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Introduction.

Many fruitful studies have been produced before 1980 to generalize the
classical Ito formula for Ito processes and for C*functions to more general pro-
cesses than Ito processes (H.Kunita - S. Watanabe P.A. Meyer and so
on) or to more general functions than C2-functions (for example Tanaka’s formula
[12]). These generalizations can be characterized as specific realizations
of semimartingale decomposition due to J. L. Doob and P. A. Meyer ; Semimartin-
gale=martingale-+process of bounded variation.

At the end of 1970’s, noting that the square integrable martingale of zero
quadratic variation is identically zero, M. Fukushima has introduced a new point
of view where the Ito formula can be conceived as a decomposition into the sum;

(0.1) Martingale-+process of zero quadratic variation, or into the sum;
(0.1") Martingale-+continuous additive functional (CAF) of zero energy.

In this conception, he has established a unique decomposition (2], [3], [5]);
0.2) u(X)—u(Xo) =M+ N, MM e Mioe, NFE Tioc

for the symmetric Markov process X; and for any function u € %, where u&€ Foc
means that » belongs locally to the Dirichlet space associated with X;. In
Fioc denotes the family of martingale additive functionals locally of finite energy
and 1. is the family of CAF’s locally of zero energy.

In this direction, M. Yor and the second author of the present paper
produced several concrete realizations of the decomposition of the type (0.1%)
and gave some applications to the local time of one dimensional Brownian path.
Some related topics have been discussed in and in [20]

Once the decomposition has been established for us%, it is quite
natural to ask if the decompositions for u< .. exhaust all possible decomposi-
tions of the form [0.2): In other words the question is to ask if for any given
N, E T, there exists u e Fioc such that u(X,)—u(X,)—N,< Mo holds.

In §2 of this paper, we will attempt to answer the question in the affirma-
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tive in the case where the Dirichlet space associated with X, is assumed to be
regular as well as to have the local property. In §3 we will treat some exam-
ples where representations of CAF’s locally of zero energy can be given in more
concrete or simpler forms than those given in the general case in §2.

During the writing of this paper, the authors were enlightened by stimulat-
ing discussions with N. Ikeda. M. Fukushima gave us some valuable suggestions.
We wish to express our gratitude to them.

§1. Preliminaries.

Let E be a locally compact separable Hausdorff space and m a positive Radon
measure such that supp[m]=FE; i.e., m is a non-negative Borel measure on E
which is finite on compact sets and strictly positive on each non-empty open set.

Let (&, ) be a Dirichlet space on L% E ; m). We assume the following con-
ditions on (&, &)

(C.1) (&, 9) is regular,
(C.2) (&, g) posseses the local property and no killing measure.

On the canonical path space £ we consider the associated Hunt process
X=(Q, M, M, X;, {, P;) on E which is m-symmetric :

[ Permgtemdn={_fepgtomdx),

f, g€ B7(E), t>0, where P, is the transition function of X and 9*(E) is the
family of all non-negative Borel functions on E.

By the condition (C.2), the process X is of continuous sample paths (diffu-
sion) and without killing inside for q.e. starting point, i.e., there exists a prop-
erly exceptional set N such that

P Xr-=d/{<0)=1 holds for x€ E—N,

where E\U {4} means a one point compactification of the space E (Cf. Chap. 4
of [3]).

Let G be a finely open set of E. Then it is known that there exists the
part X¢ of the process X on G whose Dirichlet space is the part (€%, °) on
L¥ G ; m) of the space (€, F). (Cf. and [15).

Let A, be a continuous additive functional (CAF) of the process X where
we use the same definition of CAF as proposed in Fukushima’s book ([3]).

We set

1 1 .
e(A)=lim 5. Em[AL]—ltlgxét—SEEz[A,]m(dx)
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when the limit exists. e(A) is called the energy of A.
We introduce two kinds of Markov times o3 and 7z of a set B by oz(w)=
op=inf {t>0; X,= B} and

t5(W)=0z-p where inf {#} means oo,

Here, we introduce several families of CAF’s.

(I) Martingale additive functionals (MAF). We say that M is MAF if M is
CAF such that for each t>0 E,[M%¥]<oco and E.(M,)=0 q.e. x. Put H={M;
M is an MAF}.

(II) Local martingale additive functionals (LMAF). We say that M is LMAF
if there exist an increasing sequence of relatively compact finely open sets G,
and a sequence of MAF’s M™ e such that limze = and M,=M{™ for

0=t<7g, a.s. (P;) for g.e. x. We denote the family of LMAF’s by Moc.

(Il MAF of finite energy. We say that M is MAF of finite energy if
Me M such that e(M)<+oco. Put

F={M; MeM, e(M)<-+oo}.

(IV) MAF locally of finite energy. An MAF M is called locally of finite
energy if there exist an increasing sequence of relatively compact finely open
sets G, and a sequence of M™ e such that lim 7¢,=¢ and M,=M™ for
0=t<7¢, a.s. (P;) for q.e. x. Put e

Foe=1{M; M is an MAF locally of finite energy}.

(V) CAF of zeroenergy. A CAF N is called CAF of zero energy if e(N)=0
holds. Put

N={N; N is a CAF of zero energy}.

