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Minimal surfaces with constant normal curvature
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1. Introduction.

Let M be a connected 2-dimensional Riemannian manifold which is iso-
metrically immersed into Q™(c), n=4, where Q"(¢) stands for the sphere S™(¢)
of radius 1/¢, the Euclidean space R™ or the hyperbolic space H?"(¢), according
to ¢ is positive, zero or negative. Through this paper we assume that the
normal curvature tensor R* of the immersion is nowhere zero. In this case there
exists an orthogonal bundle splitting v=v*@»° of the normal bundle v of the
immersion, where v° consists of the normal directions that annihilate R* and v*
is a 2-plane subbundle of v. We know by that if M is compact and oriented,
then the Gaussian curvature K of M is strongly related to the normal curvature
K* of the immersion and to the intrinsic curvature K* of v*  The first result

of this paper is an extension of of to the case when M is not
necessarily compact.

THEOREM 1. Let M be a connected, oriented 2-dimensional Riemannian mani-
fold immersed with nowhere zero normal curvature tensor into Q™(c). Assume
that the normal curvature K* is constant and that the mean curvature vector H
of the immersion is parallel in the normal connection. We have

(@) if M is complete and K*=0, then K and K* are constant and K=K*/2;

(b) if K* is constant, then K=K*/2.

It should be noted that no global assumption is made in part (b). When M
is complete and minimal in the unit sphere S™ with K* constant, it follows
immediately from (a) that

(a’) if K*>0, then M=S%*(K*/2) is one of the Veronese surfaces studied
by Calabi [2] and do Carmo- Wallach [3];

(a”) if K*=0, then we obtain a minimal plane in S®. These were studied
by Kenmotsu [81

As a consequence of [Theorem 1| and its proof we can deduce the following
result.

THEOREM 2. (a) If ¢=0, then there is no minimal immersion of a surface
M into Q™(c) with K constant and K*=0.

* Work done under partial support by CNPq, Brazil.
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(b) Let f : M—S™ be an isometric minimal immersion with K* and K*

positive constant. Then M is locally one of the Veronese surfaces of Calabi and
do Carmo-Wallach. '

When n=4 then v*=y, K*=K* and we have the following result which

was firstly proved by Wong in [13], Theorem 4.9. See also [6] for a similar
result.

COROLLARY 1. Let M be a 2-dimensional submanifold of Q*(c) with K”
constant and H parallel. Then ¢>0 and M is locally a Veronese surface S*c/3)
in Si(c).

The proofs of the above results are presented in Section 3. In Section 4 we
present the proof of the following extension of of [9].

THEOREM 3. Let f : M—Q%c) be an isometric minimal immersion of a
connected surface M of constant curvature K and with nonzero constant normal
curvature K*. Then ¢>0 and either

(@) K=c/3 and M is locally a Veronese surface in S*(c);

(b) K=0 and f s locally one of the immersions R*—S%(c) described in [T]; or

() K=c/6 and M 1is locally a Veronese surface in S%c).

As a consequence we see that the hyperbolic 2-plane cannot be minimally
immersed with constant normal curvature in the 6-sphere, even locally.

[ want to thank the hospitality of the people of the SUNY at Stony Brook
Mathematics Department, where this work was done. I want also to thank

Professor B. Lawson for bringing to my attention and to the referee for
pointing out several mistakes.

2. Preliminaries.

Let f : M—Q™(c) be an isometric immersion of a 2-dimensional Riemannian
manifold M into the space Q"(c) and denote by v=y(f) the normal bundle of
the immersion. We will always assume that M is connected, oriented and with
‘complex structure /. We denote by V* the covariant derivative of v associated
to the induced connection and by R* the corresponding curvature tensor, that is,

RY(X, Y)§=V3VpE—ViV3E—Vix v€,
for tangent fields X, Y and normal field & Now we recall the Ricci’s equation
RY(X, Y)6=B(X, AsY)—B(A:X, Y), 2.1)

where B is the second fundamental form of the immersion and A. is the associ-
ated symmetric endomorphism of the tangent bundle TM. We set B;;=B(e,, ¢;)
for a tangent frame e, ¢, With this notation the mean curvature vector H of
the immersion is given by H=trB/2=(B,,+ B,,)/2.
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We shall make use of the curvature ellipse of f : M—Q"(¢), which is, for
each p in M the subset of v, given by

ep,={B(X, X)ev, ; Xe€TM, and | X|=1}.

If X=cosf:e,+sinf-¢, we can see that B(X, X)=cos20-u-+sin26-v, where
u=(By;;—B3,)/2 and v=B;,. This shows that ¢, is in fact an ellipse with center
in the tip of H(p). Also it is not difficult to see that R;=+0 if and only if ¢,
is nondegenerate, and that this happens if and only if u and v are linearly
independent. From now on we assume that R;+0 for all p in M so that we
can define a 2-plane subbundle of the normal bundle, namely the bundle v*
whose fiber over p is the subspace of v, spanned by » and v (one can check
that this v* is the v* of the Introduction). We define an orientation on v* as
follows : a pair (§, ») in v} will be positively oriented if (R*(X, JX)», §&>>0 for
one (and hence all) X+#0 in TM,. This plane bundle inherits a canonical covari-
ant derivative from that of v, which we denote by V*. Let R* be the cor-
responding curvature tensor and define the intrinsic curvature K* of v* by

K*:<R*(€1, 32)24, ey,

where (e;, ¢,) and (e, e,) are positively oriented frames of TM and v*, respec-
tively. The normal curvature of f at p is given by

K;’,:<Rl(€1, 82)94, €3>|p:

where the frames are as above (hence K* is positive by definition). It can be
shown that Area(e,)=K?%-x/2 (see [1L].

At this point it is convenient to introduce some notation related to the method
of moving frames. We will be based on the framework of Section 2 of [4],
but we remark here that our sign convention is the opposite of that of [4]. Let
(e1, -+, €n) be a local frame field tangent to Q™(c) such that (e;, ;) spans TM.
Such a frame is said to be adapted to M. Define as usual functions 2% by

h#;=<{Bij, ea>=h%;,
where we are using the following convention on the range of indices:
1=A, B, C, - =n; 1=, 7, kb, - Z2; 3=, B, 7, - =n.

We take the normal covariant derivative of B and define a trilinear form B
from TM into vy, and functions h§, by

Bes, ¢, ex)=(V4,B)(es, e)=Shijea.

We set ﬁijkzﬁ(ei, ¢j, ex). A simple calculation shows that
Zhiwer=dhg; Zh?swsj-}-zh?jwer%hzﬁjwﬁa ) (2.2)
k s $
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where w,, wyp are 1-forms on Q™(c) defined by
w 4(ep) =045, waplec)=Neye4, e8> .

These are the dual and the connection forms of Q*(c) relative to the given
frame, respectively. In particular

wia:Zh?lej
J

when restricted to M. Since we are in a space of constant curvature, it follows
from the Codazzi equations that ﬁijk-:ﬁikj, that is, B is symmetric. This
implies that h¢,=hg; for all «. If M is minimal in Q"(¢) then from we
have

hfu:—hgzx:“‘hgm:“hfzz,

2.3)

hz“zz"—__hf'm:—‘hile:—hgu,
for all «. Suppose that M is minimal and that the frame is chosen with (e;, e,
spanning v*. Then A};=0 for y=5 and using and (2.3) we obtain

K'=K*1} 72 ((war(ez)w4r(el)—w37(€1)w4r(ez>)

2 (2.4)

2 (A +(A11)*) -

—K*
K+ 2

Now we take the normal covariant derivative of B and define functions
h$e by
(N5, B)es, e, ek)zghgjklea .

A simple calculation shows that
Zl}hg'jklwlzdh{*jk+28)h;'j,,wsi+Zs)hﬁ,kwsj—kzs}h?jswsk—l—%}hfjkwﬁa. (2.5)
If the frame is such that (e;, ¢,) spans v* then hi;=hl, hl,=0 for y=5. In this
case we apply equation (2.15) of [4] to obtain
Rije=hljo,
for all y=5. From (2.3) and (2.5) it follows that

§212: hizzlz h£121:: hgzu ’
(2.6)

h{uz: h{121:h71’211: hlin ’

for all y=5, in such a frame.
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3. Surfaces with constant normal curvature.

For our purposes it is convenient to divide M into two subsets F and
A=M-—F, where F consists of the points p in M where ¢, is a circle. Obviously
A is open and F is closed in M. For each p in A there exist (cf. [1]) a neigh-
borhood U of p and smooth positively oriented frames (e, ¢,) in TM|U and
(es, e4) in v*|U such that

By —H=A4e;=—B+H,

3.1)
B1z:/«le4 ’

where 4 and p are the length of the semi-axes of the curvature ellipse. We
may in addition assume that A>p on U. On the other hand, if the ellipse is a
circle on a mneighborhood of a point p in F, we can start with any positively

oriented (es;, ¢,) and choose (e, ¢,) in a way to obtain (3.1) again. In this case
A=yp. The Gauss equation takes the form

K=c+|H|?=A—p*=C—-S (3.2)
where S=2*+p® and C=c+|H|? which is a constant whenever H is parallel.
Also from and (3.1) we obtain

K»=22p. (3.3)

Suppose that we are in A or in Int(F) with a frame as in (3.1) and assume
from now on that H is parallel and K* is constant. By the Codazzi equations
we obtain

e(A)=(pws—24w,s)° J(ey), ei(p)=(Awss—2pw,,)° J(ey) . (3.4)
Then
d,?:(wa—Zme)o], d#:(lwu—zﬂwlz)“j- 3.5)
Since d(2p)=0, (3.5) implies
Sw34:2K”w12. . (3.6)
Therefore we can rewrite as
dz__—ZMwmQ], dﬂzzuwm], 3.7)
S S
and then
S (K )

(grad4, grad y>=—2K" lwiel?. 3.8)

SZ
Differentiating we have by the definition of w;, and ws,
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8(S*—(K*)* K*
=SSN oy e B2

2K=K* in Int(F).

2K

” in A,
K (3.9)

This immediately implies the following

(3.10) PROPOSITION. Let f : M—Q"(c) be an isometric immersion with K*
constant and H parallel. If K*=0 on M, then K=0 on M.

In fact, K=0 in A and in Int(¥) by (3.9). By continuity, K=0 on M.

Now from [3.5) we have

we_ Qe
dSzﬂ—é——&wwoj (3.11)

which with (3.9) gives
K*
Kv

Also, by a simple calculation using and [3.6), we have

lgrad S|*= —2(2+ )S"“—i—élCSz—l—2K”(2K”—l—K"‘)S—4C(K”)2 . 312)

AK*?  2uK*
=g AT P Dl pEr 22K,
(3.13)
(K*)?  22K* .
Ap=4(~ S — )l —AK*+ 2K
Then
2__ W2
%AS: 85 S(K " w2 2KS— KK *
By applying (3.9) to the last equation in two different ways we get
1, o AS*—(K")H o (SP—(K™)?)
4AS——“‘—‘“—SS lwell "I‘—S‘K,
K+ (3.14)
AS=—2(4+35 )SHECS —2 KK *

(3.15) PRrROOF OF THEOREM 1. Suppose first that M is complete and that
K*>0. Then K=0 on M by (3.10), which jointly with imply that 0<SZC
on M. This also implies, by (3.14), that AS=0 on M. In summary, S is a
bounded subharmonic function defined in a complete surface of nonnegative
curvature. It is well known that such a function must be constant, that is,
K=C—S is constant. It also follows that 2 and g are constant and then M=A
or M=F. If M=F, from (3.9) we have 2K=K*. If M=A we cannot have
w1, 70 otherwise from we obtain 0=S?—(K*)*=(2*—p?*? which is impos-
sible in A. So w;,=0, K=0 and K*=0 in this case. This completes the proof
of part (a). To prove part (b), we follow closely Wong [13], p. 486. We claim
that if K* and K* are constant then dS=0, that is, S is constant. It is clear,
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by [(3.11), that dS=0 in Int(F). If we are in A, by (3.12) and (3.14) we know
that |gradS||*=g(S), AS=h(S), where g(S) and h(S) are polynomials in S with
constant coefficients. If S is not constant it is known (cf. (9] that there
exist local coordinates (S, T) in A such that the first fundamental form of M is
given locally by

dszz-ggg?(dswexp(‘zggds)dw) .

Then the Gaussian curvature K of M satisfies

e (=g )on— g§ ) -l g )0,

which is equivalent to
6K*—K*)S*+C(TK*—12K*)S*+ K*(10C*—10(K*)?*—9K* K * —6(K *)%)S?
+C(K")?(12K*—TK*)S+2(K*)*(—5C*+2(K*)*+5K*K*+3(K*)*)=0.

This is a polynomial equation in S with constant coefficients. Therefore S must
be constant, which is a contradiction. This proves our claim and an argument
as in part (a) shows that K*=2K. So is proved.

(3.16) ProoF oF THEOREM 2. To prove part (a), we observe that if M is
minimal in Q"(c) with ¢=0, then K<0. Therefore we cannot have K* constant
and K*=0, by (3.10). For the second part, we note that in view of Theorem 1-(b),
f is now a minimal immersion of a surface with constant positive Gaussian
curvature K=K*/2. By a theorem of Wallach [12], f can be extended to a
minimal immersion of the whole 2-sphere S*(K) into S™ This completes the
proof of

(3.17) ProOF oF COROLLARY 1. We have H=0, otherwise from Theorem
4 of [14], M is contained in a 3-dimensional umbilic submanifold of Q*(¢), which
is impossible because R* never vanishes. The corollary then follows from part

(b) of

(3.18) REMARKS. (1) If M is minimal in Q"(¢) with K*=0, then either
M is totally geodesic in Q™(c¢c) and K=c is constant, or the first normal space
N, of the immersion has constant dimension 1. In the later case, using a
theorem on reduction of codimension of [5], we can say that M is minimal in a
totally geodesic 3-dimensional submanifold of Q™(¢). By Lemma 1 of the
only constant curved minimal surfaces in Q3(¢) with dimN,=1 are locally Clifford
surfaces, for which K=0 and ¢>0.

(2) The arguments used in this section can be easily adapted to prove the
following. Let f : M—Q"(c) be an immersion under the same hypothesis of
but without assuming that K* is constant. We have
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(a) if M is complete and K is a nonnegative constant, then K* and K*
are constant and K*=2K;

(b) if K and K* are constant, then K is also constant and K*=2K. When
we assume further that M is minimal in S™ and K is a positive constant, we
can use again the result of [127 to see that we do not need completeness in (a)
(or the constancy of K* in (b)) to get the same conclusions. This fact leads us
to conjecture that Theorem 1-(a) still holds without any global assumption on
M, at least in the case K*>0.

4. Minimal surfaces with constant Gaussian and normal curvatures.

Through this section we assume that M is minimal in @"(¢) with K constant
and K*>0. If K” is also constant, equations and imply that 2and p
are constant. Choosing an adapted frame as in (3.1), it follows from and
that

h%r=hi;,=0. 4.1)
Sometimes we will have to rotate (e,, ¢;) and (e, ¢,) but we still want to

hold in the new frame. This will cause no problem when A=g. In case that
A>p we have

(4.2) LEMMA. Let M be a minimal surface in Q"(c) with K and K* constant
and let (es, -+, en) be any local adapted frame field such that (es, ey) spans v*.
Then h}jr=nh%;.=0 in such a frame, provided that 2> p.

PRrOOF. Since h};=0 for y=5,

c—K=(h1,)*+(h})*+(h1)*+(his)?
Ky/zzhil'h‘fz“’h?z'hfl
are constant functions on M. Differentiating them and using [2.2) and (2.3),
gives L-(hti, hi, hi, hie)=0, where L is a certain 4 x4 matrix whose entries

are *h{, 1=i, =2, 3=a=<4. The determinant of L is (2*—p** and this
proves the lemma. Q.E.D.

For any unit vector X=cos@:e,+sinf ¢, tangent to M, let us denote by ﬁ(ﬁ)
the normal vector B(X, X, X). Then

and

B(6)=(V4B)(X, X)=c0s36-B,,,+sin36-B,,,
=A-(cos38, sin34),

where A : TM—vy is the operator given in the bases (e, ¢,) and (e;, -+, e,) by

the (n—2) X2 matrix
" hin At
A:( : : )
h;”‘.l h;”lZ
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It follows that the image of S. under B is an ellipse &, in y, with area given
by

1/2
Area(ép):(‘%(hfnhﬁz—hﬂzhlﬁil)z) /2.

We list below some properties of ﬁ(ﬁ) and &,.

4.3) Lemma. (i) B(0+Qk+1)z/3)=—B(6), B(0+2kx/3)=B(9), for all
keZ.

(ii) The [line tangent to &, by the point 5(0+7r/6) is parallel to the vactor
B(o).

(i) If K and K* are constant, then &, is contained in the normal space vi*
of v} in v,. Moreover, if &, is nondegenerate we can choose the adapted frame
in a way that (es, e,) spans v* and that

B =17es, an:ﬁee,

where A= are the length of the semi-axes of &,.

ProoF. The verification of (i) is routine. To verify (ii), define a curve
c(@)=A-(cos36, sin34) and observe that (dc/dﬁ)(l9+7t/6)=—3§(0). To verify
the first half of (iii), it is sufficient to note that ﬁiik:;ﬁh@ker for a frame as

in (4.2). For the second half of (iii), it is clear that we can choose the
frame such that e¢; and e¢; give the directions of the semi-axes of &,. We can
also rotate (e;, ¢,) so that the frame satisfies By, =Je,, =5 or 6. Then B,=
ﬁ(n/Z) is normal to ﬁm by (ii). To conclude the proof we only have to change
(if necessary) e; by e¢; or —e,. Q.E.D.
Assume that p is a point where &, is nondegenerate, for a minimal immer-
sion with K and K* constant. We believe that the following is now clear: if
g, is not a circle, or if & is a circle on a neighborhood of p, then we can
always choose a local adapted frame field around p such that (e, e,) spans v*,

(es, ¢¢) spans the bundle generated by & and that
511122951 éuz'—_ﬁes-

In such a frame we have h},=41, hé,=a and h},=h¢,=h];,=0 for 7+5, 6.
We are in a position to state the following proposition, whose proof is similar
to that of Theorem 1-(b).

(4.4) PROPOSITION. Let f : M—Q%c) be a minimal immersion of a surface
with constant Gaussian and normal curvatures. Assume that there exists a point
p in M such that &, is nondegenerate. Then ¢>0, K>0 and M is locally a
Veronese surface S%(c/6) in S%(c).

PROOF. Let (e, ---, ¢;) be an adapted frame field around p as above. From
the minimality of M and from (2.6) we have
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es(D=—e B, esy=—<V4 B, €5
=—{(V4B) ey, ey, €1), e>=—<(V4,B)e,, €3, €1), €5
=—(V&B1.—2BW, 01, es, e)—Bley, €1, Voyen), e5d
=(awss—3Aw,2)° J(ey) .
Analogously we determine e,(4) and e;(), =1, 2. The conclusion is
di=(wss—3Awys)° ] di=(Awse—3Fwys)° ] .

Since K and K* are constant, K* is obviously constant. Using (2.4) we see
that =147 is also constant and then dS=0 gives

22 fiwse=3Sws, . (4.5)
So we can write
- 3(22— @i 32—
di=— : 22ﬁlw12°f: dﬂ:J 2ﬁﬂ>w12°],
3 2y (4.6)
i —~——T—# °
d()y)—— 21[1 Wige S .
Let us call iz=X for simplicity. Then (4.6) gives
- o} 2'2__ ~2\2
{gradai, gradﬁ)z——"(—ZJT#)—men2 ’
o(F— a0 4.7
lgrad X == 5wl
Now a long but simple calculation using (4.6) and (4.7) shows that
L 9(2‘2% ~2)2(§2+4X2> . 3(12—)&'2)2
On the other hand, by differentiating [4.5)] and using and (2.3) we obtain
oS(—p»:, ., 8SX® &
2X2 ”wIZH - (Ky)z SSK- (4.9)
Bringing into (4.7) and [4.8) gives
, . 165 488 \,, 38K
lgrad X [*=—— e X (6K ey )X =5, o
16S 488 '
AX=— e X 12K——+ ) X.
(K™)ES +( 2 (K*)* >X
As in the proof of part (b) of [Theorem 1|, it follows from (4.10) that X must be

constant. Then 1 and # are constant around p and we conclude that they are
constant all over M. With this we differentiate to obtain
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85X?%* _~.
W—BSK .
Therefore K>0 and then ¢>0. The proposition is now a consequence of
2 and of the fact that, according to Theorem 5.6 of Calabi [2], the curvature

2¢

(4.11) Proor OF THEOREM 3. Choose an adapted frame (e,, -+, ¢¢) in Q%(c)
such that (es;, es) spans v* and h{;,=0 for a=3,4. By (2.4) we know that
h= z:s(hgjm is constant. If 2=0, then 2K=K*=K*>0 and ¢>0. Also by a

72

of a full minimal sphere S*(K) in S**(¢) must satisfy K=

lemma of Otsuki [10], p. 96, M is contained in a 4-dimensional totally geodesic
submanifold Q*(¢) of Q°). Hence M must be locally a Veronese surface S%*¢/3)
in S*c), thus giving (a). Now h+#0 means that & is never a point. If &, is
nondegenerate for some p in M, then (4.4) gives (¢). The only

possibility left is when & is a line segment of constant length 24. In this case
we choose the frame so that B,=4es and of course By,=0. Then 0=di=
—34wy,°J and this immediately implies that w,,=0, K=0 and ¢>0. Again by
the above lemma of Otsuki, we see that M is contained in a totally geodesic
Q5(c) of Q%c). This gives (b) and completes the proof of the Theorem.
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