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\S 0. Introduction.

Corson [3] introduced the concept of $\Sigma$-products, which are quite important
subspaces of Cartesian products of topological spaces. He studied there the
normality of $\Sigma$-products. On the other hand, Blair [2], $\check{S}\check{c}epin[16]$ and Terada
[19] independently introduced the concept of perfect $\kappa$-normality (or Oz) which
is analogous to that of normality. The former two studied there when Cartesian
products of topological spaces are perfectly $\kappa$-normal. In these connections, the
following two results (I) and (II) seem to be most remarkable:

(I) A $\Sigma$-product of metric spaces is (collectionwise) normal.
(II) A Cartesian product of metric spaces is perfectly $\kappa$-normal.

The former was proved by Gul’ko [4] and Rudin [9]. The latter was given
by $\check{S}\check{c}epin[16]$ . Subsequently, Kombarov [8] obtained a nice extension of (I) as
follows:

(III) For a $\Sigma$-product $\Sigma$ of paracompact p-spaces, (a) $\Sigma$ is normal, (b) $\Sigma$ is
collectionwise normal and (c) X has countable tightness are equivalent.

As another generalized metric spaces, Okuyama [13] introduced the concept
of $\sigma$-spaces. Subsequently, Nagami [11] introduced the class of $\Sigma$-spaces which
contains both ones of $\sigma$-spaces and paracompact $P$-spaces. These generalized
metric spaces play important roles in this paper.

Recently, the author [21] has proved that for a $\Sigma$-product $\Sigma$ of paracompact
X-spaces the implication $(c)\Rightarrow(b)$ in (III) is true. The first purpose of this paper
is to prove that for such a $\Sigma$-product $\Sigma$ the implication $(a)\Leftrightarrow(b)$ is true. We
also discuss the countable paracompactness of $\Sigma$-products. The second purpose
of this paper is to obtain an extension of (II) for a Cartesian product of para-
compact a-spaces, the form of which is resemble to that of $(c)\Rightarrow(a)$ in (III). In
process of proving this result, we consider the union of $\aleph_{0}$-cubes in a Cartesian
product of $\sigma$-spaces. This is closely related to a certain question of R. Pol and
E. Pol [14] though it has been already solved by Klebanov [5].

All spaces considered here are assumed to be Hausdorff. The letters $n,$ $i,$ $j$,
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$k$ and $r$ denote non-negative integers. The letter $\mathfrak{m}$ denotes an infinite cardinal
number. For a set $-/1$ , the cardinality of $\Lambda$ is denoted by $|\Lambda|$ . For a subset
$T$ of a space $S$ , the closure of $T$ in $S$ is denoted by C1T.

\S 1. Main theorems.

Let $X= \prod_{\lambda\in\Lambda}X_{Z}$ be a Cartesian product of spaces. Take a point $s=\{s_{\dot{\lambda}}\}\in X$.

For each $x=\{x_{\lambda^{\wedge}}\}\in_{\wedge}Y$, let $Supp(x)=\{\lambda\in\Lambda : x_{\lambda}\neq s_{\lambda}\}$ . The subspace $\Sigma=\{x\in X$ :
$|Supp(x)|\leqq\aleph_{0}\}$ of $X$ is called a $\Sigma$-product [3] of spaces $X_{\lambda},$ $\lambda\in\Lambda$ . Such an
$s\in\Sigma$ is called the base Point of $\Sigma$, which is often omitted. For a finite subset

$\Sigma^{\{\lambda_{1}}, \cdots , \lambda_{n}\}$
of .1, the finite product $\sum_{i=1}^{n}X_{\lambda_{i}}$ is called a finite subproduct of $X$ or

A space $S$ is called a $\Sigma$-space [11] if there exists a sequence $\{\mathcal{F}_{n}\}_{n=1}^{\infty}$ of
locally finite closed covers of $S$ such that each sequence $\{x_{n}\}_{n=1}^{\infty}$ of $S$ , with
$x_{n}\in\cap\{F:x\in F\in \mathcal{F}_{n}\}$ for each $n\geqq 1$ and some $x\in S$ , has a cluster point.

A space $S$ is called a $\sigma$-space [13] if it has a $a$-locally finite closed net.
A space $S$ has $tightness\leqq \mathfrak{m}$ if for any $T\subset S$ and $x\in C1T$ there exists some

$A\subset T$ such that $|A|\leqq \mathfrak{m}$ and $x\in C1A$ . In particular, we say that the space $S$

has countable tightness if $\mathfrak{m}=\aleph_{0}$ .
Normal spaces and collectionwise normal spaces are quite well-known. A

space $S$ is said to be perfectly $\kappa$-normal [16] (or Oz [2], [19]) if for each disjoint
open sets $V_{1}$ and $V_{2}$ in $S$ there exist disjoint cozero-sets $U_{1}$ and $U_{2}$ in $S$ such
that $V_{k}\subset U_{k}(k=1,2)$ .