(VI) CAF locally of zero energy. We say that N is CAF locally of zero
energy if there exist an increasing sequence of relatively compact finely open
sets G, and a sequence of CAF’'s N™ &g such that limze, = and N;=N™
for 0=t<7¢, a.s. (P;) for q.e. x. Put "

Thoe=1{N; N is a CAF locally of zero energy}.

We adopt a slightly modified definition of the function space &, of Fukushima
(Cf. [8]). “us9Fi.” means that there exist an increasing sequence (G,) of rela-
tively compact finely open sets such that limzg, = a.s. (P;) for q.e. x and a

sequence (u,) of functions of ¢ such that u=wu, m-a.e. on G,.
By the result of M. Fukushima (2], [3]) we know that for any u< Fioc
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there exist M™e& .. and N™e& I, such that the CAF u(X;)—u(X,) can be
expressed uniquely as
w(X)—u(Xo) =M+ Ni,

§2. Representation of CAF’s locally of zero energy
— general case —.

The main result of this section is the following ;

THEOREM 2.1. Let N, belong to Tl and G be a relatively compact open set
such that

2.1 P.(za<{)>0 g.e. x€G.

Then there exist an increasing sequence {G,} (G,CG) of relatively compact finely
open sets and a sequence {u,} of functions of Fioc Such that

(2.2) limzg =7¢  a.s. (P:) g.e. x€G  and

-0

N,=Ntunl 0=t<7zg, a.s. (P;) g.e. x€G,.

If {G3} and {uy} are other sequences satisfying (2.2), then u,—un is harmonic
on G,NGr,.
Preparatory lemmas; The following chain of lemmas shall lead up to the

LEMMA 2.1. Let N,€71 and G be a relatively compact finely open set such
that

(2.3) g.e. SupE [N, ]<-+oco®
xeCG

and P,(ts<{)>0 gq.e. x€G, where N,,= max |N,|. Put u(x)=—E,[N.,] and

0ststg

M=u(X)—u(Xo)—N:. Then Min.,€ ME holds, where M means the family of
MAF’s with respect to the part X¢ of the process X on G.

ProoF. The proof of this lemma will be broken in several steps.

(1°) In this step it will be shown that

(2.4) P(t6°0:,=0; 1¢<{)=P,(ra<{) g.e. x<G holds.
By the strong Markov property we have
(2.5) Py (tg0.,=0; TG<C):EIEPXTG(TG:0); 76 <{]

holds. Let A" be the set of regular points for A. Then we see that
(2.6) X(eE(E—=G)J(E—-G)y  a.s. (P;) q.e. x€G
holds as well as that (E—G)\(E—G)" is semi polar. (Cf. Th. 1. 11.4, Prop. 2.3.3
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in [1]). In view of the fact that any semi polar set is exceptional (Cf. Th.
4.2.3. in [3]), we have from that

2.7) P Xy €(E—G)NE—G); 16<8)

=P, (X:;€(E—=G); t7¢<Q)=Pi(z¢<{) q.e. x on G
holds.
Pay attention to the fact that for any ye(E—G)"

(2.8) P,(rg=0)=1
holds. Then combining with (2.5), we obtain the desired equality
(2.4) Pi(t6°0.,=0; 16<{)=P(re<{) q.e. x€G.
The relation (2.4) yields immediately
2.9) TgoOegrne=Te—Ta /At a.s. (P;) q.e. x=G.

(2°) Here, we will show that M;x., is an MAF of the part process X¢ In
the following of this step we put z=t4 for abbreviation.
First, we will see several simple relations; For t+s<t

2.10) Nasssrne=Ni+Nso 0 =Nipne+Nspeo Oipe
and
(2.11) U(X rne) =u(Xsnre Oene)

holds. Let t<z<t+s. Then by we see that t—t=7-0,<s. Thus we get
for t<r<t+s,

(2 12) 1V(t+s)/"xr:jvr:1/ et Te 01/\t:Nr/\t+Nr/\s° 01/\0 ’
and
(2.13) WX gasr) = u(XD)=u(Xonce Oone) -

If z<t, then we have

(2- 14) AN(t+s)/”r:1\Tz':Nt/\t +Nr/\s° ﬁr/\t
and
(2-15) u(X(Z+s)/\r>:u(Xr>:u(Xs/\r°01/\&) .

Thus the above relations show that M,;,. is a CAF with respect to the part
process X¢,
Next we shall show

(2.16) E. [ M )<+ for any >0 q.e. x=G.
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By the definition of M, we have

(2.17) E M =3E ;[u¥(Xind)1+3E[u*(Xo)]+3ELN{A]
=31,+3I,+31, say.
By the assumption supposed on N, we get for:/;
(2.18) L=E.[N¥]<+oo.

For I, we see that

(2.19) L=E.[(Ex, [N E[Ex, [NT1=E,[(Ne—Nypo)]

S2{E,INZ]+E[Nirn ]} <Hco
holds.
For I, it is easy to see

(2.20) Iy=E [u*(Xo)]<+co.

Thus the relations [(2.17), [(2.18), [2.19) and [2.20) yield the relation (2.16).
(3°) Finally we will show that E,[Mr.]=0 q.e. x€G. We have

Ex[Mt/\r]:'_‘Ex[Nt/\r:I—'E:c[EXU\TENT:]]“_E.Z[EXOENT]]
:—Ex[Nt/\T:I—Exl:Nr_NtAr:|+Ez[Nr]:0 g.e. xeG.

