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A pinching problem for symmetric spaces of rank one
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§0. Introduction.

A main problem in Riemannian geometry is to investigate the influences of
geometrical quantities of complete Riemannian manifolds on the topology. The
pioneering work for this is the well known sphere theorem due to Rauch
which was improved by Klingenberg [9] Take M=S" with the constant
sectional curvature equal to 1. The theorem states that if M is a complete

. . . . 1
simply connected n-manifold with the sectional curvature Kj, —4—<K #=1, then

M is homeomorphic to S™. A stronger assumption for curvature implies that M
must be diffeomorphic to S™ ([6], [14], [16].

Cheeger defines another notion of pinching. Let M, M be compact
Riemannian manifolds of dim M=dim M=n and meM, meM. Let I : M,—M;
be a linear isometry between the tangent spaces. For a geodesic y emanating from
m, let 7 denote the geodesic emanating from 7 such that 7/(0)=I1(y'(0)), and P,
the parallel translation along y. Set [,:=P;el-P,-;. I, induces an isomorphism
on tensor spaces. We denote by R, the curvature tensor of M and by L( ) the
length of curves. Now set:

p(M, M) := inf [sup{|Ry—I," (Rg)| ; L()<2diam(M)}].

m,m,I
Let M be a simply connected compact rank one symmetric space (henceforth
SCROSS). One of his results states that there exists an ¢>0 such that if a
compact simply connected manifold M is e-close to M with respect to 0, then
M is piecewise linearly homeomorphic to M.

The main purpose of this paper is to consider diameter or volume-pinching
for SCROSSes using a somewhat weaker one than 5, as well as to strengthen
the topological conclusion to diffeomorphism. For meM, we denote by &, the
compact domain in M, bounded by the tangent cut locus of m: &, :={pvesM,;
d(expnv, m)=|jvl}, and by US,, the set of all unit tangent vectors on &,. We
define our pinching numbers by

DEFINITION.

poM, M)=inf [sup{||dexpal®)|—|dexpn@)||; vEUSA}],

m,m,I
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p(M, M)=po(M, M)+ |diam (M)—diam (i) | + | Vol (M) — Vol (71|,

where diam(M) and Vol(M) denote the diameter and the volume of M.
We denote by VR the covariant derivative of the curvature tensor R ;.
We shall prove the following :

THEOREM 3.4. Let M be a SCROSS. For given A, A,>0, there exists an
e>0 depending only on M and A, A, such that if a compact manifold M satisfies
|Kg|< A% |NRg|£4,, p(M, M)<e, then M is diffeomorphic to M. '

The outline of the proofs of the theorems in this article is sketched as
follows. Let m, /m and I minimize the quantity in the definition of p(M, M).
Set @ :=expa°l-expn~!, where exp,~!: M—&, is some inverse. Although @
is not continuous, it will be seen in Section 3 that @ is almost distance preserv-
ing, In Section 1, we shall show that such a map can be approximated by a
diffeomorphism.

Our pinching constants can be estimated explicitly. But we shall not do
this in order to avoid non-essential complexity.

§1. e-mappings.

Before proceeding to our pinching situation, we begin with a general con-
sideration. For given n, 4, A;, R>0, we denote by IM*(A4, A4,, R) the following
class of n dimensional complete Riemannian manifolds M (not necessarily compact) :

|Ku|=A%, IVRy|=4,, iM)=R,
where (M) denotes the injectivity radius of the exponential map on M. From

now on, for given 4, R, we will set RO::%min{n/A, R} implicitly. Notice

that if »<R,, then the »-ball B(p, ») around any peM is convex and if r is
taken sufficiently small, then exp,|B(0, ») is almost isometric, where B(0, r)
denotes the r-ball in M, around the origin.

DEFINITION. We say that a map f : X—Y between metric spaces X and Y
is an e-map if |d(f(x), f(x")—d(x, x)| <e for all x, x'€X.