The author [21] has proved the following theorem, which causes the moti-
vations for our main theorems.

THEOREM $0$ . Let $\Sigma$ be a $\Sigma_{-}product$ of paracOfnpact $\Sigma$-spaces. If (each finite
subproduct of) $\Sigma$ has countable tightness, then it is collectionu $ise$ normal.

The first main theorem is

THEOREM 1. Let $\Sigma$ be a $\Sigma_{-}product$ of paracompact $\Sigma_{-}spaces$ . Then $\Sigma$ is
collectionwise nornfal if and only if it is normal.

The proof is performed in \S 2.

REMARK 1. There exists a non-normal $\Sigma$-product of compact spaces (cf.

[6]). The normality of $\Sigma$-products of paracompact $\Sigma$-spaces does not imply that
they have countable tightness. Because there are two La nev spaces $S$ and $T$

such that $S\cross T$ has not countable tightness (cf. [1, p. 68]).

The second main theorem is

THEOREM 2. Let $X$ be a Cartesian product of paracompaci a-spaces. If each
finite subproduct $0.\overline{t}X$ has countable tightness, then $X$ is perfectly $\kappa$-normal.
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The proof is obtained in the final part of \S 4. It may be interesting to
compare the forms of Theorems $0$ and 2.

REMARK 2. Since perfect $\kappa$-normality is hereditary with respect to dense
subspaces (cf. [2], [19]), the “Cartesian product” in Theorem 2 can be replaced
by the $\Sigma$-product”.

REMARK 3. $\check{S}\check{c}epin[17]$ introduced the concept of $\kappa$-metrizability, in terms
of which he obtained an extension of his result (Il) in the introduction. Of
course, the form of it is quite different from that of Theorem 2.

\S 2. Proof of Theorem 1.

LEMMA 1 ([11]). Let $S$ be a (strong) $\Sigma$-space. Then there exists a sequence
$\{\mathcal{F}_{n}\}_{n=1}^{\infty}$ of locally finite closed covers of $S$, satisfying the following conditions;

(1) $\mathcal{F}_{n}=\{F(\alpha_{1}\cdots\alpha_{n});\alpha_{1}, \cdots , \alpha_{n}\in\Omega\}$ for each $n\geqq 1$ .
(2) Each $F(\alpha_{1}\cdots\alpha_{n})$ is the sum of all $F(\alpha_{1}\cdots\alpha_{n}\alpha_{n+1}),$ $\alpha_{n+1}\in\Omega$ .
(3) For each $x\in S$ there exists a sequence $\alpha_{1},$ $\alpha_{2},$

$\cdots\in\Omega$ . satisfying

(i) $\bigcap_{n=1}^{\infty}F(\alpha_{1}\cdots\alpha_{n})$ contains $x$ (and is compact),

(ii) if $\{K_{n}\}_{n=1}^{\infty}$ is a decreasing sequence of non-empty closed sets in $S$

such that $K_{n}\subset F(\alpha_{1}\cdots\alpha_{n})$ for each $n\geqq 1$ , then $\bigcap_{n=1}^{\infty}K_{n}\neq\emptyset$ .

The above sequence $\{\mathcal{F}_{n}\}_{n=1}^{\infty}$ is called a spectral (strong) $\Sigma$-net of $S$. More-
over, we say that the above sequence $\{F(\alpha_{1}\cdots\alpha_{n})\}_{n=1}^{\infty}$ in (3) is a local $\Sigma$-net of
$x$ . Note that paracompact $\Sigma$-spaces and $\sigma$-spaces are strong $\Sigma$-spaces and that
the classes of paracompact $\Sigma$-spaces and strong $\Sigma$-spaces are countably productive
(cf. [11]).

The idea of the proof of Theorem 1 is essentially due to that of Theorem
$0$ . So we use again the following notations which have been used in [21].

