \cap T^{(2)} = A' \cap (A_1 \cup A_2) = \partial A'$ (see Figure 6). Then by pushing A' slightly into the interior of V_1 , we have an annulus which has the same property as A in Case 3.1. So we have a contradiction as in Case 3.1.

4. Statement and proof of Theorem 2.

We can construct a closed, connected, orientable 3-manifold M as follows.

(*) Let $L=k_1\cup k_2$ be a two bridge link in S^3 , M(L) be the manifold obtained by removing the interior of the regular neighborhood of L from S^3 . Let \overline{m}_i (i=1,2) be a meridian of the regular neighborhood of k_i , m_i' be a simple loop obtained by pushing \overline{m}_i slightly into M(L). Let M_1 be a closed, orientable 3-manifold obtained by pasting the two boundary components of M(L) by a homeomorphism which takes \overline{m}_1 to \overline{m}_2 , m_i (i=1,2) be the image of m_i' in M_1 . Then we get M by performing Dehn surgery on M_1 along $m_1 \cup m_2$.

Then we have

LEMMA 4.1. If M is obtained by the construction (*) then M has a Heegaard splitting of genus two.

PROOF. We use the notations and symbols in the construction (*). Since L is a two bridge link, L is obtained as the union of the two trivial tangles. This is shown for the two bridge knot in 115p of [6]. And the argument holds for the two bridge link. Hence there is a disk with three holes B properly embedded in M(L) such that each component of ∂B is homotopic to \overline{m}_i (i=1 or 2) in $\partial M(L)$ and such that the closures of the components of M(L)-B are two handlebodies. We denote them by V_1' and V_2' . Then $V_i' \cap \partial M(L)$ consists of two annuli A_1^i , A_2^i (i=1, 2). Since \overline{m}_1 and \overline{m}_2 are identified in M, we may suppose that A_1^i and A_2^i are identified in M. Moreover, we may suppose that $m_i' \subset V_i'$. If we identify A_1^i with A_2^i on $\partial V_i'$ then we get a genus two handlebody V_i'' . And if we perform a Dehn surgery on V_i'' along \overline{m}_i then we get a genus two handlebody V_i' . Then $M=V_1 \cup V_2$ and $V_1 \cap V_2 = \partial V_1 = \partial V_2$.

This completes the proof of Lemma 4.1.

Let θ_1 be the collection of all 3-manifolds which are given by the construction (*), and θ_2 be the collection of all orientable 3-manifolds which have Heegaard splittings of genus two and contain non-separating, incompressible tori. Then

THEOREM 2. Let θ_1 and θ_2 be as above, then θ_2 is a subcollection of θ_1 . Moreover, the element of θ_1 that is not an element of θ_2 is homeomorphic to $S^2 \times S^1$ or $S^2 \times S^1 \sharp S^2 \times S^1$ or $S^2 \times S^1 \sharp Ln$, where \sharp denotes a connected sum and S^n , Ln denote an n-sphere, a three dimensional lens space, respectively.

Now, we shall prove Theorem 2. Let M be an element of θ_2 , $(V_1, V_2; F)$

be a Heegaard splitting of genus two of M, T be a non-separating, incompressible torus in M. By Theorem 1, we may suppose that $T \cap V_1$ is a disk.

LEMMA 4.2. $T \cap V_1$ is a meridian disk of V_1 .

PROOF. Since T is incompressible in M, $T \cap V_1$ is not parallel to a disk in ∂V_1 . So assume that $T \cap V_1$ cuts V_1 into two solid tori. Since T is non-separating, there exists such a simple closed curve l in M that intersects T transversely in a single point p. We may suppose that p is contained in the interior of $T \cap V_1$. Let l' be an arc on l such that p is contained in the interior of l' and l' is contained in the interior of V_1 . There is an ambient isotopy h_t $(0 \le t \le 1)$ of M such that $h_1(l)$ is contained in V_1 , $h_t|_{l'} = \mathrm{id}_{l'}$ $(0 \le t \le 1)$ and $h_1(l)$ is in general position with respect to T. Since l-l' does not intersect T and $\partial(l-l')$ is fixed by h_t , $h_1(l-l')$ intersects T even number of times. This contradicts the fact that $h_1(l)$ is contained in V_1 and $T \cap V_1$ separates V_1 .