Notice that f is not necessarily continuous and any inverse map f=*: f(X)
— X is also an e-map.

e-MAPPING THEOREM 1.1. There exists an ey=¢o(n, A, A;, R)>0 such that
if M, MeW™(A, Ay, R) and f : M—M is an ec-map, then f can be approximated
by a diffeomorphism.

For the proof, we use the following general result which has been proved
by using a technique of center of mass and which has been applied to finiteness
theorems and a differentiable sphere theorem (See [17] and also [7], [11], [18]).
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GENERAL THEOREM. For given n, A, A,, R>0, there exist positive constants
e1=e.(n), ri=ri(n, A, A,, R)such that if M, MeM™~(A, A,, R)satisfy the following
condition, then they are diffeomorphic: for some e=e,, r=r,, there are r-dense
and r/2-discrete subsets {p} CM, {q;} CM such that the correspondence p;—gq; is
bijective and satisfies that 1—e=<d(q:, q;)/d(p;, p)=1+e for all p; p; with
d(ps, p) <20y The diffeomorphism F: M—M is taken so as to satisfy
d(F(pi), qi)<0r, where 0 is a function of n, A, r, ¢ such that —0 as r, e—0.

By definition, a subset A of a metric space X is d-dense (resp. o-discrete) if
any x<X has the distance d(x, A)<d (resp. if any distinct pair a#a’=A has
the distance d(a, a’)=d). A system of points {x;} in X is said to be a d-maximal
system if it is maximal with respect to the property that d(x;, x;)=0d, i#j.
Notice that {x;} is d-maximal if and only if it is J-dense and oJ-discrete.

In [17], Lemma 2.1", we have proved the following lemma essentially.

LEMMA 1.2. Let a<2 ™D 2"+ Lot {x:}iz1,..n be an ar-maximal
system of B0, r)CR™ with x,=0. If a system {yi}i=1...n 0f points in B(0, r)
with y,=0 satisfies

I—e=|yi—y;ll/lxi—xI=14+e  for every i#j,

then there exist a linear isometry I of R™ and some constant c(n) such that
H(x)—vil|Sc(n)e’2-r for every i, where ¢’ =4(3e(1+2a72))'2,

LEMMA 1.3. For given n, A, ¢>0, there exist v, 0>0 such that if complete
n-manifolds M and M with |Ky|, |Kg|<A42, (M), iM)=R admit a &-map
f : M—M, then for every meM the following are satisfied:

(1) expnl|B, r) is a 4Ar*-map,

(2) f|B(m, r) admits an er-approximation of the form expym)°l-€Xpr,

(3) f(M) is 2er-dense.

PrOOF. (1). By the Rauch comparison theorem (henceforth RCT), we may
assume that »<R, is chosen so small that for every x, y= B, )

sin Ar - d(eXpnx, €XPnYy) - sinh Ar _

-Ar
e e P Y S

A

and hence |d(expnx, exXpny)—|x—y| | <44r:
(2). (1) implies that the map g:=expsm, ' f°expn| B, 7) is a (3+84r*)-map.

ASSERTION. There exists a linear isometry I : M,—M ramy Such that [|[g—I|
<n(n, 4, 0, r)r on B(0, »), where y—0 as », d/r, r*/d—0.

PROOF. Set a:= ¥40/r and take an ar-maximal system {x;} on B(0, r) with
x1=0. Now || g(x;)—glx)ll—lx:i—x,ll| <d+84r% By discreteness, this implies

Hlg(x)—gx I/ xi—x,]—1] <a*+8Ar/a=:¢'.
By Lemma 1.2, if « and ¢ are taken sufficiently small, then there exists a linear
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isometry I such that
‘ [I(x)—g(x)ll=c(n)e”r

fbr some constant ¢(n), where ¢”=4(3¢’(1+2a7%))¥%  Notice that ¢”—0 as r,

5/7?, r*/6—0. For any x<B(0, r), by denseness we may take an x; such that
lx;—x||<ar. Then we get

()= g =) —I(x )|+ (x)—gx o+l g(xa)— g
 <Qa+a*+84r+c(n)e”*)r
=: p(n, A, 6, r)r. Q.E.D.
Now for any p< B(m, r), we have
d(f(P), expysim T oexpr'(p) <] glexpx (p)—I(expzi(p)|+44r*
<(p+4dr)r.