Notations for $\Sigma$ ; Let $\Sigma$ be a $\Sigma$-product of spaces $X_{\lambda},$
$\lambda\in\Lambda$ . For the set $\Lambda$ ,

let $\Lambda_{\omega}$ be the set of all non-empty countable subsets of $\Lambda$ . Let $\Xi$ be an index
set such that $R_{\xi}\in\Lambda_{\omega}$ is assigned for each $\xi\in\Xi$ . Then a countable subproduct
$\prod_{\lambda\in R_{\xi}}X_{\lambda}$ of $\Sigma$ is abbreviated by $X_{\xi}$ and the projection of $\Sigma$ onto $X_{\epsilon,\backslash }$ is denoted by

$p_{\xi}$ for each $\xi\in--$ . For a collection $\mathcal{A}$ of subsets of $\Sigma,$ $\cup \mathcal{A}$ denotes $U\{A:A\in \mathcal{A}\}$ .
Notations for a $n\cross n$ matrix $\xi=(\alpha_{ij})_{i.j\leqq n}$ : The $k\cross k$ matrix $(\alpha_{ij})_{i.j\leqq k}$ is

denoted by $\xi_{k}$ for $1\leqq k\leqq n$ . In particular, $\xi_{n-1}$ is often abbreviated by $\xi_{-}$ and
$\xi_{0}$ implies the $0\cross 0$ matrix which is the empty matrix $(\emptyset)$ .

PROOF OF THEOREM 1. Let $\Sigma$ be a $\Sigma$-product of paracompact $\Sigma$-spaces $X_{\lambda}$ ,
$\lambda\in\Lambda$ , with a base point $s\in\Sigma$ . Assume that $\Sigma$ is normal. Let $\mathcal{D}$ be a discrete
collection of closed sets in $\Sigma$ .

Now, for each $n\geqq 0$ we construct a collection $\mathcal{U}_{n}$ of open sets in $\Sigma$ and an
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index set $--n$ of $n\cross n$ matrices such that $R_{\xi}\in\Lambda_{\omega}$ , $\Omega(\xi)$ , $E(\xi)\subset\Sigma,$ $G(\xi)\subset\Sigma$,
$\mathcal{D}(\xi)\subset \mathcal{D}$ and $\{x(\xi, D):D\in \mathcal{D}(\xi)\}\subset\Sigma$ are given for each $\xi\in\Xi_{n}$ , satisfying the
following conditions (1) $-(7)$ :

(1) Each $\mathcal{U}_{n}$ is locally finite in $\Sigma$ such that for each $U\in \mathcal{U}_{n}$ Cl $U$ intersects
at most one member of $\mathcal{D}$ .

(2) For each $\xi\in\Xi_{n},$ $\{F(\alpha_{1}\cdots\alpha_{k});\alpha_{1}, \cdots , \alpha_{k}\in\Omega(\xi)\},$ $k\geqq 1$ , is a spectral $\Sigma_{-}$

net of $X_{\xi}$ .
(3) For each $\xi=(\alpha_{ij})_{i,j\leqq n}\in\Xi_{n}$ and $1\leqq k\leqq n,$ $\xi_{k-1}\in--k-1$ and $\alpha_{k1},$

$\cdots$ , $\alpha_{kn}\in$

$\Omega(\xi_{k-1})$ .
(4) $\{G(\xi):\xi\in--n\}$ is a locally finite collection of open sets in $\Sigma$ such that

for each $\xi=(\alpha_{ij})_{i,jn}\in-$

$E( \xi)=\bigcap_{i=1}^{n}p_{\overline{\xi}_{i-1}^{1}}(F(\alpha_{i1}\cdots\alpha_{in}))\subset G(\xi)$

and $p_{\xi-}^{-1}p_{\xi_{-}}(G(\xi))=G(\xi)$ .
(5) Let $\mu=(\alpha_{lj})_{i,j\leqq n-1}\in\Xi_{n-1},$ $\alpha_{in}\in\Omega(\mu_{i-1})$ and $\alpha_{nj}\in\Omega(\mu)$ for $1\leqq i,$ $j\leqq n$ .

Then

$\bigcap_{i=1}^{n}p_{\mu i-1}^{-1}(F((\alpha_{i1}\cdots\alpha_{in}))\cap(\cup \mathcal{D})\not\subset\cup \mathcal{U}_{n}$

implies $(\alpha_{ij})_{i,jn}\in-$ .
(6) For each $\xi\in--n’ n\geqq 1,$ $\mathcal{D}(\xi)$ is an infinite countable subcollection of $\mathcal{D}$

with $x(\xi, D)\in E(\xi)\cap D$ for each $D\in \mathcal{D}(\xi)$ .
(7) For each $\xi\in\Xi_{n},$ $n\geqq 1$ ,

