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Introduction.

In this paper, we study the structure of $C^{*}$-algebras generated by shift
operators on a separable Hilbert space $\mathfrak{H}$ associated with a fixed basis $\{e_{n}\}_{n\in Z}$

where $Z$ is the set of all integers. A pair $(\Omega, \sigma)$ is said to be a topological
dynamical system if $\Omega$ is a compact (Hausdorff) space and $\sigma$ is a homeomorphism
of $\Omega$ . According to O’Donovan [6], our $c*$-algebras correspond to the class of
topological dynamical systems which satisfy the condition: there exists a map
$\phi$ of $Z$ onto a dense subset of $\Omega$ such that $\sigma(\phi(n))=\phi(n+1)$ for each $n$ in $Z$ .
We call each of these systems a shift dynamical system and denote by $(\Omega, \sigma, \phi)$ .
Although O’Donovan studied mainly the $c*$-algebras generated by a weighted
shift, we examine ones generated by a family of shift operators.

Recently, by Rieffel [15] and Pimsner-Voiculescu [13], the irrational rotation
$C^{*}$-algebras were completely classified by using the $K_{0}$-groups. Furthermore,
Riedel [14] generalized their work to the $c*$-algebras associated with minimal
rotations on the dual groups of countable discrete subgroups of the one-dimen-
sional torus $T=\{z\in C;|z|=1\}$ where $C$ is the set of all complex numbers.
Each of these $C^{*}$-algebras associated with minimal rotation can be considered as
a $C^{*}$-algebra generated by shift operators in our sense.

In Section 1, we discuss some general properties and two kinds of conjugacies
of shift dynamical systems, and consider the fundamental properties ( $e.g$ . sim-
plicity, existence of tracial state) of $c*$-algebras associated with those systems.
In Section 2, we show that the structure of simple $c*$-algebras corresponding to
the discrete subgroups $G$ (not necessarily countable subgroup) of $T$ is completely
determined by $G$ . This generalizes Riedel’s results. Furthermore we give a
necessary and sufficient condition for a shift dynamical system to be one asso-
ciated with a discrete subgroup of $T$. In Section 3, we discuss the case where
$\phi$ is a homeomorphism of $Z$ onto the subspace $\phi(Z)$ of $\Omega$ . This is equivalent

These authors were partially supported by Grant-in.Aids for Scientific Research (No.

5774002*; 0054020 and 57540052**), Ministry of Education.



280 S. KAWAMURA and H. TAKEMOTO

to that the corresponding $c*$-algebra contains the ideal of all compact operators

on $\mathfrak{H}$ . We here note that the results in this section are closely related to ones
by Green [8].
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1. Shift dynamical systems.

We shall examine the $C^{*}$-algebras generated by shift operators on a Hilbert
space $\mathfrak{H}$ and the relationship between these algebras and the shift dynamical
systems. We fix a separable Hilbert space $\mathfrak{H}$ and an orthogonal basis $\{e_{n}\}_{n\in Z}$

for $\mathfrak{H}$ . We define the shift operators on $\mathfrak{H}$ with respect to this basis.

DEFINITION 1.1. A bounded linear operator $U$ on $\mathfrak{H}$ is called a shift operator
if $Ue_{n}=z_{n+1}e_{n+1}$ for every $n$ in $Z$, where the absolute value $|z_{n}|$ of each com-
plex number $z_{n}$ is 1. In particular, throughout this paper, we denote by $S$ the
shift operator with $z_{n}=1$ for every $n$ .

For a shift operator $U$ with $Ue_{n}=z_{n+1}e_{n+1}(n\in Z)$ , we define an operator $W$,
the diagonal part of $U$ , by setting, $We_{n}=z_{n}e_{n}(n\in Z)$ , so that $U=WS$ . Let $S$

be a family of shift operators and $W(S)$ the diagonal part of $S$ ; namely, $W(S)$

$=\{W;U=WS, U\in S\}$ . Let $B(\mathfrak{H})$ be the $c*$-algebra of all bounded linear opera-
tors on $\mathfrak{H}$ . For a subset $\mathcal{T}$ (resp. an element $T$ ) of $B(\mathfrak{H})$ , $C^{*}(\mathcal{T})$ (resp. $C^{*}(T)$ )

means the $C^{*}$-subalgebra of $B(\mathfrak{H})$ generated by $\mathcal{T}$ (resp. $T$ ) and $C^{*}(\mathcal{T}, T)$ means
the $c*$-algebra $C^{*}(\mathcal{T}\cup\{T\})$ . For any shift operator $U,$ $C^{*}(U)$ is $*$-isomorphic to
$C^{*}(S)$ because $U$ is unitarily equivalent to $S$ . Moreover, we easily find that, for
any family $S$ of shift operators, $C^{*}(S)$ is spatially isomorphic to $C^{*}(S’)$ for some
$S’$ which contains S. Hence, to examine the properties of $C^{*}$-algebras $C^{*}(S)$

generated by $S$ in $B(\mathfrak{H})$ , it is enough to assume that $S$ contains $S$ . Under this
assumption, $C^{*}(S)$ is generated by $W(S)$ and $S$ . Furthermore we assume through-
out this paper that $W(S)$ is a subgroup of unitary operators on $\mathfrak{H}$ such that
$SW(S)S^{*}=W(S)$ . Then $C^{*}(S)=C^{*}(W(S), S)$ and also $SC^{*}(W(S))S^{*}=C^{*}(W(S))$ .

According to O’Donovan [6], the $c*$-algebra $C^{*}(S)$ corresponds to a shift
dynamical system $\Sigma=(\Omega, \sigma, \phi)$ in the following manner. Let $\pi$ be the natural
representation of $1^{\infty}(Z)$ on $\mathfrak{H}$ defined by $\pi(a)e_{n}=a_{n}e_{n}$ for each $a=(a_{n})$ in $l^{\infty}(Z)$ .
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Let $\mathcal{A}$ be the $C^{*}$-algebra $C^{*}(W(S))$ generated by the diagonal part of a family $S$

of shift operators. Then the $c*$-algebra $\mathcal{A}$ satisfies the following conditions:

(1) $\mathcal{A}\subset\pi(l^{\infty}(Z))$ (2) $S\mathcal{A}S^{*}=\mathcal{A}$ .

On the other hand, if $\mathcal{A}$ is a $C^{*}$-subalgebra with unit of $\pi(l^{\infty}(Z))$ satisfying
$S\mathcal{A}S^{*}=\mathcal{A}$, then there exists a family $S$ such that $C^{*}(W(S))=\mathcal{A}$ . Therefore, for
our purpose, we study the structure of these $c*$-algebras $C^{*}(\mathcal{A}, S)$ . Since $\mathcal{A}$ is
an abelian $c*$-algebra, $\mathcal{A}$ is $*$-isomorphic to the algebra $C(\Omega)$ of all complex-
valued continuous functions on a compact Hausdorff space $\Omega$ and we denote by
$\hat{T}$ the Gelfand representation of $T$ in $\mathcal{A}$ . Define $\alpha(T)=STS^{*}$ for $T$ in $\mathcal{A}$ . Then
a is a $*$-automorphism of $\mathcal{A}$ . Hence, $\alpha$ induces a homeomorphism $\sigma$ of $\Omega$ such
that $\wedge\alpha(T)(\omega)=\hat{T}(\sigma^{-1}\omega)$ for every $\omega$ in $\Omega$ . Let $\phi$ be the mapping of $Z$ into $\Omega$

defined by $\phi(n)(T)=a_{n}$ for $n$ in $Z$ and $T=\pi(a)$ in $\mathcal{A}$ where $a=(a_{n})\in l^{\infty}(Z)$ .
Then $Te_{m}=\phi(m)e_{m}$ for each $m$ in $Z$ . Since $\hat{T}(\sigma(\phi(n)))=S^{*}TS(\phi(n))=a_{n+1}=\wedge$

$7(\phi(n+1))$ for every $T=\pi(a)$ in $\mathcal{A}$ where $a=(a_{n})\in l^{\infty}(Z)$ , we have $\sigma(\phi(n))=$

$\phi(n+1)$ . Furthermore $\phi(Z)$ is dense in $\Omega$ because $\Vert\pi(a)\Vert=\sup\{|a_{n}| ; n\in Z\}=$

$sup\{|\pi(a)(\phi(n))\wedge| ; n\in Z\}$ for each $\pi(a)$ in $\mathcal{A}$ .
Conversely let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system. For a function $f$

in $C(\Omega)$ , we denote by $\pi(f)$ the operator in $B(\mathfrak{H})$ defined by $\pi(f)e_{n}=f(\phi(n))e_{n}$

$(n\in Z)$ . We put $\mathcal{A}=\{\pi(f);f\in C(\Omega)\}$ . Then $\mathcal{A}$ is a $C^{*}$-subalgebra of $\pi(l^{\infty}(Z))$

and is $*$-isomorphic to $C(\Omega)$ under the correspondence of $\pi(f)$ with $f$ . Further-
more we have $S\mathcal{A}S^{*}=\mathcal{A}$ and $\wedge\wedge(S\pi(f)S^{*})(\omega)=\pi(f)(\sigma^{-1}\omega)$ . Namely $C^{*}(\mathcal{A}, S)$ is a
$c*$-algebra generated by shift operators corresponding to the given shift dynamical
system $\Sigma=(\Omega, \sigma, \phi)$ .

For a given sbift dynamical system $\Sigma=(\Omega, \sigma, \phi)$ , let $C^{*}(\Sigma)$ be the $c*$-algebra
generated by $\pi(C(\Omega))$ and the shift operator $S$, that is, $C^{*}(\Sigma)=C^{*}(\pi(C(\Omega)), S)$ .
We henceforth consider the relationship between the shift dynamical systems $\Sigma$

and the $c*$-algebras $C^{*}(\Sigma)$ .
We here note a property of dynamical systems, and give a proof for the

sake of completeness.

PROPOSITION 1.2. Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system. Then the
following statements are equivalent.

(1) $\Omega$ is an infinite set,
(2) $\phi$ is injective,
(3) $\phi(Z)$ is a ProPer subset of $\Omega$ .
PROOF. The implication (2) $\Rightarrow(1)$ is trivial. (1) $\Rightarrow(3)$ : Suppose that $\Omega$

$= \bigcup_{n=1}^{\infty}\{\phi(n)\}$ ; then by Baire Category theorem, there is an $n_{0}$ such that $\overline{\{\phi(n_{0})\}}=$

$t\phi(n_{0})\}$ has a non-empty interior, so that each $\phi(n)$ is isolated. This contradicts
the assumption that $\Omega$ is infinite and compact. (3) $\neq(2)$ : Suppose that $\phi$ is not
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injective. Then there exist distinct numbers $n_{0}$ and $m_{0}$ in $Z$ such that $\phi(n_{0})=$

$\phi(m_{0})$ . Put $k=n_{0}-m_{0}$ . Then we have

$\phi(n)=\sigma^{n- m_{0}}(\phi(m_{0}))=\sigma^{n-m_{0}}(\phi(n_{0}))=\phi(n-m_{0}+n_{0})=\phi(n+k)$

for every $n$ in $Z$ . Hence $\phi(Z)=\{\phi(0), \phi(1), \cdots , \phi(k-1)\}$ . Since $\phi(Z)$ is dense
in $\Omega$ , we have $\phi(Z)=\Omega$ . $q$ . $e$ . $d$ .

We first consider the case where $\Omega$ is finite. Suppose that $\Omega$ consists of
n-points $\{\omega_{0}, \cdots , \omega_{n-1}\}$ . By the property of $\phi$ , we can assume that $\sigma\omega_{i}=\omega_{i+1}$

$(0\leqq i\leqq n-2)$ and $\sigma\omega_{n-1}=\omega_{0}$ . Then $\pi(C(\Omega))$ is the $c*$-algebra generated by $n$

projections $P_{n.i}= \sum_{k\in Z}P_{nk+i}$ $(i=0, \cdots , n-1)$ , where $P_{n}$ is the projection of $\mathfrak{H}$ onto

the one-dimensional subspace $[e_{n}]$ generated by $e_{n}$ . Let $V_{n}$ be the unitary
operator of $\mathfrak{H}$ onto $\mathfrak{H}\otimes \mathfrak{H}_{n}$ defined by $V_{n}(e_{nk+i})=e_{k}\otimes e_{i}(i=0, \cdots , n-1;k\in Z)$ ,
where $\mathfrak{H}_{n}$ is the n-dimensional Hilbert space with a basis $\{e_{0}, \cdots , e_{n-1}\}$ . Then
$C^{*}(\Sigma)$ is $*$-isomorphic to the $c*$-tensor product $C^{*}(S)\otimes B(\mathfrak{H}_{n})$ on $\mathfrak{H}\otimes \mathfrak{H}_{n}$ by the
spatial isomorphism $\Psi_{n}$ : $Tarrow V_{n}TV_{n}^{*}(T\in C^{*}(\Sigma))$ and thus it is $*$-isomorphic to
$C(T)\otimes B(\mathfrak{H}_{n})$ , where $C(T)$ is the $c*$-algebra of all continuous functions on $T$.

Since an $\alpha$-invariant ideal in $\pi(C(\Omega))$ corresponds to a proper a-invariant
closed subset of $\Omega$ , it follows that $C^{*}(\Sigma)$ has no proper ideal if and only if $\sigma$

has no proper invariant closed subset of $\Omega$ . In this case, $\sigma$ is said to be minimal.
The following proposition is known ([6]).

PROPOSITION 1.3. Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system. Then we
have the following.

(1) $C^{*}(\Sigma)$ is $*$-isomorphic to the $C^{*}$-crossed pr0duct $\pi(C(\Omega))\cross Z\alpha$

(2) If $\Omega$ is infinite, $C^{*}(\Sigma)$ is $\alpha mple$ if and only if $\sigma$ is minimal.
We here remark that the maPping: $\mathcal{I}arrow \mathcal{I}\cap\pi(C(\Omega))(\mathcal{I}$ is an ideal in $C^{*}(\Sigma)\rangle$

in Theorem 2. 2. 3. in [9] is not always one-to-one. For a proper $\sigma$ -invariant
closed set $E$ of $\Omega$, we put $\mathcal{I}(E)=$ { $f\in C(\Omega);f$ vanishes on $E$ } and denote by
$\mathcal{J}(E)$ the ideal of $C^{*}(\Sigma)$ generated by $\mathcal{I}(E)$ and $S$ . Conversely, according to the
proof of Power [12], if $\sigma$ admits an invariant ergodic positive measure with
support $\Omega$ , each ideal $\mathcal{J}$ of $C^{*}(\Sigma)$ corresponds to a closed $\sigma$ -invariant proper
subset $E$ of $\Omega$, that is, $\mathcal{J}=\mathcal{J}(E)$ . In the general case, the ideals of $C^{*}(\Sigma)$ do
not necessarily correspond to the ideals of $C(\Omega)$ and such an example will be
given in Section 3.

Next, in order to discuss the existence of tracial state of $C^{*}(\Sigma)$ , we here
consider the conditional expectation of $C^{*}(\Sigma)$ onto $\pi(C(\Omega))$ . For $T$ in $B(\mathfrak{H})$ , we
put $E(T)= \sum_{n\in Z}P_{n}TP_{n}$ . Then $E$ is the norm one projection of $B(\mathfrak{H})$ onto $\pi(l^{\infty}(Z))$ .

We denote by $E_{\Sigma}$ the restriction of $E$ to the $c*$-algebra $C^{*}(\Sigma)$ . Then for
$\{f_{k}\}_{k=-n}^{n}$ in $C(\Omega)$ , it follows that
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$E_{\Sigma}( \sum_{k=-n}^{n}\pi(f_{k})S^{k})=\pi(f_{0})$ $(\in\pi(C(\Omega)))$ .

Since $E_{\Sigma}1S$ a bounded linear map of $C^{*}(\Sigma)$ into $\pi(l^{\infty}(Z))$ , the range of $E_{\Sigma}$ is the
$c*$-subalgebra $\pi(C(\Omega))$ of $C^{*}(\Sigma)$ . Hence $E_{\Sigma}$ is the norm one projection of $C^{*}(\Sigma)$

onto $\pi(C(\Omega))$ , and $C^{*}(\Sigma)\cap\pi(l^{\infty}(Z))=\pi(C(\Omega))$ . For each tracial state Tr of $C^{*}(\Sigma)$ ,
the restriction $\tau$ of Tr to $\pi(C(\Omega))$ induces a $\sigma$ -invariant positive measure with
total measure 1 and it follows that $Tr=\tau\cdot E_{\Sigma}$ . Conversely such a measure on $\Omega$

induces a tracial state of $C^{*}(\Sigma)$ in the above manner. Moreover we have that
$Tr=\tau\cdot E_{\Sigma}$ is faithful if and only if the support of corresponding measure to $\tau$

on $\Omega$ is the full space $\Omega$ . Since every minimal homeomorphism $\sigma$ admits an
invariant ergodic positive measure with support $\Omega$ (cf. [3, Chapter II, Exercise
9, (1) and (5)]), we get the following proposition. Though this is well known
implicitly, we note the statement in the context of shift dynamical systems.

PROPOSITION 1.4. Let $\Sigma$ be a minimal shift dynamical system. Then $C^{*}(\Sigma)$

has a faithful tracial state.
We here give an example of $C^{*}(\Sigma)$ , which is the $1arges_{\vee}^{\vdash}$ one in the $C^{*}-$

algebras associated with shift dynamical systems.

EXAMPLE 1.5. Let $S$ be the set of all shift operators. For a completely
regular topological space $X$, we denote by $\beta X$ the Stone- ech’s compactiPcation
of $X$. Then $\Sigma=(\beta Z, \sigma, \phi)$ is the shift dynamical system associated with $C^{*}(S)$

where $\sigma(\{n_{\alpha}\})=\{n_{a}+1\}$ for each net $\omega=\{n_{a}\}$ of integers and $\phi$ is the natural
embedding from $Z$ into $\beta Z$ . Let $E$ (resp. $E_{+},$ $E_{-}$ ) be the set of all cluster
points of $\phi(Z)$ (resp. $\phi(Z_{+}),$ $\phi(Z_{-})$ ) where $Z_{+}$ (resp. $Z_{-}$ ) means the set of all
positive integers (resp. negative integers). Then $E,$ $E_{+}$ and $E_{-}$ are $\sigma$ -invariant
distinct closed proper subsets of $\Omega$ . Hence $C^{*}(S)(=C^{*}(\Sigma))$ contains at least three
ideals, thus $C^{*}(S)$ is a proper $c*$-subalgebra of $B(\mathfrak{H})$ .

Now we consider a relationship between the $*$-isomorphic classes of $C^{*}(\Sigma\rangle$

and the conjugate classes of the dynamical systems $\Sigma$ . We recall that two
dynamical systems $(\Omega_{1}, \sigma_{1})$ and $(\Omega_{2}, \sigma_{2})$ are said to be conjugate if there exists
a homeomorphism $h$ of $\Omega_{1}$ onto $\Omega_{2}$ such that $h\circ\sigma_{1}\circ h^{-1}=\sigma_{2}$ . If shift dynamical
systems $\Sigma_{1}=(\Omega_{1}, \sigma_{1}, \phi_{1})$ and $\Sigma_{2}=(\Omega_{2}, \sigma_{2}, \phi_{2})$ are conjugate, then there exists a
$*$-isomorphism $\alpha$ of $C(\Omega_{1})$ onto $C(\Omega_{2})$ such that $\alpha\circ\sigma_{1}=\sigma_{2}\circ\alpha$ . Since each $C^{*}-$

algebra $C^{*}(\Sigma)$ is $*$-isomorphic to the crossed product $C(\Omega)\cross Z,$ $C^{*}(\Sigma_{1})$ and $C^{*}(\Sigma_{2}\rangle$

$\sigma$

are $*$-isomorphic. Therefore the structure of $c*$-algebras $C^{*}(\Sigma)$ is determined by
the compact space $\Omega$ and the homeomorphism $\sigma$ . But the following example
shows that the converse does not hold.

EXAMPLE 1.6. Put $\Omega=\{\omega_{1}, \omega_{2}\}\cup Z\cup\{\omega_{3}\}$ , where $\omega_{1}$ (resp. $\omega_{2}$) is the limit
point of $\{2n;n\in Z_{+}\}$ (resp. $\{2n+1;n\in Z_{+}\}$ ) and $\omega_{3}$ is the limit point of $Z_{-}$

and each $n(\in Z)$ is an isolated point. Let $\sigma_{1}$ and $\sigma_{2}$ be homeomorphisms of 2
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such that $\sigma_{1}\omega_{1}=\sigma_{2}\omega_{1}=\omega_{2},$ $\sigma_{1}\omega_{2}=\sigma_{2}\omega_{2}=\omega_{1},$ $\sigma_{1}\omega_{3}=\sigma_{2}\omega_{3}=\omega_{3}$ but $\sigma_{1}(n)=n+1,$ $\sigma_{2}(n)$

$=n-1$ . Let $\phi_{1}$ and $\phi_{2}$ be maps of $Z$ onto $\Omega$ such that $\phi_{1}(n)=n,$ $\phi_{2}(n)=-n$ .
Then $\Sigma_{1}=(\Omega, \sigma_{1}, \phi_{1})$ and $\Sigma_{2}=(\Omega, \sigma_{2}, \phi_{2})$ are shift dynamical systems. Consider-
ing the unitary operator $V$ defined by $Ve_{n}=e_{-n}$ , we find that $VC^{*}(\Sigma_{1})V^{*}=C^{*}(\Sigma_{2})$ .
However there exists no homeomorphism $h$ of $\Omega$ such that $h\circ\sigma_{1}=\sigma_{2}\circ h$ .

REMARK. Arveson and Josephson [2] proved that the isomorphic classes of
the non-self-adjoint Banach algebras generated by shift operators and their diag-
onal parts correspond to the conjugate classes of the dynamical systems pro-
vided that $\sigma$ admits an ergodic invariant measure with support $\Omega$ .

In the class of shift dynamical systems, we will define more strict conjugacy.

DEFINITION 1.7. Shift dynamical systems $\Sigma_{1}=(\Omega_{1}, \sigma_{1}, \phi_{1})$ and $\Sigma_{2}=(\Omega_{2}, \sigma_{2}, \phi_{2})$

are said to be strictly conjugate if there exists a homeomorphism $h$ of $\Omega_{1}$ onto
$\Omega_{2}$ such that $(h\circ\phi_{1})(n)=\phi_{2}(n)$ for all $n$ in $Z$ .

It is easy to see that strict conjugacy implies usual conjugacy and we have
the following.

PROPOSITION 1.8. Shift dynamical systems $\Sigma_{1}$ and $\Sigma_{2}$ are strictly conjugate

if and only if $\pi(C(\Omega_{1}))=\pi(C(\Omega_{2}))$ on the Hilbert space $\mathfrak{H}$ .
PROOF. Suppose that there exists a homeomorphism $h$ of $\Omega_{1}$ onto $\Omega_{2}$ such

that $(h\circ\phi_{1})(n)=\phi_{2}(n)$ . For $f$ in $C(\Omega_{1}),$ $g=f\circ h^{-1}$ belongs to $C(\Omega_{2})$ and $\pi_{2}(g)e_{n}=$

$(f\circ h^{-1})(\phi_{2}(n))e_{n}=f(\phi_{1}(n))e_{n}=\pi_{1}(f)e_{n}$ for every $e_{n}$ , thus $\pi_{2}(g)=\pi_{1}(f)$ , where $\pi_{i}$

means the representation $\pi$ of $C(\Omega_{i})$ on $\mathfrak{H}$ for each $i(i=1,2)$ . Obviously the
map: $farrow f\circ h^{-1}$ , is surjective. Conversely we suppose that $\pi_{1}(C(\Omega_{1}))=\pi_{2}(C(\Omega_{2}))$ .
Put $\alpha=\pi_{2}^{-1}\circ\pi_{1}$ . Then $\alpha$ is a $*$-isomorphism of $C(\Omega_{1})$ onto $C(\Omega_{2})$ . Thus $\alpha$ induces
a homeomorphism $h$ of $\Omega_{1}$ onto $\Omega_{2}$ such that $\alpha(f)(\omega)=f(h^{-1}\omega)$ for $\omega$ in $\Omega_{2}$ . For
$n$ in $Z$ and $f$ in $C(\Omega_{1})$ , we have

$f(\phi_{1}(n))e_{n}=\pi_{1}(f)e_{n}=\pi_{2}(\alpha(f))e_{n}$

$=(\alpha\circ f)(\phi_{2}(n))e_{n}=f((h^{-1}\circ\phi_{2})(n))e_{n}$ .

Hence $f(\phi_{1}(n))=f((h^{-1}\circ\phi_{2})(n))$ for every $f$ in $C(\Omega_{1})$ , thus $(h\circ\phi_{1})(n)=\phi_{2}(n)$ . $q.e.d$ .
We will consider the relation between usual conjugacy and strict conjugacy

for special shift dynamical systems. Let $\Gamma$ be a monothetic compact abelian
group, that is, there exists an injective group homomorphism $\phi$ of $Z$ onto a
dense set in $\Gamma$ Put $\sigma\omega=\omega+\phi(1)$ for $\omega$ in $\Gamma$ where $+is$ the group operation in
$\Gamma$ Then $\Sigma=(\Gamma, \sigma, \phi)$ is a shift dynamical system. These systems are fully
studied in the next section.

PROPOSITION 1.9. Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system satisfying
either (1) or (2) of the following:

(1) Every $\phi(n)$ is an isolated point in $\Omega$ ,
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(2) $\Sigma=(\Gamma, \sigma, \phi)$ for some monothetic compact abelian group $\Gamma$

Then a shift dynamical system $\Sigma_{0}=(\Omega_{0}, \sigma_{0}, \phi_{0})$ is conjugate to $\Sigma$ if and only

if $\Sigma_{0}$ is strictly conjugate to $\Sigma$ .
PROOF. Suppose that there exists a homeomorphism $k$ of $\Omega$ onto $\Omega_{0}$ such

that $k\circ\sigma=\sigma_{0^{\circ}}k$ . Then $\Sigma_{0}$ satisfies the same conditions as $\Sigma$ does. We first
consider the case (1). Since $\Omega_{0}=k(\phi(Z))\cup k(\Omega-\phi(Z))$ and $k(\phi(Z))$ are open,
$k(\Omega-\phi(Z))$ is a $\sigma_{0}$-invariant closed set in $\Omega_{0}$ , so that $\phi_{0}(0)=k\circ\phi(m)$ for some $m$ .
We put $h=\sigma_{0}^{m}\circ k$ . Then $h$ is a homeomorphism of $\Omega$ onto $\Omega_{0}$ such that $h(\phi(n))$

$=\phi_{0}(n)$ for all $n$ in $Z$ . In the case (2), we put $h(\omega)=k(\omega+k^{-1}(\phi_{0}(0)))$ for $\omega$ in
$\Omega$ . Then we have that $h(\phi(n))=k(\phi(n)+k^{-1}(\phi_{0}(0)))=k(\sigma^{n}(k^{-1}(\phi_{0}(0))))=$

$k(k^{-1}(\sigma_{0}^{n}(\phi_{0}(0))))=\phi_{0}(n)$ . $q$ . $e$ . $d$ .
Propositions 1.8, 1.9 and the fact $C^{*}(\Sigma)\cap\pi(l^{\infty}(Z))=\pi(C(\Omega))$ imply the follow-

ing equivalency.

COROLLARY 1.10. Let $\Sigma$ be as in Proposition1.9. Then $\Sigma_{0}$ is conjugate to
$\Sigma$ if and only if $C^{*}(\Sigma_{0})=C^{*}(\Sigma)$ .

2. $C*$-algebras corresponding to discrete subgroups of $T$.
We denote by $T_{d}$ the one-dimensional torus with discrete topology and con-

sider a unitary representation $\pi$ of $T_{d}$ on the Hilbert space $\mathfrak{H}$ with a basis
$\{e_{n}\}_{n\in Z}$ . For each element $e^{2\pi ix}$ in $T_{d}$ , let $\pi(e^{2\pi ix})$ be the unitary operator on

$\mathfrak{H}$ defined by $\pi(e^{2\pi ix})e_{n}=e^{2\pi inx}e_{n}(n\in Z)$ . For a subgroup $G$ of $T_{d}$ , we put
$\pi(G)=\{\pi(g);g\in G\}$ . Then $\pi(G)$ is a subgroup of all unitary operators in $\pi(l^{\infty}(Z))$ ,
so that $C^{*}(\pi(G), S)$ is a $c*$-algebra generated by a family of shift operators.
This section is devoted to the study of $c*$-algebras associated with subgroups $G$

of $T_{d}$ . We denote by $\Sigma_{G}$ the shift dynamical system associated with the $C^{*}-$

algebra $C^{*}(\pi(G), S)$ . Then $C^{*}(\Sigma_{G})$ coincides with the $C^{*}$-algebra $C^{*}(\pi(G), S)$ .
Riedel [14] has already studied the relations between $c*$-algebras $C^{*}(\Sigma_{G})$ and
groups $G$ in the case of countable groups, but we do not have such assumption
for the groups $G$ .

PROPOSITION 2.1. Let $G$ be an infinite subgroup of $T_{d}$ . Then $\Sigma_{G}=(\Omega, \sigma, \phi)$

has the following prOpertjes.
(1) $\Omega$ is homeomorphjc to the dual group of $G$ , which is a compact monothetic

abelian group.
(2) $\phi$ is an injective homomorphism, that is, $\phi(n+m)=\phi(n)+\phi(m)$ for all $n$ ,

$m$ in $Z$.
(3) $\sigma\omega=\omega+\phi(1)$ for $\omega$ in $\Omega$ .
(4) $a$ is minimal on $\Omega$ .
In (2), (3) and (4), $\Omega$ is identified with the dual group of $G$ .
Before going into the proof we remark that the dual group $\hat{G}$ of $G$ is a
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compact monothetic abelian group with dense countable subset $\psi(Z)$ , where $\varphi$

is an injective homomorphism of $Z$ into $\hat{G}$ such that $\langle e^{2\pi ix}, \psi(n)\rangle=e^{2\pi inx}$ for
$\ell^{2\pi ix}$ in $G$ and $n$ in $Z$ where $\langle e^{2\pi ix}, \gamma\rangle$ means the value of a character $\gamma\in\hat{G}$ at
the point $e^{2\pi ix}$ in $G$ (see [16, Theorem 2.3.3]).

PROOF OF PROPOSITION 2.1. (1) and (2): Let $\mathcal{A}$ be the linear subspace of
$C^{*}(\pi(G))$ generated by $\pi(G)$ . Then, since $G$ is a subgroup of $T_{d},$ $\mathcal{A}$ is a dense
$*$-subalgebra of $C^{*}(\pi(G))$ . Let $\eta$ be the map of $\mathcal{A}$ into $C(\hat{G})$ defined by

$\eta(\sum_{k=1}^{p}\alpha_{k}\pi(e^{2\pi ix_{k}}))(\gamma)=\sum_{k=1}^{p}\alpha_{k}\langle e^{2\pi ix_{k}}\gamma\rangle$

for $e^{2\pi ix_{k}}\in G$ ( $k=1,2,$ $\cdots$ , p) and $\gamma\in\hat{G}$ . Then, we find that $\eta$ is an isometric
map of $\mathcal{A}$ into $C(\hat{G})$ by the following equalities and so $\eta$ is also well-defined;

$\Vert\eta(\sum_{k=1}^{p}\alpha_{k}\pi(e^{2\pi ix_{k}}))\Vert=\sup\{|\sum_{k=1}^{p}\alpha_{k}\langle e^{2\pi ix_{k}}\gamma\rangle| ; \gamma\in\hat{G}\}$

$= \sup\{|\sum_{k\Rightarrow 1}^{p}\alpha_{k}\langle e^{2rix_{k}}, \psi(n)\rangle| ; n\in Z\}=\sup\{|\sum_{k=1}^{p}\alpha_{k}e^{2\pi inx_{k}}| ; n\in Z\}$

$= \Vert\sum_{k=1}^{p}\alpha_{k}\pi(e^{2\pi ix_{k}})||$ .
Since $\pi(e^{2_{}.ix}\sim)^{*}=\pi(e^{-2\pi ix})$ , we can show that $\eta is*$-preserving. Hence, we shall

show that $\eta$ is multiplicative. For any $\sum_{k=1}^{p}\alpha_{k}\pi(e^{2\pi ix_{k}})$ and $\sum_{l=1}^{q}\beta_{l}\pi(e^{2\pi iy_{l}})$ in $\mathcal{A}$

and every $\gamma\in\hat{G}$ , we have the following equalities;

$\eta(\{\sum_{k=1}^{p}\alpha_{k}\pi(e^{2\pi ix_{k}})\} \{ \sum_{l=1}^{q}\beta_{l}\pi(e^{2\pi iy_{l}})\})(\gamma)$

$= \eta(\sum_{k=1}^{p}\sum_{l=1}^{q}\alpha_{k}\beta_{l}\pi(e^{2\pi i(x_{k}+y_{l})}))(\gamma)$

$= \sum_{k=1}^{p}\sum_{l=1}^{q}\alpha_{k}\beta_{l}\langle e^{2\pi i(x_{k}+y_{l})}\gamma\rangle=\sum_{k\Leftarrow 1}^{p}\sum_{l=1}^{q}\alpha_{k}\beta_{l}\langle e^{2\pi ix_{k}}, \gamma\rangle\langle e^{2\pi iy_{l}}, \gamma\rangle$

$= \eta(\sum_{k=1}^{p}\alpha_{k}\pi(e^{2\pi ix_{k}}))(\gamma)\eta(\sum_{l=1}^{q}\beta_{l}\pi(e^{2\pi iy_{l}}))(\gamma)$ .

Thus, $\eta$ is an isometric homomorPhism of $\mathcal{A}$ into $C(\hat{G})$ . Since $\mathcal{A}$ is dense in
$C^{*}(\pi(G))$ and we can show that $\eta(\mathcal{A})$ is a dense $*$-subalgebra of $C(\hat{G}),$

$\eta$ can be
extended to the isomorphism of $C^{*}(\pi(G))$ onto $C(\hat{G})$ . Thus, $\Omega$ is homeomorphic
to $\hat{G}$ and $\pi(e^{2\pi ix})(\phi(n))=\eta(\pi(e^{2\pi ix}))(\psi(n))\wedge$ for each $n$ in $Z$ .

(3): For each $n$ in $Z$ and $g$ in $G$ , we have the equalities; $\pi(g)(a(\phi(n)))=\wedge$

$\pi(g)(\phi(n+1))=\pi(g)(\phi(n)+\phi(1))\wedge\wedge$ . Hence $\pi(g)(\sigma(\omega))=\pi(g)(\omega+\phi(1))\wedge\wedge$ for every $\omega$ in
$\Omega$ since $\phi(Z)$ is dense in $\Omega$ .
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(4): For any $\gamma$ in $\hat{G}$ , the set $O(\gamma)=\gamma+\psi(Z)$ is homeomorphic to a dense
subset $\psi(Z)$ of $\hat{G}$ . $q$ . $e$ . $d$ .

Since every dual group $\hat{G}$ of $G$ has a unique $\sigma$ -invariant measure, $C^{*}(\Sigma_{G})$ is
$*$-isomorphic to the $c*$-algebra $\mathcal{A}_{\sigma}$ , of which the ideals were studied in [12]. In
particular, when $G=\{e^{2\pi in\theta} ; n\in Z\}$ where $\theta(0<\theta<1/2)$ is an irrational num-
ber, $\mathcal{A}_{\sigma}$ is just an irrational rotation $c*$-algebra $\mathcal{A}_{\theta}$ , of which Rieffel [15] and
Pimsner-Voiculescu [13] examined the Properties. For $\mathcal{A}_{\theta}$ , the maps $\sigma_{\theta}$ and $\phi_{\theta}$

in our consideration are as follows; $\sigma_{\theta}(e^{2\pi ix})=e^{2\pi i(x+\theta)}$ for $e^{2\pi ix}$ in $T=\hat{G}_{\theta}$ and
$\phi_{\theta}(n)=e^{2\pi in\theta}$ . We easily find that $\mathcal{A}_{\theta}$ is simple and has the unique tracial state
Tr. Furthermore Rieffel and Pimsner-Voiculescu showed that Tr $((\mathcal{A}_{\theta})_{p})=$

\langle $Z+Z\theta$ ) $\cap[0,1]=\{t\in[0,1];e^{2\pi it}\in G_{\theta}\}$ where $(\mathcal{A}_{\theta})_{p}$ is the set of all projection
in $\mathcal{A}_{\theta}$ . In general, a tracial state $\tau$ of a $c*$-algebra $\mathcal{A}$ induces a natural homo-
morphism $\tilde{\tau}$ of the $K_{0}$-group $K_{0}(\mathcal{A})$ into $R$ where $R$ is the set of all real numbers.
We denote by $R_{\tau}(\mathcal{A})$ the image of $K_{0}(\mathcal{A})$ by $\tilde{\tau}$ . In the above arguments, we will
in particular consider the last assertion for an arbitrary infinite subgroup $G$ of
$T_{d}$ . To prove it, we will use many arguments in [14]. But Riedel discussed
the above problem for only countable groups.

Let $G$ be a (not necessarily countable) infinite subgroup of $T_{d}$ . Then there
exists a monotone increasing net $\{G_{\lambda}\}_{\lambda\in\Lambda}$ of finitely generated subgroups of $G$

such that $\bigcup_{\lambda\in\Lambda}G_{\lambda}=G$ . By the definition of $C^{*}(\Sigma)$ , we see that $C^{*}(\Sigma_{G_{1}})$ is a $C^{*}-$

subalgebra of $C^{*}(\Sigma_{G_{2}})$ if $G_{1}$ is a subgroup of $G_{2}$ . For $\lambda$ in $\Lambda$ , let $\eta_{\lambda}$ be the
identity map of $C^{*}(\Sigma_{G_{\lambda}})$ into $C^{*}(\Sigma_{G})$ . Then $C^{*}(\Sigma_{G})$ is the inductive limit of the
system $\{C^{*}(\Sigma_{G_{\lambda}}), \eta_{\lambda}\}_{\lambda\in\Lambda}$ in the sense of Takeda [17]. For the unique tracial
state Tr of $C^{*}(\Sigma_{G})$ , let Tr $\lambda$ be the restriction of Tr to $C^{*}(\Sigma_{G_{\lambda}})$ . Using the
theory of inductive limit of $c*$-algebras introduced by Takeda [17], we can prove
that

$R_{Tr}(C^{*}( \Sigma_{G}))=\bigcup_{\lambda\in\Lambda}R_{Tr_{\lambda}}(C^{*}(\Sigma_{G_{\lambda}}))$ .

This can be shown by a similar way as Riedel did in [14, Lemma 3.1]. If $G_{\lambda}$

is an infinite subgroup of $T_{d}$ , by [14, Proposition 3.5], it follows that $R_{Tr}(C^{*}(\Sigma_{G_{\lambda}}))$

$=\{t\in R;e^{2\pi it}\in G_{\lambda}\}$ . When $G_{\lambda}$ is finite, say $G_{\lambda}=\{e^{2\pi tk/n} ; k=0,1, \cdots , n-1\}$ , we
have already seen that $C^{*}(\Sigma_{G_{\lambda}})$ is $*$-isomorphic to $C(T)\otimes B(\mathfrak{H}_{n})$ , thus the above
equality holds too. Therefore we get $R_{Tr}(C^{*}(\Sigma_{G}))=\{t\in R;e^{2\pi it}\in G\}$ .

THEOREM 2.2. Let $G$ be an arbitrary infinite subgroup of $T_{d}$ . Then we
have the following:

(1) $C^{*}(\Sigma_{G})$ is a simple $C^{*}$-algebra with the unique tracial state Tr,
(2) $R_{Tr}(C^{*}(\Sigma_{G}))=\{t\in R;e^{2\pi it}\in G\}$ .

REMARK. When $G$ is a finite subgroup of $T_{d}$ , the corresponding $c*$-algebra
$\mathcal{A}_{G}$ in Riedel’s paper is equal to $B(\mathfrak{H}_{n})$ . Thus, if $G$ is an infinite torsion sub-



288 S. KAWAMURA $and_{\wedge}H$ . TAKEMOTO

group of $T_{d}$ , the $c*$-algebra $\mathcal{A}_{G}$ in his paper $(=C^{*}(\Sigma_{G}))$ cannot be an inductive
limit of $\{\mathcal{A}_{G_{n}}\}$ for any increasing sequence $\{G_{n}\}$ of finitely generated subgroups

such that $\bigcup_{n=1}^{\infty}G_{n}=G$ . Hence the proof by Riedel [14, Theorem 3.6] was divided

into two cases; $G$ is not a torsion subgroup and $G$ is a torsion subgroup, and
the latter was reduced to the former.

Theorem 2.2 implies that $C^{*}(\Sigma_{G_{1}})$ is $*$-isomorphic to $C^{*}(\Sigma_{G_{2}})$ if and only if
$G_{1}=G_{2}$ because the group $R_{Tr}(C^{*}(\Sigma_{G}))$ is an isomorphism invariant. Now we
give some examples of shift dynamical systems $\Sigma_{G}=(\Omega, \sigma, \phi)$ and $c*$-algebras
$C^{*}(\Sigma_{G})$ associated with subgroup $G$ of $T_{d}$ .

EXAMPLE 2.3. Let $G$ be the subgroup generated by $e^{\pi i}$ and $e^{2\pi i\theta}$ where
$\theta(0<\theta<1)$ is an irrational number. Then $\Omega=\hat{G}=Z/2Z\cross T$, $\sigma(k, e^{2\pi ix})=$

$((k+1)(mod. 2), e^{2\pi i(x+\theta)})$ where $k=0$ or 1 and $\phi(n)=(n(mod. 2), e^{\pi in\theta})$ . Further-
more we have $R_{Tr}(C^{*}(\Sigma_{G}))=Z\cdot(1/2)+Z\cdot\theta$ .

EXAMPLE 2.4. Let $\mathcal{A}_{k}$ be the set of periodic sequences in $l^{\infty}(Z)$ with period
$k$ . Then $\pi(\mathcal{A}_{k})=C^{*}(\pi(G_{k}))$ where $G_{k}$ is the finite group generated by $e^{2\pi i/k}$ .
Put $\mathcal{B}_{\infty}=\bigcup_{k=1}^{\infty}\mathcal{A}_{k}$ (resp. $\mathcal{B}_{p}=\bigcup_{n=1}^{\infty}\mathcal{A}_{p^{n}}$ ). Then $C^{*}(\pi(\mathcal{B}_{\infty}))=C^{*}(\pi(G_{Q}))$ (resp. $C^{*}(\pi(\mathcal{B}_{p}))$

$=C^{*}(\pi(G_{p})))$ where $c_{Q}--\{e^{2\pi ix} ; x\in Q\cap[0,1]\}$ (resp. $G_{p}=\{e^{2\pi ik/p^{n}}$ ; $k=0,1,$ $\cdots,$
$p^{n}$ ,

$n\in N\})$ and $Q$ means the set of all rational numbers. Hence the character space
$\Omega$ of $C^{*}(\pi(\Sigma_{G_{Q}}))$ (resp. $C^{*}(\pi(\Sigma_{G_{p}}))$ ) is a profinite group $\hat{Z}$ (resp. $Z_{p}$ the group of
p-adic integers)) (cf. [6, Chapter V.1.5]) and $\hat{Z}$ (resp. $Z_{p}$ ) contains naturally all
integers $Z$ as a dense subgroup, so that $\sigma\omega=\omega+1$ in $\hat{Z}$ (resp. $Z_{p}$ ) and $\phi(n)$ is
the integer $n$ in $\hat{Z}$ (resp. $Z_{p}$). Furthermore we have $R_{Tr}(C^{*}(\Sigma_{G}))=Q$ (resp.
$=$ { $k/p^{n}$ ; $k\in Z$ and $n\in N$}).

We have seen that $C^{*}(\pi(\mathcal{A}_{k}))$ is spatially isomorphic to $C^{*}(S)\otimes B(\mathfrak{H}_{n})$ by $\Psi_{n}$

in Section 1. Considering $C^{*}(S)$ as the $c*$-algebra $C(T)$ of all continuous func-
tions on $T$, the inductive limit of $\{C(T)\otimes B(\mathfrak{H}_{n})\}_{n=1.8},\cdots$ (resp. $\{C(T)\otimes B(\mathfrak{H}_{p^{n}})\}_{n=1.t}\ldots.$)

with respect to embeddings $\{\psi_{n}\}_{n=1.2}\ldots$ . (resp. $\{\psi_{p^{n}}\}_{n=1.2}\ldots.$) becomes the crossed
product $C(\hat{Z})\cross Z\sigma$ (resp. $C(Z_{p})\cross Z$)

$\sigma$

EXAMPLE 2.5. Let $G=T_{d}$ . Then $\Omega=bZ$ (the Bohr compactification of $Z$),
$\phi(n)$ is the integer $n$ in $bZ,$ $a\omega=\omega+1$ and $R_{Tr}(C^{*}(\Sigma_{G}))=R$ .

For a given shift dynamical system $\Sigma=(\Omega, a, \phi)$ , we will consider the con-
dition for $\Sigma$ under which $\Sigma$ is conjugate to $\Sigma_{G}$ for some subgroup $G$ of $T_{d}$ .
To see this, let $M(\Omega)$ denote the semi-group of all maps of $\Omega$ into itself with
the pointwise convergence topology and $E(\Sigma)$ denote the closure of the group
$\{\sigma^{n}\}_{n\in Z}$ in $M(\Omega)$ . The semi-group $E(\Sigma)$ is called an Ellis semi-group [3, Chapter
II.6]. Though $\{\sigma^{n}\}_{n\in Z}$ is contained in the semi-group of continuous map on $\Omega$,

a map in $E(\Sigma)$ is not always continuous. However if $\{\sigma^{n}\}_{n\in Z}$ is equicontinuous
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on $\Omega$ and $\Sigma$ is minimal, where $\Omega$ can be regarded as a uniform space since $\Omega$

is compact, then every map in $E(\Sigma)$ is a homeomorphism of $\Omega$ and $E(\Sigma)$ becomes
a group ([3, Proposition 2.9]). In this case $E(\Sigma)$ is a compact abelian group
with a dense subgroup $\{\sigma^{n}\}_{n\in Z}$ , that is, $E(\Sigma)$ is a monothetic group. The map
$\tauarrow\sigma\circ\tau(\tau\in E(\Sigma))$ is a homeomorphism of $E(\Sigma)$ and it is denoted by $T_{\sigma}$ . There-
fore if $\{\sigma^{n}\}_{n\in Z}$ is equicontinuous, then $\Sigma’=(E(\Sigma), T_{\sigma}, \phi)$ is a shift dynamical
system where $\phi(n)=\sigma^{n}$ and $E(\Sigma)$ is a monothetic compact abelian group. By
[16, Theorem 2.3.3], $\Sigma’$ is conjugate to $\Sigma_{G}=(\hat{G}, \sigma_{\hat{G}}, \phi_{\hat{G}})$ for some subgroup $G$ of
$T_{d}$ by a homeomorphism $h$ of $E(\Sigma)$ onto $\hat{G}$ such that $h(a^{n})=\phi_{\hat{G}}(n)$ . Namely $\Sigma^{\gamma}$

is strictly conjugate to $\Sigma_{G}$ . From this fact, we can see that $\Sigma$ is strictly con-
jugate to $\Sigma_{G}$ . In fact, the map $\beta$ : $\deltaarrow\delta(\phi(0))(\delta\in E(\Sigma))$ is a homeomorphism of
$E(\Sigma)$ onto $\Omega$ such that $\beta(\sigma^{n})=\sigma^{n}(\phi(0))=\phi(n)$ (cf. [3, Exercise 21]). By what we
mentioned above, Proposition 1.9 and Corollary 1.10, we get the following.

THEOREM 2.6. Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system. Then the fol-
lowing statements are equivalent.

(1) $\{\sigma^{n}\}_{n\in Z}$ is equicontinuous on $\Omega$ and $\Sigma$ is minimal.
(2) $\Sigma$ is conjugate to $\Sigma_{G}$ for some subgroup $G$ of $T_{d}$ .
(3) $\Sigma$ is strictly conjugate to $\Sigma_{G}$ for some subgroup $G$ of $T_{d}$ .
(4) $C^{*}(\Sigma)=C^{*}(\Sigma_{G})$ .
REMARK. Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system. We do not know

whether or not $\{\sigma^{n}\}_{n\in Z}$ is always equicontinuous if $C^{*}(\Sigma)$ is $*$-isomorphic to
$C^{*}(\Sigma_{G})$ for some subgroup $G$ of $T_{ci}$ .

By Furstenberg’s example [10, p. 585], we get an example of a simple $C^{*}-$

algebra which is not $*$-isomorphic to $C^{*}(\Sigma_{G})$ for any subgroup $G$ of $T_{d}$ .

EXAMPLE 2.7. Let $\Omega=T^{2}=[0,1$ ) $\cross[0,1$ ) and $\sigma(x, y)=(T_{\theta}x, f(x)+y)$ where
$T_{\theta}$ is the rotation on $T$ associated with an irrational number $\theta(0<\theta<1)$ and $f$

is a continuous map of $T$ into itself. By Furstenberg [10], $\sigma$ becomes a minimal
non-uniquely (that is, there exist at least two $\sigma$-invariant measures on $\Omega$ ) ergodic
homeomorphism for a suitable $\theta$ and $f$ . Since every ergodic homeomorphism is
minimal, $\Sigma=(\Omega, \sigma, \phi)$ is a minimal shift dynamical system where $\phi(n)=\sigma^{n}(0,0)$ .
Thus $C^{*}(\Sigma)$ is simple and has at least two tracial states. By Theorem 2.2 (1),
$C^{*}(\Sigma)$ is not $*$-isomorphic to $c*$-algebra $C^{*}(\Sigma_{G})$ for any subgroup $G$ of $T_{d}$ . In
the case where $f(x)=x$ , Anzai [1] showed that $\sigma$ is a minimal uniquely ergodic
homeomorphism on $\Omega$ . In this case, $C^{*}(\Sigma)$ is a simple $c*$-algebra which has a
unique tracial state. It is unknown whether this $C^{*}$-algebra is $*$-isomorphic to
$C^{*}(\Sigma_{G})$ for a subgroup $G$ of $T_{d}$ .

REMARK. Let $\Sigma$ be a shift dynamical system $(\Omega, \sigma, \phi)$ such that $\Omega$ is
homeomorphic to the one-dimensional torus $T$. According to the classical theorem
of Poincar\’e, every homeomorphism $\beta$ of $T$ such that 0(to) $=T$ for some to in $T$
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is of the form $\beta=h\circ T_{\theta}\circ h^{-1}$ where $T_{\theta}$ is as in Example 2.7 and $h$ is a homeo-
morphism of $T$ onto itself. Therefore $\Sigma$ is conjugate to $\Sigma_{\theta}=(T, \sigma_{\theta}, \phi_{\theta})$ and
thus $C^{*}(\Sigma)$ is $*$-isomorphic to $\mathcal{A}_{\theta}(=C^{*}(\Sigma_{\theta}))$ for some irrational number $\theta$ .

3. $C*$-algebras $C^{*}(\Sigma)$ and compact operators.

In this section, we will consider the shift dynamical systems $\Sigma=(\Omega, \sigma, \phi)$

such that $\phi(Z)$ is open in $\Omega$.
LEMMA 3.1. The set $\phi(Z)$ is open in $\Omega$ if and only if $\phi(n)$ is an isolated

Point for every $n$ in $Z$.
PROOF. Suppose that $\phi(Z)$ is open. Then there exists a neighbourhood $U$

of $\phi(0)$ whose closure $\overline{U}$ is contained in the countable set $\phi(Z)$ . By Baire cate-
gory theorem, there exists $\phi(n_{0})$ in $\overline{U}$ such that $\phi(n_{0})$ is isolated, so that each
$\phi(n)$ is isolated. $q$ . $e$ . $d$ .

If $\phi(Z)$ consists of finite points, then $C^{*}(\Sigma)$ does not contain compact operator

by the remark before Proposition 1.3. But, if $\phi(Z)$ consists of infinite points, we
can give a necessary and sufficient condition for that the $c*$-subalgebra $C^{*}(\Sigma)$ of
$B(\mathfrak{H})$ contains all compact operators.

PROPOSITION 3.2. We assume that $\phi(Z)$ is an infinite set. Then the set $\phi(Z)$

is open if and only if the $c*$-subalgebra $C^{*}(\Sigma)$ of $B(\mathfrak{H})$ contains all compaci
operators.

PROOF. The necessity is shown by [8, Lemmas 1 and 3]. So we show the
sufficiency. Suppose that $C^{*}(\Sigma)$ contains the one-dimensional projections $P_{n}$ of
$\mathfrak{H}$ onto $[e_{n}]$ . Let $a=(\delta_{m.n})_{m=-\infty}^{\infty}$ then $P_{n}=\pi(a)$ and so $P_{n}\in\pi(l^{\infty}(Z))$ . Thus $P_{n}$

belongs to $\pi(C(\Omega))$ by the fact $C^{*}(\Sigma)\cap\pi(l^{\infty}(Z))=\pi(C(\Omega))$ denoted in the remark
after Proposition 1.3. Hence $P_{n}=\pi(f)$ for some continuous function $f$ on $\Omega$ .
Since $P_{n}e_{m}=\pi(f)e_{m}=f(\phi(m))e_{m}=\delta_{m.n}e_{m}$ for each $m\in Z,$ $f(\phi(n))=1$ and $f(\phi(m))$

$=0$ if $m\neq n$ . Since $\phi(Z)$ is dense in $\Omega,$ $f$ is just the characteristic function
$\chi_{\phi(n)}$ . Therefore $\phi(n)$ is an isolated point in $\Omega$ . $q$ . $e$ . $d$.

COROLLARY 3.3. Let $\Sigma_{1}=(\Omega_{1}, \sigma_{1}, \phi_{1})$ and $\Sigma_{2}=(\Omega_{2}, \sigma_{2}, \phi_{2})$ be shift dynamical
systems such that $C^{*}(\Sigma_{1})$ and $C^{*}(\Sigma_{2})$ are $*- isomorphic$ . Then $\phi_{1}(Z)$ is open in $\Omega_{1}$

if and only if $\phi_{2}(Z)$ is open in $\Omega_{2}$ .
PROOF. If $\phi_{1}(Z)$ is an infinite set, then $C^{*}(\Sigma_{1})$ has an irreducible representa-

tion on an infinite dimensional separable Hilbert space. Hence, if one of $\phi_{1}(Z)$

or $\phi_{2}(Z)$ is a finite set, the other is also finite because $C^{*}(\Sigma_{1})$ and $C^{*}(\Sigma_{2})$ are
$*$-isomorphic. Thus, we may assume that both of $\phi_{1}(Z)$ and $\phi_{2}(Z)$ are inPnite
sets. Suppose $\phi_{1}(Z)$ is open in $\Omega_{1}$ . By Proposition 3.2, $C^{*}(\Sigma_{1})$ contains all com-
pact operators. Hence $C^{*}(\Sigma_{2})$ contains the ideal generated by minimal projections
in itself. Since $C^{*}(\Sigma_{2})$ acts irreducibly on $\mathfrak{H}$ , every minimal projection in $C^{*}(\Sigma_{2})$
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is one-dimensional. Thus $C^{*}(\Sigma_{2})$ contains all compact operators. Therefore
$\phi_{2}(Z)$ is open in $\Omega_{2}$ . $q$ . $e$ . $d$ .

Let $C(\mathfrak{H})$ denote the ideal of all compact operators on $\mathfrak{H}$ and $\Phi$ the canonical
map of $B(\mathfrak{H})$ onto the quotient $c*$-algebra $A(\mathfrak{H})=B(\mathfrak{H})/C(\mathfrak{H})$ , which is called the
Calkin algebra on $\mathfrak{H}$ . Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system such that
$\phi(Z)$ is open in $\Omega$ . If the complement $\Omega_{c}=\Omega-\phi(Z)con_{\llcorner}^{+}ains$ a point $\omega_{0}$ such
that $O(\omega_{0})=\{\sigma^{n}(\omega_{0});n\in Z\}$ is dense in $\Omega_{c}$ , then $\Sigma_{c}=(\Omega_{c}, \sigma_{c}, \phi_{c})$ is also a shift
dynamical system where $\sigma_{c}$ is the restriction of $\sigma$ to $\Omega_{c}$ and $\phi_{c}(n)=\sigma^{n}(\omega_{0})$ for
each $n$ in $Z$ . We note that the $c*$-algebra $C^{*}(\Sigma_{c})$ does not depend on the choice
of $\omega_{0}$ by Proposition 1.3. By [8, Lemma 1 (iii) and Lemma 3], it follows that
the $c*$-algebra $C^{*}(\Sigma_{c})$ is $*$-isomorphic to the quotient $c*$-algebra $\Phi(C^{*}(\Sigma))=$

$C^{*}(\Sigma)/C(\mathfrak{H})$ . Hence we have the following.

PROPOSITION 3.4. Let $\Sigma=(\Omega, \sigma, \phi)$ be a shift dynamical system such that
$\phi(Z)$ is not open in $\Omega$ . Then $C^{*}(\Sigma)$ is $*$-isomorPhic to the quotient $C^{*}$-algebra
$\Phi(C^{*}(\Sigma_{Z}))$ for some shift dynamical system $\Sigma_{Z}$ .

PROOF. Let $\Omega_{Z}$ be the disjoint union of $\Omega$ and $Z$ . We define a topological
structure on $\Omega_{Z}$ as follows. The family of open sets in $\Omega_{Z}$ consists of subsets
$U$ of $\Omega_{Z}$ such that, for each $\omega$ in $U\cap\Omega$, there exists a neighbourhood $V$ of $\omega$

in $\Omega$ such that $U\cup F\supset V\cup Z_{V}$, where $F$ is a finite set in $Z$ and $Z_{V}=\{n;\phi(n)\in V\}$ .
Then every $n$ in $Z=\Omega_{Z}-\Omega$ is an isolated point in $\Omega_{Z}$ and $Z$ is a dense subset
of $\Omega_{Z}$ . We put $\sigma_{Z}(\omega)=\sigma(\omega)$ for $\omega$ in $\Omega,$ $\sigma_{Z}(n)=n+1$ and $\phi_{Z}(n)=n$ . Then $\Sigma_{Z}=$

$(\Omega_{Z}, \sigma_{Z}, \phi_{Z})$ is a shift dynamical system such that $(\Sigma_{Z})_{c}=\Sigma$ . Therefore, by the
fact mentioned before this proposition, $C^{*}(\Sigma)$ is $*$-isomorphic to the quotient $C^{*}-$

algebra $C^{*}(\Sigma_{Z})/C(\mathfrak{H})$ . $q$ . $e$ . $d$ .
COROLLARY 3.5. Let $\Sigma$ be a minimal shift dynamical system. Then $C^{*}(\Sigma)$

is $*$-isomorPhic to $\Phi(C^{*}(\Sigma_{Z}))$ .
COROLLARY 3.6. If $C^{*}(\Sigma)$ is simPle, then it is $*$-isomorphic to $\Phi(C^{*}(\Sigma_{Z}))$ .
For positive integers $p$ and $q$ , let $\mathcal{A}_{p.q}$ be the $c*$-subalgebra of $l^{\infty}(Z)$ con-

sisting of sequences $a=(a_{n})$ of complex numbers such that the sequences $\{a_{-np+i}\}_{n=1}^{\infty}$

and $\{a_{nq+j}\}_{n=1}^{\infty}$ converge for each $i=0,1,$ $\cdots$ , $p-1;j=0,1,$ $\cdots$ , $q-1$ and $\mathcal{A}_{r}$ be
the set of sequences in $\mathcal{A}_{r,r}$ such that $\lim_{narrow\infty}a_{-nr+i}=\lim_{narrow\infty}a_{nr+i}$ for each $i=0,1,$ $\cdots$ ,

$r-1$ . Let $\Sigma_{p.q}$ (resp. $\Sigma_{r}$) $=(\Omega, \sigma, \phi)$ be the shift dynamical system associated
with the $c*$-algebra $C^{*}(\pi(\mathcal{A}_{p.q}), S)$ (resp. $C^{*}(\pi(\mathcal{A}_{r}),$ $S)$ ). Then $\Omega$ is the compact
set $\{x_{0}, \cdots , x_{p-1}\}\cup Z\cup\{y_{0}, \cdots , y_{q-1}\}$ where $x_{i}$ and $y_{j}$ are the limit points of
$\{-np+i\}_{n\in z_{+}}$ and $\{nq+j\}_{n\in Z+}$ respectively for each $i,$ $j$ and $\sigma(n)=n+1,$ $\sigma(x_{i})$

$=x_{i+1}$ for $i=0,1,$ $\cdots$ , $p-2;\sigma(x_{p-1})=x_{0},$ $\sigma(y_{j})=y_{j+1}$ for $j=0,1,$ $\cdots$ , $q-2;\sigma(y_{q-1})$

$=y_{0}$ . Clearly $\phi(n)=n$ . When $p=q$ and $x_{i}=y_{i}$ for each $i$ , the above system

becomes the shift dynamical system associated with $\mathcal{A}_{r}$ . We can prove that, by
using an elementary calculation, the $c*$-algebra $C^{*}(\Sigma_{p.q})$ (resp. $C^{*}(\Sigma_{r})$ ) contains
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the ideal $C(\mathfrak{H})$ of all compact operators and its quotient $c*$-algebra by $C(\mathfrak{H})$ is
$*$-isomorphic to the direct sum of $C(T)\otimes B(\mathfrak{H}_{p})$ and $C(T)\otimes B(\mathfrak{H}_{q})$ (resp.
$C(T)\otimes B(\mathfrak{H}_{r}))$ . In the case of $\Sigma_{r}$, this result is an immediate corollary to the
fact mentioned before Proposition 3.4 that $C^{*}(\Sigma_{c})$ and $C^{*}(\Sigma)/C(\mathfrak{H})$ are $*$-isomorphic
and $C^{*}(\Sigma_{r})$ is an example of a $c*$-algebra which contains ideals corresponding to
no proper $\sigma$-invariant closed subset of $\Omega$ . In fact, for the ideal $\mathcal{J}=\{f\in C(T)$ ;
$f(1)=0\}$ of $C(T)$ , the set $\{T\in C^{*}(\Sigma_{r});\Phi(T)\in \mathcal{J}\otimes B(\mathfrak{H}_{r})\}$ is such an ideal.

In the following, we shall show that there exists no shift dynamical system
except the systems $\Sigma_{p,q}$ and $\Sigma_{r}$ in the case where $\Omega-\phi(Z)$ is a finite set. We
here remark that $\Sigma_{1.1}$ and $\Sigma_{1}$ are the only cases which appear in [8, Section 1].

PROPOSITION 3.7. $SuPPose$ that $\Omega-\phi(Z)$ is a finite set. Then $\Sigma$ is strictly
conjugate to $\Sigma_{p,q}$ or $\Sigma_{r}$ for some $po\alpha tive$ numbers $p,$ $q$ or $r$ .

PROOF. We first suppose that every point of $\Omega-\phi(Z)$ is a cluster point of
$Z_{+}$ and put $\Omega-\phi(Z)=\{x_{0}, \cdots , x_{r-1}\}$ . Then there exist mutually disjoint neigh-
bourhoods $U(x_{i})$ of $x_{i}(i=0,1, \cdots , r-1)$ . Let $s$ be the number such that $\sigma^{s}(x_{0})$

$=x_{0}$ and $\sigma^{j}(x_{0})\neq x_{0}$ for all $j(1\leqq j\leqq s-1)$ . We can assume that $V=U(x_{0})\cap$

$\{\phi(ns);n\in Z_{+}\}$ is an infinite set (by replacing $x_{0}$ by $\sigma^{-j}(x_{0})$ if $V$ is finite and
$U(x_{0})\cap\{\phi(ns+j);n\in Z_{+}\}$ is infinite for $j\neq 0$) because $U(x_{0})$ intersects countably
many points in $\phi(Z)$ . Put $N_{1}=\{n\in N;\phi(ns)\in V\}$ and $N_{2}=\{n\in N;\phi(ns)\not\in V\}$ .
Then $N$ is the disjoint union of $N_{1}$ and $N_{2}$ . If $N_{2}$ is an infinite set, so is the
intersection $(N_{1}+1)\cap N_{2}$ . Though the infinite set $\{\phi((n+1)s);n\in N_{1}\}\cap\{\phi(ns)$ ;
$n\in N_{2}\}$ is contained in $\sigma^{s}V$ , which has the only one limit point $\sigma^{s}(x_{0})(=x_{0})$ , a
point $x_{0}$ is not a cluster point of $\{\phi(ns);n\in N_{2}\}$ . This contradiction implies
that $\{\phi(ns);n>N\}$ is contained in $U(x_{0})$ for a large positive number $N$. Thus
$\phi(ns+j)$ converges to $\sigma^{j}(x_{0})$ for each $j(0\leqq J\leqq s-1)$ . Since each $x_{i}$ is a cluster
point of $\phi(Z)$ , we have $r=s$ . Namely $\Sigma$ is strictly conjugate to $\Sigma_{r}$ . For the
remaining case, as in the above, we can show that $\Sigma$ is strictly conjugate to
$\Sigma_{p.q}$ for some positive numbers $p$ and $q$ . $q$ . $e$ . $d$ .

Let $\{n_{k}\}$ be a strictly increasing sequence of integers with $n_{k}$ dividing $n_{k+1}$

for all $k$ and $\mathcal{A}_{tn_{k}\}}$ the norm closure of $\bigcup_{k=1}^{\infty}\mathcal{A}_{n_{k}}$ in $l^{\infty}(Z)$ . Then $\mathcal{A}_{tn_{k}1}$ is a $C^{*}-$

subalgebra of $l^{\infty}(Z)$ such that $S\pi(\mathcal{A}_{tn_{k}1})S^{*}=\pi(\mathcal{A}_{1n_{k}\}})$ and there exists a canonical
map $\phi$ of $Z$ onto the dense open subset of the character space of $\pi(\mathcal{A}_{n_{k}I})$ . By
Proposition 3.2 and the fact of the $*$-isomorph of $C^{*}(\Sigma_{c})$ and $C^{*}(\Sigma)/C(\mathfrak{H})$ ,
$C^{*}(\pi(\mathcal{A}_{in_{k}1}), S)$ contains the ideal $C(\mathfrak{H})$ of all compact operators and its quotient
$c*$-algebra by $C(\mathfrak{H})$ is $*$-isomorphic to $C^{*}(\Sigma_{G})$ where $G$ is the subgroup of $T_{d}$

generated by {$e^{2\pi im/n_{k}}$ ; $m=0,1,$ $\cdots$ , $n_{k}-1$ and $k=1,$ 2, }. Furthermore we
find that $C^{*}(\Sigma_{G})$ is $*$-isomorphic to the quotient $c*$-algebra $\mathfrak{U}(n_{k})/C(\mathfrak{K})$ where
$\mathfrak{U}(n_{k})$ is the $c*$-algebra generated by all periodic weighted unilateral shift opera-
tors on a Hilbert space $\mathfrak{K}$ with respect to a basis $\{f_{n}\}_{n\in N}$ of $\mathfrak{K}$ of period $n_{k}$ for



Shift dynamical systems 293

some $k$ . These $c*$-algebras $\mathfrak{U}(n_{k})/C(\mathfrak{K})$ were partially studied by Bunce-Deddens
[4], and furthermore Green [8] and Ghatage-Phillips [7] have already stated
that the inductive limit of a sequence $\{\mathfrak{U}(n_{k})/C(\mathfrak{K})\}$ satisfying some conditions
was determined by the corresponding torsion subgroup of $T_{d}$ . Furthermore
Ghatage-Phillips conjectured in the introduction of [7] that $C^{*}(\Sigma_{G})$ were deter-
mined by subgroups $G$ of $T_{d}$ .
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