Hence for the proof of (2), it suffices to choose », d so small that »+44r<e.
(3). We first show that

(%) f(B(m, r)) is 2er-dense in B(f(m), r) for every meM.

Let {x;} ©B(0, ») be the ar-maximal system as in the proof of (2). For any

geB(f(m), r), there is an x; such that expnx;=(expscm)l-exp) (Blg, 2ar)).
Then (2) yields

d(f(expmxs), Q=d(f(eXPnxs), €XPyrm)L(x:))+d(€Xpsim)I(x:), q)
<er+2ar <2er.

By induction, we assert that f(B(m, (2k—1)r)) is 2er-dense in B(f(m), kr)
for k=1, 2, ---. This will complete the proof of (3). Suppose that the assertion
is true for k. For any ¢ in the ball B(f(m), (k+1)r), take g,= B(f(m), k¥) with
g B(g,, ). The induction hypothesis assures the existence of such a point
pe B(m, 2k—1)r) that d(f(p), ¢:)<2¢r. Since d(f(p), ¢9)<(1+2¢)r, it is possible
to take a point ¢, on the unique minimal geodesic from f(p) to ¢ such that
d(f(p), ¢z) <7, d(gs, 9 <2e¢r. Then by (x) there exists a p’€B(p, r) with
d(f(p"), gs;)<2er. Since

d(f(p"), @=d(f(p), g2+ d(gs, @)<der<r,

(*) implies again the existence of such a point p”< B(p’, r) that d(f(p”), q)<2er,
where

d(m, p")=d(m, p)+d(p, p)+d(p’, p")<@2k+Dr.

This completes the induction argument. Q.E.D.
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Proof of e-mapping Theorem 1.1. Let e(n), »i(n, A, A;, R) be the constants
as in General Theorem. For an 50<—2‘7'151, let f : M—M be an ¢,--map. Take
a %rl-maximal system {p;} on M and set ¢;:=f(p;). Now the inequality

Id(QI) qj)_d(pl: pj)[ <$0 imphes

4@y ;) \ 3.\,

dpe b)) 1 <50/<47’1)<c1. |
In particular, the correspondence p;—gq; is bijective and {g;} is r,/2-discrete. It
remains to prove the r,-denseness of {g;}. In take ¢, » so small that

2er<r,/8. Let 0 be the constant given in the lemma. Then setting £,<J we
see that for any g€ M, there exists a p<M such that d(g, f (p))<2er. Taking

a p; with d(p, pi)<'2—7’1 yields

d(g, ¢)=dg, FON+Af(B), g <2er+riteosrs.

4

Hence {¢;} is 7;-dense and therefore General Theorem implies the existence of a
diffeomorphism F : M—M such that d(F(p;), ¢;) <0r,, where d—0 as &, r,—0.
Q.E.D.
It should be mentioned that Cheeger showed the following: Let M be a
compact Riemannian manifold. Then for given 4, R>0, there exists an >0
such that if a compact manifold M satisfies |Ky|<A? i(M)=R, then every
e-map from M to M can be approximated by a piecewise linear homeomorphism.
But it seems to us that the constant ¢ can not be estimated explicitly in terms
of the given constants.

- §2. Property CM.

From now on, let M, M denote compact Riemannian manifolds of dimension
n unless otherwise stated. We will often assume that meM, wmeM and
I : M,—Mj have been chosen so as to minimize the pinching number under
consideration. Let C(m) denote the cut locus of m. Then the interior &,, of &,
is mapped diffeomorphically onto M—C(m) by the exponential map at m. Let
expyl : M—&, be some extension of (exp,|&n,)-l. Then we define the map
® . M—M by O=exps-l-expy. For an ec R, we set &, :={<1+—E—)v; L‘E@m}.

vl
Although expy;' is not continuous, we will try to show that in case M is a

SCROSS, @ is an e-map if M is sufficiently close to M with respect to p. This
is done in the next section.

