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On the behavior at infinity of logarithmic potentials
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1. Statement of results.

For a (signed) measure A in the plane R% we define

La(x)= Slog da(y)

1
|x—y|
if the integral exists at x. We note that LA(x) is finite for some x if and only if
(1) flog1+ 1301210 <00,

where [2| denotes the total variation of 4. Denote by B(x, r) the open disc with
center at x and radius . For ECB(0, 2) we set :

C(E)=inf p(R"),

where the infimum is taken over all nonnegative measures g on R* such that S,
(the support of u)C B(0, 4) and

Slog

A set E in R® is said to be thin at infinity if

du(yi=1 for every x<E.
x—7] “y y

(2) g} JO(ED<co, Ej={xeB(0, 2)—B(0, 1); 2/’xeE}.

It is known (cf. Brelot [1; Theorem IX, 71) that if g is a nonnegative measure
on R® satisfying (1), then there exists a set ECR®* which is thin at infinity and
for which

[ Lutx)+p(RY log | x|1=0.

1:.'|—oa xeRE

Our first aim is to establish the following resuit,

THEOREM 1. Let p be a nonnegative measure on R* satisfying (1). Then there
exists a set E in R* such that

(loglxl Lp(x)=—pu(R?),

l.rl--oo .rER

(3) 2 CEy<es,
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where E are defined as above.
COROLLARY 1. Let p be.as in Theorem 1. Suppose there exists a set ECR®

with the following two properties:
(i) Ilim inEfE(longI)“L'r,z(x)gO;
&[0, T .

(i) ;il FC(E=0o.
Then pu=0.

Let F be a closed set in R% A positive measure g is called an equilibrium
measure on F if S,CF, p(F}=1 and Lpg is equal to a constant on F except for

a set E with logarithmic capacity zero, which means that C(E})=0 for any
integer 7.

COROLLARY 2. If a closed set F in R* has an equilibrium measure, then F
satisfies (3).

This result is an improvement of Ninomiva [3; Theorem 4].

Next we shall prove

THEOREM 2. Let E be a set in R® which is thin at infinity. Then there exist
ro>0 and a (signed) measure A on R® satisfying (1) such that A(R*)=0, Li(x)=1
for @il xe E—B(0, r,) and LA(x)=1 for all x=R:

Finally we shall be concerned with the existence of equilibrium measures.

THEOREM 3. Let E be a subset of R*—B(0, 2) satisfying (3). Then there

exist a positive measure p on R® and a number y such that Lu(x)=y on E and
Lu(x)=<y on R:.

2. Proof of Theorem 1.
Let p be as in Theorem 1, and write

Lp(x)+u(R*) log | x| -
[x]

[x—y|

lglxl d dp(y)=L'(x)+L"(x).

log dp(y)

SR*-B(::, 12112

SB(::.IJ:UsJ

By (1) L’(x) is finite for x+0. If y(‘:‘RZ—B(x |x|/2), then

I<const mm( , ]yl)log(2+'y|l

Hence Lebesgue’s dominated convergence theorem implies that lim L’(x)=0.
IE 1 el

|10g|x

Next we discuss the hehavior at infinity of L”. For this purpose we take
a sequence {a;} of positive numbers such that ljim a;=co and
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jﬁ; a;j(B)<eo, By=B(0, 25— B(0, 2-1).

Consider
E;={xeB(0, 2/*")—B(0, 2); L"(x)=a;" loglx|}

and set Eng,. If xe B, 2*)—B(0, 2/), then B(x, |x|/2)CB;, and hence
j+8
|x—y]

Therefore, C(E))<a,; log 2)7p(B;), from which we see that E satisfies (3).
Moreover it follows that

0 (log 1) L7(x)5(f log 2)°'] log 17— du().

lim E(loglx])‘lL”(x)-':O.

1 |—+00, ZERZ-

Thus the proof of Theorem 1 is complete.

3. Proof of Theorem 2.

For ECR® denote by E* the inversion of E, i,e., E*={x*=x/|x|?; x€E}.
First note that E is thin at infinity if and only if E* is thin at 0, i.e., E*
satisfies

2y ;'21 JOE*) <o, E¥={xeB(0, 2—B(O, 1) ; 2-xcE*},

which is equivalent to

(2) 3 iCE)<eo, Erz={reE*; x=B(, 27")—BO, 27).

Now assume that E is thin at infinity, so that E* is thin at 0. Since ()
is an outer capacity, there exists an open set G* in R® such that E*CG* and G*
is thin at 0. In view of [2; No. 12, Chap. IV], we can find », 0<#<], and a
positive measure p* on R? such that S,CG*NB(O, r), Lp*0)<1, Lg*(x*)=1
for all x*G*NB(, r) and Lp*x*)<1 for all x*<R%: Define g by setting
p(Ay=p*(A*) for a Borel set ACR? and note that

Ly(x)y=Lp*(x®)+p*(R%) log | x*| —Lp*(0),  x*=x/{x|%

Set a=1—Lp*0) and A=a " (pu—pu(R*d,), where §, denotes the dirac measure at
0. Then
La(x)=a™ {Lp*(x*)— Lu*(0)},

which is equal to 1 for x&e E—B(0, r~!) and is not greater than 1 for all x R%
Thus A satisfies all the conditions in our theorem, and we conclude the proof.
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4. Proof of Theorem 3.

Before the proof of we prepare the following lemma.
LEMMA. If G is an open subset of B(0, 1) satisfying

(3Y jéj”C(G’_,-)<00, L;i={x€ B0, 2)—-B0, 1) ; 2-/x=G},

then there exists a positive measure v such that S,CB(0, 1), Lv is bounded on

B(0, 2)—B(0, r) for any r>0, <y, v}ESLv(x)dv(x)<oo and

fim (logl%)—ll,u(x):oo .

=0, zEG |
Proor. By [2; Theorem 2.6"], for each positive integer ;j there exists a
positive measure v; such that S, CB(0, 277**)—B(0, 2777, v(R)<C(GL))+¢,,

~j+8

Slogﬁdvj(y)=l for all x<C.,
and
. ~J+8

Slogli_yldvj(y)éi for all xeRY,

where {¢;} is a sequence of positive numbers such that in JHC(GL)+e) <o,

Take a sequence {a;} of positive numbers which increases to co and satisfies
;é; (a54s)(C(GLy)+e) <00,

Define »= g_.; a;jv; Then w(R%)= ?;Z a;jv{RH= ,é a,;j(C(GL)+e)<oo, If xe
B(0, 2-**)—B(0, 2°¥), then
Lu()=const.{ B e (CGLI+e)+ 3 asi(1+iv(RY log 2)

+ j_'%sa:fk(c(c’-;)-ks,)}_ﬁ_const. Aurgh .

Consequently we derive
o, Vo= ésakkSLv(x)dvk(x)éconst. 3 (@1h) e RXCGL )+ en) <o

On the other hand we have for xeG_;,
Ly(x)+v(RH)log 2= apk {Lyy(x)+v:(R?) log 2}
=aik {1+{k—2w (R log 2}.
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This implies that lim (1og~£~)"L»(x)=m. Thus the lemma is established.
z~0, 2EG x|

We are now ready to prove
PROOF OF THEOREM 3. Let E be a subset of R?— B(0, 2) which satisfies (3).
Then the inversion E* of E satisfies (3)” with G=FE*. Hence there exists an
open subset G of B(0, 1) such that E*CG and G satisfies (3. Let v be a
positive measure as in the
Let U,(G) be the totality of positive measures g such that S,CG, p(G)=1
and <{g, pgr<co. Set
V(py=<p, p>—2L p(0),
and consider
r=inf{V(g); peU(G)}.
Take r, 0<r<1, such that log|x| < Lu(x) for every x&GNB(0, r). Then we
obtain for peU(G),

1
— <
Sm,r, log x| d#(")=gml T)Lv(x)dy(x)

2
<{flog 12y dutsaptn)

27y, v+, ) Tv(RH1og 2,
which implies that V(42 —<v, ¥>—2 log = —2u(R")log 2> —co. Take a sequence
{pe;} of positive measures in U,(G) such that 1}_{1;1°V(ﬂ1)=?- We may assume that
{p;} converges vaguely to a positive measure p,. For 0<r<1, define A(r)=
inf{(loguil)"‘mx); x€GNBQ, r)}. Let ¢, be a function in Co(B(0, ) such
that 0=¢,=<1 on R* and ¢.=1 on B(0, r/2). Then we have