$R_{\xi}=R_{\xi-}\cup\cup\{Supp(x(\xi, D):D\in \mathcal{D}(\xi)\}$ .
Let $--0^{=}\{\xi_{0}\}$ and $\mathcal{U}_{0}=t\emptyset$ }. Let $E(\xi_{0})=G(\xi_{0})=\Sigma$ . Take an arbitrary $R_{\xi_{0}}\in\Lambda_{\omega}$ .
Assume that the above construction has been already performed for no greater

than $n$ . Take a $\xi\in\Xi_{n}$ . Since $\pi\xi_{i}\in--i$ and $\Omega(\xi_{i})$ for $0\leqq i\leqq n$ have been already
constructed, we set

$\Xi(\xi)=\{\eta=(\alpha_{ij})_{i,j\leq n+1}$ : $\eta_{-}=\xi,$ $\alpha_{in+1}\in\Omega(\xi_{i-1})$

and $\alpha_{n+1j}\in\Omega(\xi)$ for $1\leqq i,$ $j\leqq n+1$}.
Moreover, for each $\eta=(\alpha_{lj})_{i,j\leqq n+1}\in\Xi(\xi)$ we set

$E( \eta)=\bigcap_{i=1}^{n+1}p_{\overline{\xi}_{i-1}^{1}}(F(\alpha_{i1}\cdots\alpha_{in+1}))$ .

Then we have

$p_{\xi}(E( \eta))=\bigcap_{i=1}^{n+1}p_{\xi}p_{\overline{\xi}_{i-1}^{1}}(F(\alpha_{i1}\cdots\alpha_{in+1}))$ .

By (2), $\{p_{\xi}(E(\gamma_{J})):\eta\in\Xi(\xi)\}$ is locally finite in $X_{\xi}$ . Since $X_{\xi}$ is paracompact and
$E(\eta)\subset E(\xi)\subset G(\xi)$ , there exists a locally finite collection $\{G(\eta):\eta\in\Xi(\xi)\}$ of open
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sets in $\Sigma$ such that

$E(\eta)\subset G(\eta)\subset G(\xi)$ and $p_{\xi}^{-1}p_{\xi}(G(\eta))=G(\eta)$

for each $\eta\in_{-}-(\xi)$ . We set

$\Xi_{+}(\xi)=$ { $\eta\in\Xi(\xi):E(\eta)$ intersects at most finitely many members of $\mathcal{D}$}

and $\Xi_{-}(\xi)=\Xi(\xi)^{-}\backslash -+(\xi)$ . Since $\Sigma$ is normal, for each $\eta\in_{-+}-(\xi)$ there exists a
finite collection $\mathcal{U}(\eta)$ of open sets in $\Sigma$ such that

(i) for each $U\in \mathcal{U}(\eta)$ , Cl $U$ intersects exactly one member of $\mathcal{D}$,
(ii) $E(\eta)\cap(\cup \mathcal{D})\subset\cup \mathcal{U}(\eta)$ ,
(iii) $\cup \mathcal{U}(\eta)\subset G(\eta)$ .

Here, running $\xi\in\Xi_{n}$ , we set

$\mathcal{U}_{n+1}=\cup$ { $\mathcal{U}(\eta)$ : $\eta\in\Xi_{+}(\xi)$ and $\xi\in--n$}

and $--n+1=\cup\{\Xi_{-}(\xi):\xi\in--n\}$ . Then (1), (3), (4) and (5) are satisfied. By the
choices of $---(\xi)$ and $--n+1$ , for each $\eta\in_{-n+1}-$ we can take some $\mathcal{D}(\eta)\subset \mathcal{D}$ and
$\{x(\eta, D):D\in \mathcal{D}(\eta)\}$ , satisfying (6). Moreover, we define $R_{\eta}\in\Lambda_{\omega}$ as it satisfies
(7). Since $X_{\eta}$ is a $\Sigma$-space, it follows from Lemma 1 that there exists a spectral
$\Sigma$-net of $X_{\eta}$ with an index set $\Omega(\eta)$ , which satisfles (2). Thus, we have induc-
tively accomplished the desired construction.

Set $\mathcal{U}=\bigcup_{n=1}^{\infty}\mathcal{U}_{n}$ . Then, by (1), $\mathcal{U}$ is a a-locally finite collection of open

sets in $\Sigma$ such that the closure of each member of $\mathcal{U}$ intersects at most one
member of $\mathcal{D}$ . In order to prove that $\Sigma$ is collectionwise normal, it suffices to
prove that $\mathcal{U}$ covers $\cup \mathcal{D}$ . Assume the contrary and pick some $y\in\cup \mathcal{D}\backslash \cup \mathcal{U}$ . By
(2) and (5), we can inductively choose a sequence $(\alpha_{ij})_{i.j=1.2}\ldots$ . such that for each
$n\geqq 1\xi^{n}=(\alpha_{ij})_{i.jn}\in-$ and $\{F(\alpha_{n1}\cdots\alpha_{nk})\}_{k=1}^{\infty}$ is a local $\Sigma$-net of $p_{\xi^{n-1}}(y)$ in $X_{\xi^{n-1}}$ ,
where $\alpha_{nk}\in\Omega(\xi^{n-1})$ and $\xi^{0}=(\emptyset)$ . By (6), we can also choose a sequence $\{D_{n}\}_{n=1}^{\infty}$

of distinct members of $\mathcal{D}$ such that $D_{n}\in \mathcal{D}(\xi^{n})$ for each $n\geqq 1$ . Let $x_{n}=x(\xi^{n}, D_{n})$

for each $n\geqq 1$ . Moreover, for each $n,$
$k$ with $1\leqq n\leqq k$ , we set $L_{nk}=\{p_{\xi_{-}^{n}}(x_{i})$ :

$i\geqq k\}$ . Then we have

Cl $L_{nk}\subset F(\alpha_{n1}\cdots\alpha_{nk})$ and Cl $L_{nk+1}\subset C1L_{nk}$ .
In the same way as the both proofs of [6, Theorem 1] and [21, Theorem 1],

one can find a point $x_{\infty}$ of $\Sigma$ such that each basic open neighborhood of $x_{\infty}$ in
$\Sigma$ contains infinitely many $x_{n}’ s$ . This verification is a standard one. So the
detail of it is left to the reader. Thus the infinite subcollection $\{D_{n} : n\geqq 1\}$ of
$\mathcal{D}$ is not discrete at $x_{\infty}$ in $\Sigma$ . This is a contradiction. The proof of Theorem
1 is complete.

Recall that a space $S$ is said to be collectionwise Hausdorff if for each closed
discrete set $D$ in $S$ there exists a disjoint collection $\{V_{x} : x\in D\}$ of open sets
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such that each $V_{x}$ contains $x$ .
THEOREM 3. A $\Sigma_{-}product$ of paracompact $\Sigma$-spaces is collectionwise Hausdorff.
In the proof of Theorem 1, we consider a discrete closed set $D$ and the

regularity of $\Sigma$ instead of the above $\mathcal{D}$ and the normality of it, respectively.
Then the proof of Theorem 3 is quite parallel to that of Theorem 1.

For a Cartesian product $X= \prod_{\lambda\in A}X_{\lambda}$ of spaces, the subspace $\Sigma_{t\mathfrak{n}}=\{x\in X$ :
$|Supp(x)|\leqq \mathfrak{m}\}$ is called a $\Sigma_{\mathfrak{m}}$-product [7] (with a base point $s\in\Sigma_{\mathfrak{m}}$). We can
also obtain the following result which is more general than Theorem 1.

THEOREM 4. Let $\Sigma_{\mathfrak{m}}$ be a $\Sigma_{\mathfrak{m}}$-product of paracompact $\Sigma$-spaces. Then $\Sigma_{\mathfrak{m}}$

is collectionwise normal if and only if it is normal.
Using [12, Theorem 2.7], one will notice that the proof is also quite parallel

to that of Theorem 1.

\S 3. The countable paracompactness of $\Sigma$-products.

Until now, the countable paracompactness of $\Sigma$-products has been hardly
discussed. Because, as in [3], the normality of $\Sigma$-products often yields the
countable paracompactness of them as a corollary. Here, for a $\Sigma$-product which
may be non-normal, we consider when it is a P-space (in the sense of Morita
[10]). In the sequel, such a $\Sigma$-product is countably paracompact if it is normal.

We use a certain characterization of P-spaces in [18]: A space $S$ is called
a $P$-space if for each finite decreasing sequence $\{K_{1}, \cdots , K_{r}\}$ of closed sets in $S$

one can assign a closed set $\Phi(K_{1}, \cdots , K_{r})$ in $S$, satisfying
(i) $\Phi(K_{1}, \cdots K_{r})\cap K_{r}=\emptyset$ ,
(ii) for each decreasing sequence $\{K_{r}\}_{r=1}^{\infty}$ of closed sets in $S$ with $\bigcap_{r=1}^{\infty}K_{r}=\emptyset$ ,