LEMMA 2.1.  For given M, &, &,>0, there exists a 0>0 such that po(M, M’
<8 implies that |[dD|—1| <es on expn(Sai).
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PrROOF. We may find an >0 such that | dexpn,|>¢ on &5, Set d:=c¢-¢,.
Then for any unit vector v on &5, we have

(M, M)

llldexpmd(v)ll \<___ €.

dexpn )|

For any unit vector u on exp,(©1), setting w :=dexpy!(u), we may rewrite
|d®| as:

ot )]/ ()]

This implies the required estimate. Q.E.D.
In order to obtain some more information about @, we require the model
space M to have the following property.

DEFINITION. The pair (M, m) is said to have property CM if for any
b, geM—C(m) and for any e>0, there exists a curve k. from p to ¢ which
does not intersect C(m) such that L(h.)<d(p, ¢)+e. If (M, m) has property CM
for all me M, then M is said to have property CM.

We show that if (M, m) has property CM, then every geodesic emanating
from m minimizes up to its first conjugate point, in particular M must be simply
connected. Otherwise, there is a geodesic emanating from m along which the
cut point, say p, of m is not conjugate to m. Then some ball B(p, ) is the
diffeomorphic image by exp,, and is divided into two connected components by
C(m). For q, ¢’ B(p, r/2) in the distinct components, let 2 be a curve from g
to ¢’ which does not meet C(m). Then it turns out that

L(h)>2r>d(q, ¢))+7.

Hence (M, m) does not have property CM.

From now on, all geodesics will be assumed to be parametrized by arc length,
and the diameter of the model space M will be denoted by D for simplicity.

LEMMA 2.2. Let M have property CM. Then for a given e there exists a
0>0 such that po(M, M)<d implies that d(D(p), D(q))<d(p, q)-+¢ for all p, g=M.
PrOOF. There are the unique minimal geodesics 7, ¢ from m to p, ¢ which
are compatible with the choice of expy!. Set p':=y(d(m, p)—e), q¢':=
o(d(m, q)—e). By the compactness of exp,(©;:), we may find an &¢’>0 such
that for all p”, ¢” cexpn(S;), there exists a curve h. from p” to ¢” such that

L(ho)<d(p”, ¢")+e, d(h., Cm)>e’.
By Lemma 2.1, we may choose a §>0 such that po(M, M)<d implies

d(@(p"), P(@N=L@h)< LA
<d(p’, ¢)+3¢,

D—I—l)
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and therefore,
d(@(p), DN=d(D(p’), D(g"))+2¢
<d(p’, ¢')+5e ,
<d(p, 9)+T7e. Q.E.D.

For completeness, we give the proof of the following lemma which was
proved in [3] where the assumption d(p, ¢)< R, was not assumed. But it seems
to us that the proof of the part is incomplete.

LEMMA 2.3. For given n, A, R, &, there exists a 6>0 such that for a given
integer N there exists some 7>0 such that the following is true: Let M be a
complete n-manifold such that |Ky| =A%, i(M)=R and let a subset CCM admits

a cover by balls {B(pi, ¥i)}i=y,..n Such that g)r?‘1<5. Then if p, qeM,
1

d(p, C), dg, C)> e, d(p, ) <R, then there exists a curve h from p to q such that
(L) LW)<d(p, g)+e, '
(2) d(h, O)>n.
PrROOF. We denote by dr the Euclidean distance on B(p, R,) with respect
to a normal coordinate system at p. RCT implies

d(x, y)

-As < < pAs
P R
for all x, yeB(p, s).

Case 1). d(p, g)<e;. By the triangle inequality, the unique minimal geodesic
v from p to ¢ satisfies d(y, C)>¢,/2. Hence it suffices to set h:=y, p=¢,/2.