L= 40| Indpo+{a—g4x logﬁd,u,-(x) :

It follows that {{u; #;>} is bounded and linjl sup Lp0) < Lyy(0).  Since
liljninf Lpi0)= L pof0), Eim Lp0)=Lu(0). Note here that Lp.(0) is finite. On
the other hand we see that }.E.m(ﬂj, ti>={o, ttoy. Since Uy(G) is convex,

V{(;+ps)/2)Zy for any positive integers 7 and k. Letting first j—co and next
k—co, we establish V(g,)=y. Hence V(g)=y and ljim{,uj, p>=Cph, pte>. The

last equality also implies that ljim<;zj—;eo, s oy =0,
If pelU,(G) and 0<i<1, then
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rélir}zinf V{1 —t)p+t)

=V(#o)+2f{<#o, #"’#o)"_gl()g‘I_;!;‘Td(ﬂ_ﬂo)}+tz<#-#o: U=ty
which yields
SLﬂo(x)dﬂ(x)—L,u(O)szﬂo(x)d;to(x)-L[Jo(o) :

For x°€G, by taking as g the unit uniform surface measure on the circle
dB(x° r) and letting » | 0, we obtain
(4) L2 L0 +108 i
Let x°€S,,, and suppose
Lo a)> Lo 047108 o

Since Ly, is lower semicontinuous, there exists »>0 such that

(5) Lpo(x)> L;.eo(O)—l-r—I-logﬁ for every xe<B(x 7).

Let ¢ be a function in Co(B(x% r)} such that 0=¢=1 on R* and ¢=1 on
B(x°, r/2), and set o;=(Pu)(RHpu;—¢p;. Then p+te,€U(G) for any positive
integer ;7 and any ¢, 0<¢<1l. Hence V(u;+to;)=y for above j and ¢, from
which it follows that

1
uX R L0 d )~ LpsO} 2 [ { Lt —log T} ko).
By (5) we derive
Vg >r,
which is a contradiction. Thus we proved that
(6) Lpx)SLp@+7+log 20 on S,,.

E3
Define pf by setting p¥(A¥)=p(A) for a Borel set A in R®, where A*=
{x/1x1%; xA}. Then by (4) Lyf=y on G*, and by (6) Lygf<r on Suz. Thus
¥ satisfies all the conditions in our theorem, and hence we conclude the proof.

5. Further results.

Let E be a set in R? whose exterior is not empty. Suppose B(x°, 2r,)CR*—E,

where 7,>0. If E is thin at infinity, then the inversion of E with respect to

™™ 3B(x° r,) is thin at x°. Note here that a set A is thin at x° if and only if
{x—x°; x= A} is thin at 0. Moreover if E satisfies (3), then
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gf’C(EjKoo ,

where Ej={xeB(x° 2r,)—B(x% ry) ; x*+2%(x—x°)=E} and C(E)) are defined to
be the quantities C({x—=x° ; x=Ej}}). Thus, applying the routine methods as in
the proof of [Theorem 3| we obtain the following results.

THEOREM 2’. Let F be a closed set in R* and x"eR*—F. If F is thin at
infinity, then there exist M>0 and a (signed) measure A satisfying (1) such that
SiCFU{x%, A(RY)=0, LA=1 on F—B(0, M) except for a set with logarithmic
capacity zero and LA=1 on K%

THEOREM 3’. Let E be a subset of R® whose exterior is not empty. If E
satisfies (3), then there exist a positive measure yu and a number y such that Lp=y
on E and Luy<y on R

In view of to Theorem 1, we can establish

THEOREM 4. Let F be a closed set in R®: Then F has an equilibrium
measure if and only if F satisfies (3).

This result gives a negative answer to the question of Ninomiya [3; p. 216].

Combining Theorem 4 with [3; Theorem 5], we derive the following result.

COROLLARY. Let F be a closed set in R:. Then the following statements are
equivalent :

(i) F has an equilibrium measure.

(ii) F is of logarithmic capacity finite in the sense of Ninomive [3].

(iii) F satisfies (3).
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