As in [3] we have a hierarchy $(T_2^{(0)}, \alpha_0)$, $(T_2^{(1)}, \alpha_1)$ for $T \cap V_2$ which gives rise to a sequence of isotopies of type A at α_0 and α_1 . Note that α_i (i=0, 1) is of type 3 defined in Section 3. Let T' be the image of T after an isotopy of type A at α_0 , and $A_i = T' \cap V_i$ (i=1, 2). Then A_i is a non-separating, incompressible annulus properly embedded in V_i . By cutting V_i along A_i we get a genus two solid torus V'_i (see Figure 7). Let A'_i and A''_i be the copies of A_i on $\partial V'_i$.

Figure 7.

Now, we will show that M can be given by the construction (*).

Let $c_i = c_{i1} \cup c_{i2}$ (i=1, 2) be two disjoint trivial arcs properly embedded in a 3-cell B_i , $U_i = \operatorname{cl}(B_i - N(c_{i1} \cup c_{i2}; B_i))$, $A^{ij} = U_i \cap N(c_{ij}; B_i)$ (j=1, 2), where $N(c; B_i)$ denotes the regular neighborhood of a polyhedron c in B_i . A^{ij} is an annulus on

 ∂U_i . Let m_i' be a simple closed curve obtained by pushing the core of A^{i2} into U_i . If we perform a proper Dehn surgery on U_i along m_i' then we get such a genus two handlebody U_i' that there exists a homeomorphism from U_i' to V_i' which takes the image of A^{i1} to A_i' and the image of A^{i2} to A_i'' . Hence, the attaching homeomorphism $\partial V_1 \rightarrow \partial V_2$ of the Heegaard splitting $(V_1, V_2; F)$ induces a homeomorphism $\operatorname{cl}(\partial U_1 - (A^{11} \cup A^{12})) \rightarrow \operatorname{cl}(\partial U_2 - (A^{21} \cup A^{22}))$. If we paste U_1 and U_2 by this homeomorphism then we get a link space M(L) where $L = k_1 \cup k_2$ is a two bridge link (see [6] 115p). Let m_i (i = 1, 2) be the image of m_i' in M(L). Then m_i is isotopic to the meridians of L. Since A^{i1} and A^{i2} are identified in M, we may suppose that m_i is isotopic to the meridian of k_i . Then by tracing the above procedure conversely we see that M can be given by the construction (*). This completes the proof of the first part of Theorem 2.

Let M be an element of θ_1 and not an element of θ_2 . By the construction of M, there exists a non-separating torus T in M. Then by the loop theorem [2] there exists a non-separating 2-sphere in M. By Lemma 3.8 of [2], Haken's theorem ([3]) and Lemma 4.1 $M=S^2\times S^1\sharp M'$, where M' has a Heegaard splitting of genus one. Hence, the second part of Theorem 2 follows.

REMARK. By Theorem 2 and the fact that a torus bundle over S^1 contains a non-separating, incompressible torus, we have the following relations of inclusion.

$$\left\{ \begin{array}{l} \text{closed orientable 3-manifolds} \\ \text{with Heegaard splittings of} \\ \text{genus two} \end{array} \right\} \supset \theta_2 \supset \theta_1 \supset \left\{ \begin{array}{l} \text{torus bundles with} \\ \text{Heegaard splittings} \\ \text{of genus two} \end{array} \right\}$$

It is known that there exists infinitely many topologically distinct torus bundles with Heegaard splittings of genus two [5].