Case 2). R,>d(p, 9)=¢e;. Set s:=d(p, q. We denote by ds the distance
on the sphere S=S(p, s) of radius s around p induced from dz Clearly

1< ds(x, 9) =
= du(x, y) ~ 2

Let ¢ : B(p, s)—B(p, €1/2)—S be the radial projection from p. Then RCT
implies the existence of £2(4, s, ¢;)>0 such that

Let A, denote the Euclidean volume of a ¢-ball in S and % denote the Euclidean

volume measure on S. Set ¢:=¢,/2, 5::—;—145/9”“‘. From the given balls

{B(pi, 74)}i=1,...n, We choose such balls that intersect CNB(p, s), say B(p,, 1),
<o, B(pw, rr). Set B:=(B(p1, r)\J:*UB(ps, ¥1))N\B(p, s). Then (%) yields

AGBNZ 2 UGBy, rINB(p, 9)

<T Awrg <T (2rori< 4 A
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Then we assert that there exists an 7,(n, N, ¢, 5)>0 independent of p;, »; such
that there exists a ¢'=SNB(g, ¢) with

d(q’, (CNB(p, s))>d(qg’, ¢(B)>n;.
In order to see this, define a compact subset L of R¥ by

~ N
Li={t, -, t); 0=, =LA},

Consider the following function f : SX--+XSX L—[0, =s],
. N .

. ,
flqu =, qu, by o, tw) i=sup{d(x, \J Blgs, )5 x€ B(g, o)},

where BS denotes a ball in S. Notice that f>0. Since ¢(B(p;, ri)\B(p, $)C
BS(é(ps), £ry), it suffices to observe that f is continuous and hence takes the
positive minimum 7,(n, N, ¢, s).

Now let ¥ be the minimal geodesic from p to ¢’. Then we have

d(r, O)>min{e, d(r, CNB(p, s))} Zminfe, 7./} =1/L=:7.

Since ¢;=s<R, we may choose 5 independent of s. ‘Let ¢ be the minimal

geodesic from ¢’ to ¢g. Then the required h is given as the broken geodesic
rUoa. Q.E.D.

The previous lemma will be very useful in case the n—1 dimensional
Hausdorff measure H"~*(C(m)) of C(m) is equal to zero.

COROLLARY 2.4. If H™YC(m))=0, then (M, m) has property CM..

PrOOF. For given p, g€ M—C(m), and ¢>0, we take a minimal geodesic
from p to ¢ and choose po=2p, pi1, -, pr=q on the geodesic so that d{(p:, pi+1)
<Ry, E<[D/Ry]+1. Take pie B(p;, eR,/6D)—C(m), i=1, ---, k—1. For each
pair (pi, pi+1), by there exists a curve h; from p; to pj,, such’that

L(hy)<d(pi, pis)+eR/4D, hiNCm)=Q .
Set h:=hy\Jh,\U--"\Uh,-;. Then we have \
L)< d(pl, pia)+e/3
<2(d(pi; pt+1)+5R0/3D)+5/3
<d(p, 9)+e. Q.E.D.

It is well known that the cut locus C(m) in a SCROSS is a submanifold of
codimension =2, in particular H**(C(m))=0. More generally it is also known
in that the following classes of manifolds satisfy H*» (C(m))=0:

1) simply connected symmetric spaces of the compact type,
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2) simply connected manifolds with the property that all geodesics emanat-
ing from m have the first conjugate points of order =2.

§3. Pinching theorems.

In our pinching situation, we would like to show that @ is an e-map if M
is sufficiently close to M. For this, it will be needed that the tangent cut locus
of 7 is close to that of m. For this reason, we adopt a SCROSS as the model
space M. A crucial property which M possesses is that D=diam(M)=i(M).

We prepare an estimate for Jacobi fields.

LEMMA 3.1. Let M be a manifold with |Ky|<A% and J(t) a Jacobi field
along a geodesic v in M such that J(0)=0, ||J/(0)|=1. Then for 0<a<b, there
exists an (A, a, b)>0 such that

ey

PrOOF. The estimates from the theory of ordinary differential equations as
in [3], §2 implies the existence of 2,(4, b)>0 such that ||J©)|<2,t on [0, b].
Then the Jacobi equation: J”=Ry(;’, /)y’ implies that on [0, b]

=R on [a, b].