Hence we can conclude that Ma < HC. Q.E.D.
The next lemma can be found in Fukushima ([3]).

LEMMA 2.2. Let G be a relatively compact finely open set. Then
(2.21) MG =HE

holds where
ME={M; M is an LMAF with respect to the process X¢}
and
G.={M; M is an MAF locally of finite energy with
respect to the process X6  respectively.

In the following, the resolvent of order a>0 of the part process will be
denoted by RS and that of order 0 by R®. P¢ means the transition function

of X¢.

Let M, be the LMAF which has been introduced in Lemma 2.1 Choose a

strictly positive Borel function f on G.
We set F,={x=G,; R°*f>1/n}, where {G,} is the sequence of finely open

sets associated with M,. Then F, is a finely open set whose &C-capacity

is finite.
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LEMMA 2.3. Let G be a relatively compact and finely open set satisfying
(2.1). Then

(2.22) lim SGRF"ng(x)(l—P?"l)(x)m(dx):o

holds for any non-negative bounded Borel function ¢ on G, where we put RT"¢(x)
=0 when x<F{.

Proor. Let B;,=tA7g, and A, be the l-sweeping out of B; on the set Fj
(Cf. [3]. Then we can see that A, is a positive CAF of which smooth measure
has its support in the set (F%)".

Put

T

VESS0=Ea| | Termatfx)d A,

and

T

Vi n=Ea|| "estrf(X)d B, .
Then we get
Vs, (x)zEx[S:Gne““ f(X)dt|=Rgnf(x), %SG
The following two equalities can be checked easily;
(2.23) Rfng(x)=lim V% 54 (x)
(2.24) VEs—Vabt+pVeuVik—qVisVi%=0.
From these equalities, it follows that

(2.25) qSG RFrg(x)(1—qV 281 (x)m(d x)

—limg|  V256(0)(1—qV 28D xm(dx)
D=0 n
(By the fact that the kernel V%% is symmetric)

=lim g g0V &Y~V 2D C0m(dx)

=g SOV 25— H Y 24D(0m(d)

where
Hy2 f(x)=ELf(X )]
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Noticing that H;21(x)=P:(0, <7e,)=1, x€G, we get from that
(2.26) fim qSG RFng(x)(1—qV 281 (x)m(dx)
g—oo n
=limg{ G0V 2g1—H Y 281 (xm(dx)
gq-soo Gp n

:SGnqs(x)(l—Hﬁgl)(x)m(dx)zo

holds.
On the other hand, we can see

@21 lim R™g(x)1—gV 2LxIm(dx)

:li?qga R™(x)(1—qRS1)(x)m(d x)

—1 1 Fp Gn
n—ltlirol—t-SGnR $(x)(1—PEr1)(x)m(dx) .
Combine (2.27) with [2.26). Then we get Q.E.D.

Let us put K,={x&€F,, R™*f>1/n} and Lx,={ed " v=l on K, a.e.
(m)}, where (77, gy stands for the Dirichlet space which corresponds to the
part X Fa,

It is well known that F'*CF¢ holds i.e.; if v&€F " and v is extended on
G such that v(x)=0 for x& G—F, then ve g°.

The following lemmas (from lemma 2.4 to lemma 2.8) are essentially due to
Fukushima. In these lemmas G will be assumed to be relatively compact finely

open set satisfying Under this condition X¢ is transient. Hence we shall
state the O-th order version of Fukushima’s result.

LEMMA 2.4. There exists a function e € Lg, such that
EFfn(en, en)=inf{&"(v, v), vE Lk, } =a.
PrOOF. Let v,€.Lk, be a sequence such that
llzi_rEGSF"(vk, V) =a.

By the following equality

v _vm v -—vm 1 1
é’F"< L] 5 , k 5 ):—Z—SF"(vk, V)t 78F"(Um, Um)

—SFn( vk;vm , vk—;vm )’
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we can observe that

Ve—Un

2

lim &F n( Ve~ Um
koo 2 ’
m—0

)§a—a=0.

Let e, be the limit element in ¥~ of the &F»-Cauchy sequence {v,}. By
the definition of ¢, we see that &F»(e,, ¢,)=a.

On the other hand it is easy to check e,=1o0n K, a.e. (m). Thus e,€.Lg,
holds. Q.E.D.

LEMMA 2.5. e, is the unique element of F¥» which satisfies the following ;
(2.28) e.=1 on K, a.e. (m)
and
(2.29) Efnle,, 1)=0 for any ve FFn such that v=0 on K, a.e. (m).

The proof can be shown in essentially the same manner as employed in that
of Lemma 3.1.1 of [3] So we omit it.

LEMMA 2.6. e, is an excessive function with respect to the part process X{n.
Proor (Cf. Th. 3.2.1 of [3]. Let us put X={wegF", w=e, a.e. (m)}.
Then by we observe that XC L and ¢, K. Hence

EFnle,, e,)=inf &M (w, w).
weX
Since |e,| =X and &F(|e, ], |e,])=&Fr(e,, e,) we see that e,=]e,| =0 a.e.

{m).
On the other hand,

(en—Pfre,, v)p,®=(en, v—P{™)p,
=&Fn(e,, RFry— RFrPFrp)=0
holds for any v g¥» such that v=0 a.e. (m), because
t
R{nv—Ranfnuzg PFrods
0

is non-negative. Hence e, is excessive. Q.E.D.
For the proof of the next lemma, see Lemma 3.3.2 in [3].

LEMMA 2.7. Let u,, u, be excessive functions. Suppose that u,=u, a.e. (m)
and u,€FFr. Then u, 9% and F(uy, uy))<EFn(uy, u,) hold.

LEMMA 2.8. Let us put H’;Zﬂf(x):Ex[f(X,,Kn); ox,<tp,). Then

(2.30) HEr1(x)=enq(x)

holds on F, a.e. (m).
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PrOOF (Cf. Lemma 4.3.1 in [3]). First we will show that

(2.31) Hinl(x)=Ze,(x) a.e. (m)

holds.
Take a Borel modification &, of ¢, such that &,=1 on K,,. Put Y, (w)=28&,(XF»).
Then (Y., F9, Ph%)® is a supermartingale, where F9=¢ {X=; s<t} and A is a non-

negative function such that SF hix)m(dx)=1.

Let S be a finite set of (0, c0) with minS=a and maxS=b.

Put ¢(S; n)=inf{teS, XTreK,}. If the set in the braces is empty we put
o(S, n)=b.

By the optional sampling theorem, we can see that

P3(0(S, m)<D)ZER%LY o5, m 1S ERbm[Y o 1=(h, ea)r, .

Letting S increase to a countable dense set in (0, b) and then b tend to
infinity in the above inequalities, we get

Pir(ox, <tr)=(h, ed)r, -

Hence we can see that holds.

On the other hand we know that HE=1(x) is excessive with respect to Pfn.
Hence in view of Lemmas and 2.7, we can conclude from [2.31) that [2.30)
holds. Q.E.D.

LEMMA 2.9. Let u be the function which has been introduced in Lemma 2.1.
Then u belongs to 8.

PrROOF. Set [|u].=sup|u(x)|. By Theorem 3.3.3 in [3], we observe that
xEG

(2.32) u(x)en(x)=lullwen(x) S lullon R f(x)

on F, because ¢,(x)<nRf»f on K, and nRf»f is excessive.
Note that

E)(uen, uey) :%Sa (uen)(x)(1—PGn)ue,)(x)m(dx)
_1 .
_z_tganxang{(”enxy)—(uen)(x)} Pfr(x, dy)ym(dx)

T %San(ue”)z(x)(l“P?"l)(x)m(dx) )

Then, using Lemma 2.3, we have
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(2.33) lim £ ue, ue,)
=lim L[ (wea)3) — (wea)x)} 2PECx, dyim(d)
tio 2t Y " ¢ » &Y
.1
<tim - leal2{ {u(x)— ()P, dyym(a)

+1tig)1%uunz,Sg(en(x)—en<y>>2P?n<x, dy)m(dx)

’:Iim {If‘l‘[z}, say.
tio
From the definition of u, we have for I,
1
(2.34) 11=—t—||€nlliSG E [(u(X:)—u(Xy))?; t<zg,Im(dx)

=2 o, l2| ELINY; t<ee, Im(dx)
2

+ 2 lealz| BLME; t<ca,Im(dx).
Recalling the fact that N,€3, M,=M{® (0=t<7¢,) and M™ < H° we can

see from that

(2.35) 1}5101 I, <400
holds.

Since ¢, FF»C g%, we have for I, that
(2.36) lgrol I, <40
holds.

By and we can conclude that lime&{ (ue,, ue,)<-+oo
holds. Hence ue,e F%C FC. He

By ue,(x)=u(x) on K, holds.

On the other hand, by the definition of F, and K,, we have

B rxoat|=E.[ | pxoar+ | foxodr

=E1[RFn<XfK,,>]+Ex[RGn<Xan>Jg% .

This yields immediately limzg =limzs =7¢ a.s. (P;) q.e. x€G. Thus we
N0 n—oco
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have shown that us g¢.. Q.E.D.
Following Walsh [187], we shall say that two elements w and o’ of £ are
t-equivalent if w(s)=w’(s) for all s<t¢. Let 7.w be the class of elements ’
satisfying
w(t—s) if s<t={(w)
o'(s)=
4 for all s if {(w)<t.
For Ne71 define N by
. Ny if t={(w) or {(w)=0
Nyw)=y . .
Ni(w) if t>C(w)>0.

Then, by it is known that N is a CAF of X and

(2.37) En[Y ; 2t]1=EnlY -y, ; {=1]
for all {-measurable function Y.

LEMMA 2.10. Let N be an element of T satisfying sup E.[N2,]<+o and
sup [ﬁ?aj <oo. Then Ny, belongs to Jf.

ProOOF. By analogous arguments employed in Lemma 2.3, Lemma 2.4 and
there exists a function ¢%, which satisfies the following;

(2.38) ef (x)=1 on F, a.e (m)

(2.39) ef, €F°

and

(2.40) E%ef., v)=0 for v€9¢ such that v=0 on F, a.e. (m).

We put e(x)=ef, (x) for abbreviation.

By an obvious modification of the proof of Theorem 5.1.1 of [3], we can
show that there exists a positive CAF A% of X¢ such that e(x)=E,[A¥]] q.e.
x€G. The CAF—A is equal to N™ which appears in Fukushima’s decomposi-
tion of e(X$)—e(X§), that is;

e(X§)—e(X§H=MP—-A¥, 0=t=7¢

where M™< H; (see Lemma 5.3.1 in [3]).
Set

t tN\rg
@241 (N =Nonege XD~ Noabiot | " N,d a3,

Then (N,), is a CAF with respect to X¢.
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We will divide the following part of the proof in several steps.

(1°) Here we will show that
tio

(2.42) lim 15 EL(Nipege(X ¥ Im(d x)=0

holds.
Since e(X.;)=0 a.e. (Pz) q.e. x on G, we have Ninze(XF)=N.e(Xinc,).
Hence

tio

lim lg EolNinegeXireg)Im(dx)<lim IS E,[(N)Im(dx)=0.

Thus has been proved.
(2°) In this step we will show that

(2.43) lim—E [(S:ATGNdegeJ)z]:O.

tio

Put C,={M"", M), for abbreviation. Then we have
(2.44) E,{(SWGNS@Z Mgen)’] _ Em[SWGNEdCs] .
0 0
Now we set {/n=4d. Then by we have

(2.45) Em[S:A"’Ngdcs]

=lim EE [NE(C (r+106—Crs) 5 (B+1)0<76]

n—co k=0

=lim "5 En[NkEx,,{Co; 3<76T; kO<0]

n-oo k

=lim EEm[Nké"rkﬁEXkaorka[cﬁy 0<76]; k0<Tg°7 5]

n-+co k=0

=lim 2 Er[NisorsExo[Cs; 0<t6]; R0<74]

n-owo k=

=lim > S E.[Cs: 5<7G]EI[S:NGN§ds]m(ds)

. n-1 .
+161£r015G{E,[k§0 Nisnegd gNst t<rg]} E.[Cs; 6<zgIm(dx)
=%i§)1{f1+]2} say.

Let ¢ be the smooth measure which corresponds to (M, M, =C,. Then,
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by Fukushima’s result (Cf. Chap. 5 in [3]), we have

(2.46) —;—‘u(G):eG(e, e)< 4o,

Now we will evaluate J,. Using Lemma 5.1.4 of we get

2.47) %—SgEz[C,;; 5<tG]EIB:NGJ\7§ds]m(dx)

AL [ s
:SG%SjEI[S:A’““Ng(amds ; u<ra]duﬂ(dx)

1 5E chG-u)Nz 0 w)ds - duuld
S
Note that for u <z and s<ze—u, liIIOle(@uw)ZNs, | Ni(8.0)|=|Nsu(@)— N ()]

gZK/,G(w) and that E,[N 2;(®)] is bounded on G. Then we have by Lebesgue’s
convergence Theorem

d-0

:SGEx[SzNGN?ds] uldx).

2.48 lim Ji=lim—{ E,[Cy: 6<rsE U‘”Gmd] (dx)
(2.48) ‘;grolfl—lmgga [Co;0<T6lEL| | sas |m(dx

Set

n-1 NTG A
¢a(x):ExLZ§) N,%MTG-(S——S; “Neds: Z‘<Z'G:| .

Then we have for J,

. . 1
lim J,=lim|_s(x)5 Eo[Cs; 0 <zeIm(dx)

—limg lSJPG (0 pdx)d
T 5~0J6 0 Jo u¢5x[1 xau -

Recalling that P§¢s(x)—0 q.e. x on G as 0—0, we observe that

(2.49) 1515)1 J.=0
holds.

In view of (2.45), [2.48) and [2.49), we get

a0 gl o [ ]
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—hm 1 E [S Taﬁzds]
0

tio

Recalling that sup EIEN§G]<+oo and u(G)< 4o, we get from [2.50)

ZEG

2.51) lim - lp. LG

tio

t/\rGNdeEe])zjl :0 .

0

(3°) In this step, we will show

(2.52) lim -+ - Ep (VNGNSdAgﬂ)z]zo.

tio L\JO

First, we observe that

Em[GZArGNsdAEeJ)g]éEm[(S:/\ g dAm) ]

dAWS “NadAp]

S
Sz/\ra mg —5)/\TG(NS—I—NLL(0360))0!*42‘8](63(0)]
I

“N3E 2 [AG-p e 10 AP

t/\
0
+2Em[g iy EXSB” VR dA["J]dAm}—t(LﬁLz) say.

Let v be the smooth measure associated with the increasing process A
Then

UG)=lim - B[ A% 1 <rg)=lim L £, [o(X§)—e(XD)]
1 1
=lim L1, (I~ Pfo)s=lim -(1—PF1, o)
éltiggl—i—(l—P?l, nR® fle=lim (1, 1—POR®f) ¢

i ‘be —
=lim ; <1, SOPsfds)G—n(l, fle<oo.

t—0

The relations thl—O and limL,=0 can be shown in exactly the same
t—0
manner employed in the last step. Hence we can get [2.52)

(4°) By [2.41), (2.42), [2.43) and [2.52), we can conclude that (N,), € 71¢ holds.
On the other hand, we know that
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(No);=N, 0=t=tp, and 7p,17¢ a.s. (P;) g.e. x on G.

Hence we see that Nip.,< . Q.E.D.
We are now in a position to state the following.

PROPOSITION 2.1. Let N belong to J1 and G be a relatively compact finely
open set such that

g.e. supE,[N2 )<+, g.e. supEr[ﬁiG]<oo and
zEG TEG

P(t5<0)>0, gq.e. x.

Put u(x)=—FE;[N:;]. Then u belongs to 5. and N,=NP, for 0=t<zg
holds.

PrOOF. By u belongs to .. By the definition of M, in}jLem-
ma 2.1, we have w(X%)—u(X§)=Mry+Nip, where Mip,€ M. (by Lemmal
2.2) and Nip,€91f. (by Lemma 2.10).

On the other hand, it is known by Fukushima’s result that for uegg.,
u(X§—u(X =M ,+Ni, holds where M™e fif. and 'N™eqnf, moreover
the decomposition is unique.

Hence we can conclude that N,=N§¥ for 0<t<zg. Q.E.D.

To prove we require still an auxiliary lemma which¥[is
essentially due to H. P. McKean and H. Tanaka. (Cf. [6).

LEMMA 2.11 (H. P. McKean and H. Tanaka). Let N3 and G be a rela-
tively compact finely open set satisfying (2.1).

Then there exists an increasing sequence {U,} of finely open sets such that

(i) U.CG, limty,=7¢ a.s. (Pz) gq.e. x on G,

(i) sup E.[N% ]<+oo
and _

(iii)  sup E.[N%, 1<+oo.

Proor. (Cf. [6]).

Put

v(w)=0r§r§§3<0 [N:;—N,|.

.Then, we have

(2.53) 77§2N,G
and
(2.54) N,G§277 .

Set ¢;(x)=E,[e *"] and é;(x):Ex[e’m’G] for 2>0. Then it follows from
(2.53) and [(2.54) that
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(2.55) en(x)=2;(x)=ezx).
Observe that

-2 max | Nra-Ngig!
E[(1—ex)(Xy); t<te]=E [1—e ‘5t+*=% ; 1<l T 1—ea(x)
on Gastl]O.

Hence 1—¢;(x) is excessive with respect to the part process X¢.
Put V,={x; x€G, e;(x)>1/n}. Then V, is finely open such that V,CG
and V,CV,.. If x=V,, then by (2.55) we have

%éel(x)éém(x)épx(ﬁfaéT)+e_lT/2:1—Pz(N,G>T)+g—2T/2.
From the above inequalities, we get
Px(]V,Vn>T)§Px(N,G>T)§1_%_,_e—mz.

Hence letting T be sufficiently large, we can choose a number C such that

(2.56) Py(N, >T)=C<1  for x€V,.

Now, put 7,=inf{t>0, N,=kT}. Observe that 9z=9s-1+7:°0,,,. Then
we get from that

(2.57) Px(l\—/,,,n >kRT)=P:(:<ty,)
=E:[Px,, (0:i<tv,); ne-1<ty,]
SCPy(np-1<ty,)=C*.
By one can choose two positive constants C;>0, C,>0 such that

Po(Ney >1)=Cie %" x€V, holds.

This inequality yields immediately sup E.[N 2y, 1<+o0.

On the other hand, by [2.1), we know that ¢;(x)>0 q.e. x on the fine closure
of G. Hence we have

inf e;(X,)>0 a.s. (P;) q.e. xonG.

Oster
Then 7y, (w)=7s(w) holds for sufficiently large number n which may depend on
o. Thus we get P,;(limzy =76)=1 gq.e. x on G.

Similarly there exists an increasing sequence {W,} of finely open subsets of

G such that seuull) Ex[ﬁ ?Wn]<+oo and 7y (w)=7¢(w) for all sufficiently large n.

Taking U,=V,N\W, we obtain the desired result. Q.E.D.
After the long chain of lemmas, we are at last in a position to prove Theo-
rem 2.1.
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PROOF OF THEOREM 2.1. By the definition of the CAF locally of zero energy,
there exist an increasing sequence {G,} of relatively compact finely open sets
and a sequence N of CAF’s of zero energy such that

limez,={, \UG,=E and N,=N{» for 0=t=rz,.

n—oco

Put G,=G,N\GNU,, where U, is the set introduced in Cemma 2.11. Then
we have
(1) Nineg,=Ni® 0=t=7q¢,,

(i) sup E.[N%, 1< +oo,
(i) sup B[N, 1<+o0
and

(iv) limzg =7¢ a.s. (P;) q.e. x on G.

n—oco

In view of Proposition 2.1, there exists a sequence {u,} of functions such
that u,e9dy?, NEn=N, 0=<t<zs, a.s. P, q.e. x on G.
Now we will give the proof of the last part of the theorem. Suppose that

there exist finely open sets G,CG, G,CG and functions u,€ %8¢, u,eg 1002 such
that

NpE#=N, 0=t<tq_,

N =N, 0=Zt<ze, a.s. (P.).
Then

(= up)(X)—(Up—ub ) X)=M"""""  0=t<ts g, a.s. (Py).

Since (MW™n-¥a)tAtg ng,)) belongs to HenCn for q.e. x=G,NG, there
exists a finely open neighbourhood UCG,NG}, of x such that (M,E/’\‘,’;,_";IJ) is a
square integrable P,-martingale. In particular, for all finely open neighbourhood
V of x such that VCU we have E,[M&™ "W 1=0, that is (up,—u)(x)=
E [(un—uz)(Xr,)]. This shows that u,—u7 is a harmonic function on G,NGh.

Q.E.D.

§3. Examples.

In this section we will discuss two cases where the representation of CAF

locally of zero energy can be given in more precise expression than that is
formulated in [Theorem 2. 1.

ExaMPLE 1. Uniformly elliptic case.
Let E=R% and m be a Radon measure on R%. Let & be a symmetric form
on L*R?; m) satisfying the following ;
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(i) & is defined on C%XxCg, where
={u; uesC=, supp[u] is compact},

(ii) & has the local property,

(iii) &€ is closable.

Then, in view of Beurling-Deny theorem (§2.2 in [3]), € has the following
expression for u, veCg;

@1 e, =73

7

ou ov

da P _v”(dx)

with some Radon measures v;;.
Further, we assume the following

AssSUMPTION. There exist two positive constants; 0< K, <K,<co such that

(3.2) K, 3 81dva= 3 68,dvy <K, 3 v

t, j=1

holds for any (&,, -+, E4)ERC.
We denote the smallest closed extension of (€, C%) in L*R%; m) by (&, F).

Since, by

i:)S( Oun _ Oty >2dvu§2€(un—uk, Un—Us)

0x; axj
=B (G ey o

{u,} is a Cauchy sequence relative to & if and only if {0u,/dx;} are Cauchy
sequences in L%(R?;y;;) for all 7. Suppose that uF. Then there exists an &-
Cauchy sequence {u,} of C% functions such that u,—u in L%(R%;m). Hence by
the above remark, }lig(aun/am exists in L2*R?;v;;). We shall denote it by
ou/ox;.

THEOREM 3.1. Let N; be a CAF locally of zero energy and G be a bounded
finely open set such that P.(rg<c0)>0 g.e. on G. Then, there exist an increasing
sequence of finely open sets {G,} and a sequence of functions {u,} such that

(i) G.CG and t¢, 1 7¢ a.s5. (Pz) gq.e. x€G,

(ii) un € Fiocs

(iii)
3.3) waX) =)= 5 [ (XYIMEO+N,, 0=t<rs,
where M, i=1, .-, d are MAF’s which appear in the decomposition

3.4 Xi—Xi=MFo4NEs,  1<i<d,
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MEIi]E‘mloc’ NEIi]Emloc-
For the proof we require two preparatory lemmas which are essentially due
to Fukushima (Theorem 2 [4]).

LEMMA 3.1
(3.5 A= {5 fo ME0 5 fi€ LAR® v, 1Si<d)
and
d [zl 1
(3.6) o3 foM z):_gizjgkdfi<x)fj<x)dvij

hold, where f+M stands for | f(X)dM,.

PrOOF. Since (3.6) is well known, it suffices to show (3.5). First, we shall
show that the family {é“i fi- M@, f.e LAR?; vy;), 1=i=<d} is a closed subset
of (i, e). Let Mn:ié F® M= foe L(RY: vy, 1<i<d, n=1, 2, - and Me

i, such that e(M,—M) tends to zero as n—oo, Then, we have

oMy M= 3 | (PP 0— PPN 0= £ (s

2
>1g
— 2

S P07 () v,

where we have utilized the relation [3.2) Hence, there exist functions f;
L¥R?; v;;) (1=5i<d) such that f{™ converges to f;in L*R%;y;;), 1=i<d. Put

M= éfi-M“”“. Then, we observe that e(M):—;—ZSRdfi(x)fj(x)dyU and
e (M=M= 5 3 | (FP 0= N (0= f(2)dvy

=

L\:|H NJ|'—‘

K2\ (F 0= fil)dve,

hold, where we utilized the relation This yields immediately lime(M,—M)
=0. Hence, the family discussed is closed in (., e). T

On the other hand, in view of Lemma 5.4.5 in it is known that the
family {f-M™; feC}, ueC}} is a dense subset in (4, ¢). Further we know

by Theorem 5.4.4 in that f-ME“JZéf(au/axi)~Mf”i3 and f-(0u/ox;) <
=
LAR%; v;;) (1=Zi<d) hold. Thus, we can conclude that (3.5) holds. Q.E.D.

LEMMA 3.2. Let ME HMioe. Then there exist an increasing sequence of bounded
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Jfinely open sets G, and Sfunctions {f;} 1=i=d such that
(i) 3,1¢C a.s. (Py) for g.e. x,
(ii) f:€L¥Gn;vi) for any 1=i=d and n,

d ('t
Gi) M= 3| fxpamga,

ProorF. By Lemma 3.2, M= Moc. Hence, there exist an increasing
sequence of bounded finely open sets {G,} and a sequence of MAF’s, M™ &
such that t3, 1{ and M,=M{™ for 0=t<rg, a.s. (Pz) q.e. x. Utilizing [Lemmal

d
3.1, we can choose f{™ e L¥R¢%;v;;) such that ME"’:ESZfl("’(Xs)dM%“]. Put

gi=fM—f{"*Y. Then it suffices to show that g;=0 a.e. (v;;) on 5n. We see
that

ég:gi(Xs)dME“]:O 0=t<7y, a.s. (Pz) q.e. x.

Noticing that the smooth measure associated with the above CAF is 3 gi(x)g;(x)dv;j,
1
we have, (by Lemma 5.1.5 in [3])

[, 70 B eogtmis,

<

< f(x)LZ} gi(x)gi(x)dvy;

S(:c; irregular point for 'Gvfl;

—tim @[ | e f(X0) D g XDg XM=, M,

a-—+oo

=0.
Hence, by we have

K| 3 () gux)dvie=0.
Gn i=1

Thus, we get g;=0 a.e. (v;;) on G Q.E.D.