We note that there is an element of θ_1 which is not a torus bundle. We claim that if M is a torus bundle and T is a non-separating, incompressible torus in M then T cuts M into $T^2 \times I$, where T^2 , I denote the two dimensional torus, the unit interval [0, 1], respectively. Since M is a torus bundle, there exists a non-separating, incompressible torus T' which cuts M into a $T^2 \times I$, say M'. Since T and T' are incompressible and M is irreducible, by the standard arguments of the three dimensional topology we may suppose that $T \cap T' = \emptyset$ or T and T' intersect transversely, each component of $T \cap T'$ is an essential loop in T' (hence T) and each component of $T \cap M'$ is not boundary parallel in M'. If $T \cap T' = \emptyset$ then $T \subset M'$ and by [1] T and T' are parallel in M. Hence T cuts M into $T^2 \times I$. If $T \cap T' \neq \emptyset$ then the image of T in M' is a system of parallel annuli A_1, \dots, A_r ($r \geq 1$). On the other hand, the closures of components of $T' - (T \cap T')$ are annuli A'_1, \dots, A'_r . By cutting M' along $A_1 \cup \dots \cup A_r$ we get T' solid tori. If we paste these solid tori along A'_i ($1 \leq i \leq r$) then we get $T^2 \times I$. Hence M cut along T is $T^2 \times I$ and we establish the claim.

If L is a non-trivial two bridge link, which is not the Hopf link, then the image of $\partial M(L)$ in M, say T, is a non-separating, incompressible torus and M cut along T is not a $T^2 \times I$. Hence M is not a torus bundle.

(ii)

Figure 8.

Let $L=k_1\cup\cdots\cup k_n$ be an *n* component link. L is called *strongly invertible* if there is an orientation preserving involution g of S^3 which satisfies

- (i) Fix(g), the fixed point set of g, is a circle,
- (ii) $g(k_i)=k_i$ $(1 \le i \le n)$ and
- (iii) $g|_{k_i}$ reverses the orientation of k_i for each i.

Then we have

LEMMA 4.3. Every two bridge link is strongly invertible.

PROOF. Let $L=k_1 \cup k_2$ be a two bridge link and let $(V_1, V_2; F)$ be a genus two Heegaard splitting of S^3 . Then by the definition of the two bridge link ([6]) we may suppose that $L \subset F$ and that L does not separate F (see Figure 8).

In [7] it is shown that if $(V_1', V_2'; F')$ is the genus two Heegaard splitting of a 3-manifold M' and α_1 , α_2 are pairwise disjoint simple closed curves such that $\alpha_1 \cup \alpha_2$ does not separate F then there is an orientation preserving involution h of M' such that $h(V_i)=V_i$ (i=1,2), Fix(h) is a 1-manifold, $h(\alpha_j)=\alpha_j$ and $h|_{\alpha_j}$ reverses the orientation of α_j (j=1,2). Hence there is an orientation preserving involution g of S^3 such that Fix(g) is a 1-manifold, $g(k_i)=k_i$ (i=1,2) and $g|_{k_i}$ reverses the orientation of k_i . By the Smith theory Fix(g) is a circle. Hence L is strongly invertible.

PROOF OF COROLLARY. By Theorem 2 an orientable, closed 3-manifold M which has a Heegaard splitting of genus two and contains a non-separating, incompressible torus is given by the construction (*). By Lemma 4.3 there is an involution h on M(L) whose fixed point set K is a 1-manifold which intersects

Figure 9.

each boundary component of M(L) in four points. Moreover, we may suppose that each of m'_i and \overline{m}_i (i=1, 2) intersects K in two points and is invariant under h (see Figure 9). Then h induces an involution h' on M, and the quotient space of M under h' is $S^2 \times S^1$. This completes the proof of Corollary.

References

- [1] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., Prentice Hall, 1968.
- [2] J. Hempel, 3-manifolds, Ann. of Math. Studies, 86, Princeton Univ. Press, Princeton, N. J., 1976.
- [3] W. Jaco, Lectures on three-manifold topology, Conference Board of Math. Science, Regional Conference Series in Math., 43, 1980.
- [4] M. Ochiai, On Haken's theorem and its extension, Osaka J. Math., 20(1983), 461-468.
- [5] M. Ochiai and M. Takahashi, Heegaard diagrams of torus bundle over S¹, Comment. Math. Univ. St. Pauli, 31 (1982), 63-69.
- [6] D. Rolfsen, Knots and Links, Math. Lecture Series, 7, Publish or Perish Inc., Berkeley, 1976.
- [7] M. Takahashi, An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math., 2(1978), 27-34.

Tsuyoshi KOBAYASHI Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan