On the behavior at infinity of logarithmic potentials

By Yoshihiro MIZUTA

(Received Sept. 24, 1983)

1. Statement of results.

For a (signed) measure λ in the plane R^2 , we define

$$L\lambda(x) = \int \log \frac{1}{|x-y|} d\lambda(y)$$

if the integral exists at x. We note that $L\lambda(x)$ is finite for some x if and only if

(1)
$$\int \log(1+|y|)d|\lambda|(y) < \infty,$$

where $|\lambda|$ denotes the total variation of λ . Denote by B(x, r) the open disc with center at x and radius r. For $E \subset B(0, 2)$ we set

$$C(E) = \inf \mu(R^2)$$
,

where the infimum is taken over all nonnegative measures μ on R^2 such that S_{μ} (the support of μ) $\subset B(0, 4)$ and

$$\int \log \frac{8}{|x-y|} d\mu(y) \ge 1 \quad \text{for every} \quad x \in E.$$

A set E in R^2 is said to be thin at infinity if

(2)
$$\sum_{j=1}^{\infty} jC(E'_j) < \infty, \quad E'_j = \{x \in B(0, 2) - B(0, 1); \ 2^j x \in E\}.$$

It is known (cf. Brelot [1; Theorem IX, 7]) that if μ is a nonnegative measure on R^2 satisfying (1), then there exists a set $E \subset R^2$ which is thin at infinity and for which

$$\lim_{|x|\to\infty, x\in R^2-E} [L\mu(x)+\mu(R^2)\log|x|]=0.$$

Our first aim is to establish the following result.

THEOREM 1. Let μ be a nonnegative measure on R^2 satisfying (1). Then there exists a set E in R^2 such that

$$\lim_{|x|\to\infty, x\in R^2-E} (\log|x|)^{-1} L\mu(x) = -\mu(R^2),$$

$$\sum_{j=1}^{\infty} j^2 C(E'_j) < \infty,$$

Y. MIZUTA

where E'_{1} are defined as above.

COROLLARY 1. Let μ be as in Theorem 1. Suppose there exists a set $E \subset \mathbb{R}^2$ with the following two properties:

- (i) $\lim_{|x|\to\infty, x\in E}\inf(\log|x|)^{-1}L\mu(x)\geq 0;$
- (ii) $\sum_{j=1}^{\infty} j^2 C(E'_j) = \infty.$

Then $\mu=0$.

Let F be a closed set in R^2 . A positive measure μ is called an equilibrium measure on F if $S_{\mu} \subset F$, $\mu(F)=1$ and $L\mu$ is equal to a constant on F except for a set E with logarithmic capacity zero, which means that $C(E'_j)=0$ for any integer j.

COROLLARY 2. If a closed set F in R^2 has an equilibrium measure, then F satisfies (3).

This result is an improvement of Ninomiya [3; Theorem 4].

Next we shall prove

THEOREM 2. Let E be a set in R^2 which is thin at infinity. Then there exist $r_0>0$ and a (signed) measure λ on R^2 satisfying (1) such that $\lambda(R^2)=0$, $L\lambda(x)=1$ for all $x\in E-B(0, r_0)$ and $L\lambda(x)\leq 1$ for all $x\in R^2$.

Finally we shall be concerned with the existence of equilibrium measures.

THEOREM 3. Let E be a subset of $R^2-B(0, 2)$ satisfying (3). Then there exist a positive measure μ on R^2 and a number γ such that $L\mu(x)=\gamma$ on E and $L\mu(x)\leq \gamma$ on R^2 .

2. Proof of Theorem 1.

Let μ be as in Theorem 1, and write

$$\begin{split} L\mu(x) + \mu(R^2) \log |x| \\ = & \int_{R^2 - B(x, |x|/2)} \log \frac{|x|}{|x - y|} d\mu(y) \\ + & \int_{B(x, |x|/2)} \log \frac{|x|}{|x - y|} d\mu(y) = L'(x) + L''(x) \,. \end{split}$$

By (1) L'(x) is finite for $x \neq 0$. If $y \in R^2 - B(x, |x|/2)$, then

$$\left|\log \frac{|x|}{|x-y|}\right| \le \text{const. min}\left(1, \frac{|y|}{|x|}\right) \log\left(2 + \frac{|y|}{|x|}\right).$$

Hence Lebesgue's dominated convergence theorem implies that $\lim_{|x|\to\infty} L'(x)=0$.

Next we discuss the behavior at infinity of L''. For this purpose we take a sequence $\{a_j\}$ of positive numbers such that $\lim_{j\to\infty} a_j = \infty$ and

$$\sum_{j=1}^{\infty} a_j j \mu(B_j) < \infty , \quad B_j = B(0, 2^{j+2}) - B(0, 2^{j-1}) .$$

Consider

$$E_j = \{x \in B(0, 2^{j+1}) - B(0, 2^j); L''(x) \ge a_j^{-1} \log |x|\}$$

and set $E = \bigcup_{j=1}^{\infty} E_j$. If $x \in B(0, 2^{j+1}) - B(0, 2^j)$, then $B(x, |x|/2) \subset B_j$, and hence

$$0 \leq (\log |x|)^{-1} L''(x) \leq (j \log 2)^{-1} \int_{B_j} \log \frac{2^{j+3}}{|x-y|} d\mu(y).$$

Therefore, $C(E_j') \le a_j(j \log 2)^{-1} \mu(B_j)$, from which we see that E satisfies (3). Moreover it follows that

$$\lim_{|x|\to\infty, x\in R^2-E} (\log|x|)^{-1}L''(x) = 0.$$

Thus the proof of Theorem 1 is complete.

3. Proof of Theorem 2.

For $E \subset \mathbb{R}^2$ denote by E^* the inversion of E, i.e., $E^* = \{x^* = x/|x|^2 ; x \in E\}$. First note that E is thin at infinity if and only if E^* is thin at 0, i.e., E^* satisfies

(2)'
$$\sum_{j=1}^{\infty} jC(E_{-j}^{*'}) < \infty, \quad E_{-j}^{*'} = \{x \in B(0, 2) - B(0, 1) ; 2^{-j}x \in E^*\},$$

which is equivalent to

$$(2)'' \qquad \sum_{j=1}^{\infty} jC(E_{-j}^*) < \infty, \quad E_{-j}^* = \{x \in E^* \; ; \; x \in B(0, 2^{-j+1}) - B(0, 2^{-j})\}.$$

Now assume that E is thin at infinity, so that E^* is thin at 0. Since $C(\cdot)$ is an outer capacity, there exists an open set G^* in R^2 such that $E^* \subset G^*$ and G^* is thin at 0. In view of [2; No. 12, Chap. IV], we can find r, 0 < r < 1, and a positive measure μ^* on R^2 such that $S_{\mu^*} \subset \overline{G^* \cap B(0, r)}$, $L\mu^*(0) < 1$, $L\mu^*(x^*) = 1$ for all $x^* \in G^* \cap B(0, r)$ and $L\mu^*(x^*) \le 1$ for all $x^* \in R^2$. Define μ by setting $\mu(A) = \mu^*(A^*)$ for a Borel set $A \subset R^2$, and note that

$$L\mu(x) = L\mu^*(x^*) + \mu^*(R^2) \log|x^*| - L\mu^*(0), \quad x^* = x/|x|^2.$$

Set $a=1-L\mu^*(0)$ and $\lambda=a^{-1}(\mu-\mu(R^2)\delta_0)$, where δ_0 denotes the dirac measure at 0. Then

$$L\lambda(x) = a^{-1}\{L\mu^*(x^*) - L\mu^*(0)\},$$

which is equal to 1 for $x \in E - \overline{B(0, r^{-1})}$ and is not greater than 1 for all $x \in R^2$. Thus λ satisfies all the conditions in our theorem, and we conclude the proof. 478 Y. MIZUTA

4. Proof of Theorem 3.

Before the proof of Theorem 3 we prepare the following lemma.

LEMMA. If G is an open subset of B(0, 1) satisfying

$$(3)' \qquad \sum_{j=1}^{\infty} j^2 C(G'_{-j}) < \infty, \quad G'_{-j} = \{ x \in B(0, 2) - B(0, 1) \; ; \; 2^{-j} x \in G \},$$

then there exists a positive measure ν such that $S_{\nu} \subset B(0, 1)$, L_{ν} is bounded on B(0, 2) - B(0, r) for any r > 0, $\langle \nu, \nu \rangle \equiv \int L_{\nu}(x) d\nu(x) < \infty$ and

$$\lim_{x\to 0, x\in G} \left(\log\frac{1}{|x|}\right)^{-1} L\nu(x) = \infty.$$

PROOF. By [2; Theorem 2.6'], for each positive integer j there exists a positive measure ν_j such that $S_{\nu_j} \subset B(0, 2^{-j+2}) - B(0, 2^{-j-1})$, $\nu_j(R^2) < C(G'_{-j}) + \varepsilon_j$,

$$\int \log \frac{2^{-j+s}}{|x-y|} d\nu_j(y) = 1 \quad \text{for all} \quad x \in G_{-j}$$

and

$$\int \log \frac{2^{-j+s}}{|x-y|} d\nu_j(y) \leq 1 \quad \text{for all} \quad x \in \mathbb{R}^2,$$

where $\{\varepsilon_j\}$ is a sequence of positive numbers such that $\sum_{j=1}^{\infty} j^2(C(G'_{-j}) + \varepsilon_j) < \infty$. Take a sequence $\{a_j\}$ of positive numbers which increases to ∞ and satisfies

$$\sum_{j=1}^{\infty} (a_{j+3}j)^2 (C(G'_{-j}) + \varepsilon_j) < \infty.$$

Define $\nu = \sum_{j=2}^{\infty} a_j j \nu_j$. Then $\nu(R^2) = \sum_{j=2}^{\infty} a_j j \nu_j (R^2) \le \sum_{j=2}^{\infty} a_j j (C(G'_{-j}) + \varepsilon_j) < \infty$. If $x \in B(0, 2^{-k+1}) - B(0, 2^{-k})$, then

$$L\nu(x) \leq \text{const.} \left\{ \sum_{j=2}^{k-3} a_j j^2 (C(G'_{-j}) + \varepsilon_j) + \sum_{j=k-2}^{k+2} a_j j (1 + j\nu_j(R^2) \log 2) + \sum_{j=k+3}^{\infty} a_j j k (C(G'_{-j}) + \varepsilon_j) \right\} \leq \text{const. } a_{k+2}k.$$

Consequently we derive

$$\langle \nu, \nu \rangle = \sum_{k=2}^{\infty} a_k k \int L \nu(x) d\nu_k(x) \leq \text{const.} \sum_{k=2}^{\infty} (a_k k) (a_{k+3} k) (C(G'_{-k}) + \varepsilon_k) < \infty.$$

On the other hand we have for $x \in G_{-k}$,

$$L\nu(x) + \nu(R^2) \log 2 \ge a_k k \{L\nu_k(x) + \nu_k(R^2) \log 2\}$$

$$\ge a_k k \{1 + (k-2)\nu_k(R^2) \log 2\}.$$

This implies that $\lim_{x\to 0, x\in G} \left(\log \frac{1}{|x|}\right)^{-1} L\nu(x) = \infty$. Thus the lemma is established.

We are now ready to prove Theorem 3.

PROOF OF THEOREM 3. Let E be a subset of $R^2-B(0, 2)$ which satisfies (3). Then the inversion E^* of E satisfies (3)' with $G=E^*$. Hence there exists an open subset G of B(0, 1) such that $E^* \subset G$ and G satisfies (3)'. Let ν be a positive measure as in the Lemma.

Let $U_1(G)$ be the totality of positive measures μ such that $S_{\mu} \subset G$, $\mu(G)=1$ and $\langle \mu, \mu \rangle < \infty$. Set

$$V(\mu) = \langle \mu, \mu \rangle - 2L\mu(0)$$
,

and consider

$$\gamma = \inf \{ V(\mu) ; \mu \in U_1(G) \}.$$

Take r, 0 < r < 1, such that $\log |x|^{-1} < L\nu(x)$ for every $x \in G \cap B(0, r)$. Then we obtain for $\mu \in U_1(G)$,

$$\int_{B(0,\tau)} \log \frac{1}{|x|} d\mu(x) \leq \int_{B(0,\tau)} L\nu(x) d\mu(x)
\leq \iint \log \frac{2}{|x-y|} d\nu(y) d\mu(x)
\leq 2^{-1} \langle \langle \nu, \nu \rangle + \langle \mu, \mu \rangle) + \nu(R^2) \log 2,$$

which implies that $V(\mu) \ge -\langle \nu, \nu \rangle - 2\log \frac{1}{r} - 2\nu(R^2)\log 2 > -\infty$. Take a sequence $\{\mu_j\}$ of positive measures in $U_1(G)$ such that $\lim_{j \to \infty} V(\mu_j) = \gamma$. We may assume that $\{\mu_j\}$ converges vaguely to a positive measure μ_0 . For 0 < r < 1, define $\Lambda(r) = \inf \left\{ \left(\log \frac{1}{|x|}\right)^{-1} L\nu(x) \; ; \; x \in G \cap B(0, r) \right\}$. Let ϕ_r be a function in $C_0(B(0, r))$ such that $0 \le \phi_r \le 1$ on R^2 and $\phi_r = 1$ on B(0, r/2). Then we have

$$L\mu_{j}(0) \leq \Lambda(r)^{-1} \int_{B(0,r)} L\nu(x) d\mu_{j}(x) + \int (1 - \phi_{r}(x)) \log \frac{1}{|x|} d\mu_{j}(x).$$

It follows that $\{\langle \mu_j, \, \mu_j \rangle\}$ is bounded and $\limsup_{j \to \infty} L \mu_j(0) \leq L \mu_0(0)$. Since $\liminf_{j \to \infty} L \mu_j(0) \geq L \mu_0(0)$, $\lim_{j \to \infty} L \mu_j(0) = L \mu_0(0)$. Note here that $L \mu_0(0)$ is finite. On the other hand we see that $\lim_{j \to \infty} \langle \mu_j, \, \mu_j \rangle \geq \langle \mu_0, \, \mu_0 \rangle$. Since $U_1(G)$ is convex, $V((\mu_j + \mu_k)/2) \geq \gamma$ for any positive integers j and k. Letting first $j \to \infty$ and next $k \to \infty$, we establish $V(\mu_0) \geq \gamma$. Hence $V(\mu_0) = \gamma$ and $\lim_{j \to \infty} \langle \mu_j, \, \mu_j \rangle = \langle \mu_0, \, \mu_0 \rangle$. The last equality also implies that $\lim_{l \to \infty} \langle \mu_j - \mu_0, \, \mu_j - \mu_0 \rangle = 0$.

If
$$\mu \in U_1(G)$$
 and $0 < t < 1$, then

$$\gamma \leq \liminf_{j \to \infty} V((1-t)\mu_j + t\mu)$$

$$=V(\mu_0)+2t\Big\{\langle \mu_0, \mu-\mu_0\rangle-\int \log\frac{1}{|x|}d(\mu-\mu_0)\Big\}+t^2\langle \mu-\mu_0, \mu-\mu_0\rangle\,,$$

which yields

$$\int \! L \mu_0(x) d\mu(x) - L \mu(0) \ge \int \! L \mu_0(x) d\mu_0(x) - L \mu_0(0) .$$

For $x^0 \in G$, by taking as μ the unit uniform surface measure on the circle $\partial B(x^0, r)$ and letting $r \downarrow 0$, we obtain

(4)
$$L\mu_0(x^0) \ge L\mu_0(0) + \gamma + \log \frac{1}{|x^0|}.$$

Let $x^0 \in S_{\mu_0}$, and suppose

$$L\mu_0(x^0) > L\mu_0(0) + \gamma + \log \frac{1}{|x^0|}$$

Since $L\mu_0$ is lower semicontinuous, there exists r>0 such that

(5)
$$L\mu_0(x) > L\mu_0(0) + \gamma + \log \frac{1}{|x|} \quad \text{for every } x \in B(x^0, r).$$

Let ϕ be a function in $C_0(B(x^0, r))$ such that $0 \le \phi \le 1$ on R^2 and $\phi = 1$ on $B(x^0, r/2)$, and set $\sigma_j = (\phi \mu_j)(R^2)\mu_j - \phi \mu_j$. Then $\mu_j + t\sigma_j \in U_1(G)$ for any positive integer j and any t, 0 < t < 1. Hence $V(\mu_j + t\sigma_j) \ge \gamma$ for above j and t, from which it follows that

$$(\psi\mu_0)(R^2)\Big\{\!\!\int\! L\mu_0(x)d\mu_0(x)-L\mu_0(0)\Big\}\!\geqq\!\int\!\!\Big\{L\mu_0(x)-\log\frac{1}{|x|}\!\Big\}\psi(x)d\mu_0(x)\;.$$

By (5) we derive

$$V(\mu_0) > \gamma$$
,

which is a contradiction. Thus we proved that

(6)
$$L\mu_0(x) \leq L\mu_0(0) + \gamma + \log \frac{1}{|x|}$$
 on S_{μ_0} .

Define μ_0^* by setting $\mu_0^*(A^*) = \mu_0(A)$ for a Borel set A in R^2 , where $A^* = \{x/|x|^2; x \in A\}$. Then by (4) $L\mu_0^* \ge \gamma$ on G^* , and by (6) $L\mu_0^* \le \gamma$ on $S_{\mu_0^*}$. Thus μ_0^* satisfies all the conditions in our theorem, and hence we conclude the proof.

5. Further results.

Let E be a set in R^2 whose exterior is not empty. Suppose $B(x^0, 2r_0) \subset R^2 - E$, where $r_0 > 0$. If E is thin at infinity, then the inversion of E with respect to $\{x \in B(x^0, r_0) \text{ is thin at } x^0 \text{.}$ Note here that a set E is thin at E if and only if E is thin at E. Moreover if E satisfies (3), then

$$\sum_{j=1}^{\infty} j^2 C(E_j') < \infty$$
 ,

where $E'_j = \{x \in B(x^0, 2r_0) - B(x^0, r_0) ; x^0 + 2^j(x - x^0) \in E\}$ and $C(E'_j)$ are defined to be the quantities $C(\{x - x^0 ; x \in E'_j\})$. Thus, applying the routine methods as in the proof of Theorem 3, we obtain the following results.

THEOREM 2'. Let F be a closed set in R^2 and $x^0 \in R^2 - F$. If F is thin at infinity, then there exist M>0 and a (signed) measure λ satisfying (1) such that $S_{\lambda} \subset F \cup \{x^0\}$, $\lambda(R^2)=0$, $L\lambda=1$ on F-B(0,M) except for a set with logarithmic capacity zero and $L\lambda \leq 1$ on R^2 .

THEOREM 3'. Let E be a subset of R^2 whose exterior is not empty. If E satisfies (3), then there exist a positive measure μ and a number γ such that $L\mu = \gamma$ on E and $L\mu \leq \gamma$ on R^2 .

In view of Corollary 2 to Theorem 1, we can establish

THEOREM 4. Let F be a closed set in R^2 . Then F has an equilibrium measure if and only if F satisfies (3).

This result gives a negative answer to the question of Ninomiya [3; p. 216]. Combining Theorem 4 with [3; Theorem 5], we derive the following result.

COROLLARY. Let F be a closed set in \mathbb{R}^2 . Then the following statements are equivalent:

- (i) F has an equilibrium measure.
- (ii) F is of logarithmic capacity finite in the sense of Ninomiya [3].
- (iii) F satisfies (3).

References

- [1] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer, 1971.
- [2] N. S. Landkof, Foundations of modern potential theory, Springer, Berlin-Heidelberg-New York, 1972.
- [3] N. Ninomiya, On the balayage constant for logarithmic potentials, Osaka J. Math., 20 (1983), 205-216.

Yoshihiro MIZUTA

Department of Mathematics
Faculty of Integrated Arts and Sciences
Hiroshima University
Hiroshima 730, Japan