$\{\Phi(K_{1}, \cdots , K_{r}):r\geqq 1\}$ covers $S$ .
THEOREM 5. A $\Sigma_{-}product$ of strong $\Sigma$-spaces is a P-space.
PROOF. Let $\Sigma$ be a $\Sigma$-product of strong $\Sigma$-spaces $X_{\lambda},$ $\lambda\in\Lambda$ , with a base

point $s\in\Sigma$ . We also use the notations in \S 2.
Let $\{K_{1}, \cdots , K_{r}\}$ be a finite decreasing sequence of closed sets in $\Sigma$ . For

each $0\leqq n\leqq r$, we construct two index sets $\Xi_{n}$ and $\Xi_{n}^{*}$ of $nXn$ matrices with
$\Xi_{n}^{*}\subset\Xi_{n}$ such that for each $\xi\in\Xi_{n}E(\xi)\subset\Sigma$ is given and for each $\xi\in--*nR_{\xi}\in\Lambda_{\omega}$ ,
$\Omega(\xi)$ and $x_{\xi}\in\Sigma$ are given, satisfying the following conditions (1) $-(6)$ :

(1) For each $\xi\in-n$
’

$\{F(\alpha_{1}\cdots\alpha_{k}):\alpha_{1}, \cdots , \alpha_{k}\in\Omega(\xi)\}$ , $k\geqq 1$ , is a spectral
strong $\Sigma$-net of $X_{\xi}$ .

(2) For each $\xi=(\alpha_{\iota_{J}})_{i.j\leqq n}\in--n$ and $1\leqq k\leqq n,$ $\xi_{k-1}\in\Xi_{k-1}^{*}$ and $\alpha_{k1},$
$\cdots$ , $\alpha_{kn}\in$

$\Omega(\xi_{k-1})$ .
(3) For each $\xi=(\alpha_{ij})_{i,j\xi n}\in\Xi_{n},$ $E( \xi)=\bigcap_{i=1}^{n}p_{\xi_{i-1}}^{-1}(F(\alpha_{i1}\cdots\alpha_{in}))$ .
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(4) If $\mu=(\alpha_{ij})_{i.j\leqq n- 1}\in\Xi_{n-1}^{*},$ $\alpha_{in}\in\Omega(\mu_{i- 1})$ and $\alpha_{nj}\in\Omega(\mu)$ for $1\leqq i,$ $j\leqq n$ , then
$\xi=(\alpha_{ij})_{i.jn}\in-$ . If $\xi\in--n$ and $E(\xi)\cap K_{n}\neq\emptyset$ , then $\xi\in--*n$ .

(5) For each $\xi\in-n-*$ $n\geqq 1,$ $x_{\xi}\in E(\xi)\cap K_{n}$ .
(6) For each $\xi\in\Xi_{n}^{*},$ $n\geqq 1,$ $R_{\xi}=R_{\xi-}USupp(x_{\xi})$ .
The above construction is rather easier than that of the proof of Theorem 1.

So the detail is left to the reader.
Now, we set

$\Phi(K_{1}, \cdots , K_{r})=\cup$ { $E(\xi):\xi\in-n\backslash -n$ and $n\leqq r$}.

Since it follows from (1) and (3) that $\{E(\xi):\xi\in\Xi_{n}\}$ is locally finite in $\Sigma$ ,
$\Phi(K_{1}, \cdots , K_{r})$ is closed in $\Sigma$ . Moreover, by (4), $\Phi(K_{1}, \cdots , K_{r})$ is disjoint from $K_{r}$ .

Let $\{K_{r}\}_{r=1}^{\infty}$ be a decreasing sequence of closed sets in $\Sigma$ with the empty
intersection. It suffices to show that $\{\Phi(K_{1}, \cdots , K_{r})\}_{r=1}^{\infty}$ covers $\Sigma$ . Assuming

the contrary, pick some $y \in\Sigma\backslash \bigcup_{r=1}^{\infty}\Phi(K_{1}, \cdots , K_{r})$ . By (1) and (4), we can induc-

tively choose a sequence $(\alpha_{ij})_{i,j=1,2},\ldots$ such that for each $n\geqq 1\xi^{n}=(\alpha_{ij})_{i.jn}\in-*$

and $\{F(\alpha_{n1}\cdots\alpha_{nk})\}_{k=1}^{\infty}$ is a local strong $\Sigma$-net of $p_{\xi^{n-1}}(y)$ in $X_{\xi^{n-1}}$ , where $\alpha_{nk}\in$

$\Omega(\xi^{n-1})$ and $\xi^{0}=(\emptyset)$ . For each $n,$ $k$ with $1\leqq n\leqq k$ , we set $L_{nk}=\{p_{\xi_{-}^{n}}(x_{\xi^{i}}):i\geqq k\}$ .
In the same way as the both proofs of [6, Theorem 1] and [21, Theorem 1],

one can find a point $x_{\infty}\in\Sigma$ such that each basic open neighborhood of $x_{\infty}$ in $\Sigma$

intersects all $K_{r}’ s$ . This implies $x_{\infty} \in\bigcap_{r=1}^{\infty}K_{r}$ , which is a contradiction. The proof

is complete.
Immediately, we have

COROLLARY 1. $A$ (normal) $\Sigma$-pr0duct of strong $\Sigma$-spaces is countably meta-
compact (paracompact).

\S 4. Subsets of Cartesian products of $\sigma$-spaces.

Let $X= \prod_{\lambda\in\Lambda}X_{\lambda}$ be a Cartesian product of spaces. For a subset $R$ of $\Lambda$ , the

subproduct $\prod_{\lambda\in R}X_{\lambda}$ of $X$ is denoted by $X_{R}$ and the projection of $X$ onto $X_{R}$ is

denoted by $p_{R}$ . A subset of the form $\prod_{\lambda\in\Lambda}K_{\lambda}$ , where $K_{\lambda}\subset X_{\lambda}$ for each $\lambda\in\Lambda$ , is

called an $\mathfrak{m}$ -cube in $X$ if $|\{\lambda\in\Lambda : K_{\lambda}\neq X_{\lambda}\}|\leqq \mathfrak{m}$ . In particular, we call it an
$\aleph_{0}$-cube if $\mathfrak{m}=\aleph_{0}$ .

R. Pol and E. Pol [14] raised the question of whether, for a Cartesian
product of completely metric spaces, a closed union of $\aleph_{0}$-cubes in it is a $G_{\delta^{-}}$

set. Recently, Klebanov [5] gave an affirmative answer to this question, show-
ing that, for a Cartesian product of metric spaces, the closure of union of $\aleph_{0^{-}}$

cubes in it is a zero-set. Here, we prove the following result, which yields an
extension of his one in the sequel (see our Theorem 2’ below).
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THEOREM 6. Let $X$ be a Cartesian product of a-spaces. Then a closed set
in $X$ is a $G_{\delta}$-set if and only if it is a union of $\aleph_{0}$-cubes.

PROOF. Let $X$ be a Cartesian product of $\sigma$-spaces $X_{\lambda},$ $\lambda\in\Lambda$ . Let $K$ be a
closed set in $X$ which is a union of $\aleph_{0}$-cubes.

As before, let $\Lambda_{\omega}$ be the set of all non-empty countable subset of $\Lambda$ . In the
below, for an $R(F)\in\Lambda_{\omega}$ , the subproduct of $X_{R(F)}$ of $X$ and the projection $p_{R(F)}$

are abbreviated by $X_{F}$ and $p_{F}$, respectively.
For each $n\geqq 0$, we construct two collections $\mathcal{F}_{n}$ and $\mathcal{F}_{n}^{*}$ of closed sets in

$X$, a function $\phi$ of $\mathcal{F}_{n+1}$ into $\mathcal{F}_{n}^{*}$ and two functions $x$ and $R$ of $\mathcal{F}_{n}^{*}$ into $X$ and
$\Lambda_{\omega}$ , respectively, satisfying the following conditions (1) $-(5)$ for each $n\geqq 0$ :

(1) $\mathcal{F}_{n}$ is $\sigma$-locally finite in $X$, where $\mathcal{F}_{0}=\{X\}$ .
(2) $\mathcal{F}_{n}^{*}=\{F\in \mathcal{F}_{n} ; F\cap K\neq\emptyset\}$ .
(3) For each $F\in \mathcal{F}_{n},$ $p_{F-}(F)$ is a closed set in $X_{F-}$ and $p_{F-}^{-1}p_{F-}(F)=F$, where

$F_{-}=\phi(F)$ .
(4) For each $F\in \mathcal{F}_{n}^{*},$ { $p_{F}(H):H\in \mathcal{F}_{n+1}$ with $\phi(H)=F$ } forms a closed net of

the closed set $p_{F}(F)$ in $X_{F}$.
(5) For each $F\in \mathcal{F}_{n}^{*},$ $x(F)\in F\cap K,$ $R(\phi(F))\subset R(F)$ and $p_{F}^{-1}p_{F}(x(F))\subset K$.
For the case of $n=0$, the construction is easily performed. Assume that

the construction has been already performed for no greater than $n$ . Fix an
$F\in \mathcal{F}_{n}^{*}$ with $\phi(F)=E$ . It should be noted by (3) that $p_{E}(F)$ is closed in $X_{E}$ and
$p_{F}(F)=p_{F}p_{B}^{-1}p_{E}(F)$ . Since $X_{F}$ is a $\sigma$-space (cf. [13, Theorem 2.2]), so is $p_{F}(F)$ .
There exists a a-locally finite closed net $\mathfrak{N}_{n+1}(F)$ of $p_{F}(F)$ . We set $\mathcal{F}_{n+1}(F)=$