PROOF OF THE THEOREM. By [Theorem 2.1, we know that there exist {G,}
and {u,} satisfying

(i) G.CG and 74, T7¢ a.s. (P;) q.e. x€G,

(ii) uneglocr

(iii)’
(3.7 Un(X)—un(Xo)=Mp»'+N,  0=t=r,
where Mi*n’€ Mioc. By

d
M= 2 fuxame,
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fie Lg(ék; v;;) for any 7 and 2. On the other hand, it is known that ou,/0x;
ELloc\lz Vii) 1§Z§d- Put

8un

un(X)—un(X)= 33§ 5o (XpdMEo+ ..

Then ZS gzn (X)dM¥ e Hy. and N,€9,.. By the uniqueness of the de-

composition of the CAF u,(X;)—u.(X,), we observe that
aun

Miw= 5 | FXdMgo= 35| 2 ()M

0<t<7s, and N,=N, 0<t<zs. Hence, it suffices to show du,/dx,=f; a.e.
(vi;) on every G,. Noting that du,/0x;— ;< Lz(G,J\Gk ; vii), we have

0=tim 3 B[ { 3 (7 (22 (x)— p000)amie} |

t—0

—tim [ 5[OS g (D g N, Mézfﬂ>g]

T axi

RIS ) C oD

Utilizing we observe that fi=0u,/dx; a.e. (vi;) on G,N\Gj Letting
tend to infinity, we get f,=0u,/0x; a.e. (vi;) on G,. Q.E.D.

EXAMPLE 2. One dimensional Brownian motion.
Let X, be a one dimensional Brownian motion. Then we have the following
theorem :

THEOREM 3.2. Let N,EJlo.. Then there exists a function uEFie=1{v;
absolutely continuous, dv/dx< LE.(R'; dx)} such that

39 u(X)—u(X)= (2L (X)d X AN,

PrRoOOF. We know that the fine topology with respect to the one dimensional
Brownian motion coincides with the Euclidean topology on R!. Hence, by Theo-
rem 3.1, we have for N, an increasing sequence of compact intervals [,=
(@n, by) T (—co, o), and a sequence of functions u,E Fic such that

(3.9  Ne=u(X)—u(Xo)— S din ——(XpdX, 0=t=7;, a.s. (P;), x€R'.

On the other hand, H. Tanaka has shown that there exist a continuous
function u and a Borel function g L (R'; dx) [16], such that
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(3.10) N,:u(Xt)—u(Xo)—S:g(Xs)dXs, 0<t<oo a.s. (P).
Put APr=“=(u,—u)(X;)—(u,—u)X,). Then we have, by (3.9) and that
w1 (¢f dln
Afn J_SO<_dx~_g)(Xs)dX3, 0<t<z,.

Noting that du,/dx—ge L*1,; dx), we have

er A =en (|7 (G —g )X x,)

=3 (e~ otrcen,

where ¢, (A) stands for the energy of A, with respect to the part of X; on I,.
Hence, we can conclude that the function u,—u belongs to F/»={v; v is abso-
lutely continuous on I,, dv/dx=L*1I,; dx)}. Since u,<E F,., we observe that
u is absolutely continuous on I, and du/dx<L,[,; dx). Since I, increases to
(—o0, o), one can see that ueF.. Put

(3.10) u(X)—u(X)="T (X)X, R,

Then S:Z—Z(Xs)dxse‘%‘“ and N,=9,. hold. Combine with and

utilize the uniqueness of the decomposition of Af*1=u (X, —u(X,). Then we get

Ntzu(X,)—u(Xo)—S:—j%(Xs)dXs, 0=t<oo a.s. (P;).

Q.E.D.

REMARK. So far, we are concerned with a representation theorem of CAF’s
locally of zero energy. In general, the CAF N™I corresponding to u< & belongs
to 7 (Theorem 5.2.2 in [3]). But it is not necessarily true that the function u
corresponding to a given N=Jl belongs to . We shall give such an example.

Let X; be a one dimensional Brownian motion and N, be its local time at O.
We shall first show that N,=J3. Let 6=0. Then

ELINI=E.[N}- s wl@)); t20]
=Eu[Ex, (N1 Jums; t201=| ELNE P02 ds)

- %S:Eo[w:_ym(oe ds),
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where N}=2N, is the local time of the reflecting Brownian motion. Since

+ = 2 K v
PNt Sdil= gpgy o {= g 4.

by an Ito-McKean’s result (p. 45, Problem 3 in [8]), we have
E[(N{.)*1=t—s.
Also, we know (Cf. p. 25 of [8])

2

Pz[aeds]:%exp <_%§)d3 .

Hence

1t x x?
2.~ _ ~ _
EINO=| t—s)p=exp (5 )ds
holds. Integrating by the speed measure m(dx)=2dx, we have
2 [2,
EalNT1= 24/ 24V,
which implies that
e(N)=lim = E,[N?]=0,
-0 2t
that is, Ne3Jl. On the other hand, by Tanaka’s formula ([10], [12]
Ne=X =X 5= Tom(X)dX,.

“This implies that N, is the CAF of zero energy associated with x*€ F ..

Notes.

1) q.e. sup stands for the supremum on G—{a negligible set}.
ze€ )
@ ( v)r, stands for | utu(xm(ds).

n

3) PF» stands for SF PERh(xm(dx) .
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