I OI=1 @I+ 177 @)de

<1+ §§||RM|1 1@ dt <1402, 4%,

Therefore we have

:’ \ %<”% ]’(z)>—t'2||](t)l| ’

ey

<.Ql/12b+—(11—(1+,91)::9. . QE.D.

LEMMA 3.2. Let M be a SCROSS. Then for given A, ¢>0, there exists a
0>0 such that |Kg| =42 p(M, M) <6 implies that d(ii, C(ii))=D—e.

PrOOF. We may find a 6,>0 such that p,(M, M)<d, implies that d exp; is
non-singular on [(&;f). Now suppose that d(m, C(m))=:1<D—e. Then there
exists a geodesic loop o : [0, 2[]->M at m such that o()=:xC(m). We
observe the influence of the existence of o on the total volume of M. For any
yeC(m), let o, :[0, ,]>M be a minimal geodesic from m to y. Set
0 : =< (6(0), ¢,(0)), l:=d(x, y). Then the Toponogov comparison theorem
implies

coshAl,=coshAl coshAl,—sinhAlsinh Al cos § .

If = denotes a minimal geodesic from x to y, then we have immediately
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L), sUNS =, or L(#(0), —s(I)=

ro| A

Hence the Toponogov comparison theorem implies again
coshAl,;=<coshAlcoshAl,.
The above inequalities yield

cos §=<cothAl, tanh A/ .
Now if [;=D—e¢/2, then

cos § <cothA(D—e/2) tanh A(D—e)<1.
Define 6,=0,(4, ¢) by cos 8,=cothA(D—e/2)tanhA(D—¢) and set
C:=pveM, ; Lo, I76c0))=60, D—e/2=|v|=D}.

We have just verified that J(C) does not meet S;. Set v(e):=Vol(exp,(C)).
Then we may find an ¢,>0 such that

Vol (expn(Si1—&1)) < %v(e) .

Necessarily ¢,<e. By we may choose a ,>0 such that po(M, M)<d,
implies

Vol (exps I(&1—G7;1)) < %v(a) .
Taking J, smaller if necessary, we may assume that
Vol(exps - I(&,;51—C)) < Vol (expn(&x1—C)+ %v(e) .

Now if diam(M)<D-e¢,, then &;CI1(S,51). Hence we get
Vol (M) < Vol (exps - [(&5:1—C)\Uexps I(S,51—S5:1))
< Vol (expsI(S71—C))+ Vol (exps (S5 —&51))

<Vol expa(@51— O+ 2 0(e)
1
<Vol (M)——gv(s) .
Therefore the required 0 is obtained as:
. 1
5:m1n{51, 3oy &1, §v(s)}. Q.E.D.

LEMMA 3.3. Let M be a SCROSS. Then for given A, >0, there exists a
6>0 such that |Kxg|<A* and p(M, M)<d implies that @ is an e-map.
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PROOF. Since we may assume that diam(M)<2D, Vol(M )>%V01(M),

Cheeger’s injectivity radius estimate shows that there exists an R independ-

ent of M such that i(M)=R. For n, 4, R and SI:ZW([D#/%;T—FI—)’ let 0, be

as in Since H" }(C(m))=0, there is a covering {B(pi, 7i)}i=1,.. v Of
N

C(m) such that Zl) (2r))"'<d,. Let 5 be the constant given in Set

r:=min{r;; 1=/<N}. By [Lemma 2.3, we may find a >0 such that p(M, M)
< implies that d(®(p), D(g))<d(p, ¢)+r/2 for all p, g=M. On the other hand,
by we may assume that

0S5 C B(0, D+r/4)—B(0, D—r/4)C Mz .

Hence we can conclude that the balls {B(®@(p), 27:)}i=1,...n» cover C(7i). Now
for any p, g M, take the points ¢o=D(p), ¢, -, q»=D(¢) on a minimal geodesic
from @(p) to @(q) such that d(qi, gis1)<Ro, R<[D/R,]+1. Let 7o, 7. be the
minimal geodesics from m to p, ¢ which are compatible with the choice of
expnl. Set 7o:=@oyo, Fr:=@Pors. Let 7;: [0, ;]>M be a minimal geodesic
from m to ¢;, 1=i<k—1. Set q¢}:=7:([;—2¢;). Choosing 6 smaller if necessary,
we may assume that d(qj, C(7))>¢;. Hence by there exists a curve
h; from ¢; to gi+; such that

L(h:)<d(qi, gis0ter, d(hy, C(M)>7.
We may assume that d(m, C(m))=D—7, and that by Lemma 2.1, for &;:=

5D Ry L@ h)<(lt+e)L(hy). It follows that

d(p, q)§4sl+};§ L(®-ehy)

<4ey+20 (1+¢5) L(hy)
<de;+Z (1+e.)(d(gi, givn)+e1)
<de;+2 (14¢,)(d(gi, giv1)+5e1)
<d(@(p), P()+e.
Together with this completes the proof. Q.E.D.

THEOREM 3.4. Let M be a SCROSS. Then given A, A,>0, there exists an
e>0 such that if |Kg| S A2 |VRz|= A4, and o(M, M)<e implies that M is diffeo-
morphic to M.

Proor. This is an immediate consequence of e-mapping Theorem 1.1 and

REMARK. It should be noted that p, is weaker than g in the sense that
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po=cp for some constant c, but the converse inequality does not hold. Further-
more in the case Where M is a SCROSS, Khngenbergs injectivity radius estimate
implies that if (M, M)—0, then Vol(M)—Vol(M), diam(M)—diam(M) and
hence p(M, M)—0.

We denote by amc the class of compact n-manifolds M such that H"- 1(C(m))
=0 for all meM. It contains simply connected symmetric spaces of the compact
type, and -simply connected manifolds with the property that all geodesics have
the first conjugate points of order =2, as stated before.

THEOREM 3.5. Let MeWz. If M satisfies that 00 (M, M)=0, Vol(M)—
Vol(M), then M is isometric to M.

ProOF. Notice that @|M—C(m) is a local isometry and that S Cl(@m)
But the assumption Vol(M)=Vol(M) implies that &;=1I1(,). Hence by Lemma
3.3, ® : M—M is a “O-map”, that is, an isometry. Q.E.D.

Here we consider more general model spaces than SCROSSes. In this case,
of course, a more strict pinching will be needed.

LEMMA 3.6. Let MWt  Then for a given ¢>0, there exists a 0>0 such
that p(M, ]\71)+]V01(M)_—Vol(1\7)[ <0 implies that @ is an e-map.

PrOOF. Let x€©&,, and vy, ‘-, v,-; an orthonormal basis for the orthogonal
complement to the radial line at x. Notice that

Jacobian of (dexpn)iz = [l[dexpn(v) A AdexXpm(Vn-Il ,
Jacobian of (dexpa)izc = |dexpal(w) A ANdexpal(va-1)| .

Now for a given ¢,>0, by compactness, there exist some A>B>0, z>a> >0
such that '

Az|dexpr(v)|=B, az=<J(dexpn(vi), dexpn(v;))=F on Syft.

On the other hand, by in [3], for a given ¢ there exists a >0 such
that g(M, M) <6 implies that ©;CI(S5,). We may assume that | K| =2max|Ky|.
Therefore we may find a 6>0 in the same way as in such that
6(M, M)+ |Vol(M)—Vol(M)| <0 implies that 0&;CI(&:,—&5:). Thus the proof
completes in the same way as in Q.E.D.
Together with e-mapping Theorem, we have just proved the following

THEOREM 3.7. Let MeWg. Then for a given A,>0, there exists an ¢>0
such that |VRgz|<A, and (M, M)+ |Vol(M)—Vol(M)|<e implies that M is
diffeomorphic to M.

REMARK. If the assumption for |[VR] in General Theorem can be removed,
then the parameter A, will be negligible throughout this paper.
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