$\{p_{F}^{-1}(N):N\in \mathfrak{N}_{n+1}(F)\}$ . Here, running $F\in \mathcal{F}_{n}^{*}$ , we set $\mathcal{F}_{n+1}=\cup\{\mathcal{F}_{n+1}(F):F\in \mathcal{F}_{n}^{*}\}$

and define the function $\phi$ of $\mathcal{F}_{n+1}$ into $\mathcal{F}_{n}^{*}$ as $\phi(\mathcal{F}_{n+1}(F))=\{F\}$ for each $F\in \mathcal{F}_{n}^{*}$ .
Moreover, $\mathcal{F}_{n+1}^{*}$ is dePned as in (2). Then $\mathcal{F}_{n+1},$ $\mathcal{F}_{n+1}^{*}$ and $\phi$ satisfy (1) $-(4)$ . For
each $H\in \mathcal{F}_{n+1}^{*}$ , pick any point $x(H)$ of $H\cap K$. Since $x(H)$ is a point of some
$\aleph_{0}$-cube contained in $K$, we can take some $R(H)\in\Lambda_{\omega}$ satisfying (5). Thus we
have inductively accomplished the desired construction.

Now, we set $G=\cup$ { $F\in \mathcal{F}_{n}$ ; $F\cap K=\emptyset$ and $n\geqq 0$}. It follows from (1) that
$G$ is an $F_{\sigma}$ -set disjoint from $K$. Assume $G\neq X\backslash K$. Pick a point $y$ of $X\backslash (G\cup K)$

and take a basic open neighborhood $U$ of $y$ in $X$, disjoint from $K$ Then we
can inductively choose a sequence $\{F_{n}\}_{n=0}^{\infty}$ such that for each $n\geqq 0$

(i) $F_{n}\in \mathcal{F}_{n}^{*}$ with $\phi(F_{n})=F_{n-1}$ ,
(ii) $p_{F_{n}}(y)\in p_{F_{n}}(F_{n+1})\subset p_{F_{n}}(U)$ .

Indeed, assume that $F_{i},$ $i\leqq n$ , have been already chosen. By (ii) and (3), we
have $p_{F_{n}}(y)\in p_{F_{n}}(F_{n})$ . By (4), we can choose some $F_{n+1}\in \mathcal{F}_{n+1}$ , satisfying (i)

and (ii). Again by (3), we have $y\in F_{n+1}$ . So $F_{n+1}\not\in \mathcal{F}_{n+1}^{*}$ implies $y\in F_{n+1}\subset G$ ,
which is a contradiction. Hence $F_{n+1}\in \mathcal{F}_{n+1}^{*}$ .

We set $R_{\infty}= \bigcup_{n=0}^{\infty}R(F_{n})$ . Since $\{R(F_{n})\}_{n=0}^{\infty}$ is non-decreasing, we can take



Normaliiy of $\Sigma$ -products 697

some $k\geqq 1$ such that

$p_{F_{k-1}}(U)X\Pi\{X_{\lambda} : \lambda\in R_{\infty}\backslash R(F_{k-1})\}\cross p_{\Lambda\backslash R_{\infty}}(U)=U$ .
We take the point $z$ of $X$ defined by $p_{R_{\infty}}(z)=p_{R_{\infty}}(x_{k})$ , where $x_{k}=x(F_{k})$ , and
$p_{\Lambda\backslash R_{\infty}}(z)=p_{\Lambda\backslash R_{\infty}}(y)$ . Then we have $z\in U\subset X\backslash K$. On the other hand, by (5), we
have

$z\in p_{R_{\infty}}^{-1}p_{R_{\infty}}(x_{k})\subset p_{F_{k}}^{-1}p_{F_{k}}(x_{k})\subset K$ .

This is a contradiction. Hence $K$ is a $G_{\delta}$-set in $X$. Since the converse is
obvious, the proof is complete.

Recall that a space $S$ is said to be perfect if each closed set in $S$ is a $G_{\delta}$-set.

COROLLARY 2. Let $Y$ be a space which is a closed continuous image of a
Cartestan prOduct of a-spaces. Then $Y$ is perfect if and only if each point of $Y$

is a $G_{\delta}$-set.
PROOF. Let $X$ be a Cartesian product of a-spaces and $f$ a closed con-

tinuous map of $X$ onto Y. Assume that each $y\in Y$ is a $G_{\delta}$-set. Let $F$ be a
closed set in $Y$ . Since $f^{-1}(F)$ is a closed set in $X$ which is a union of $G_{\delta}$-sets,
it is a union of $\aleph_{0}$-cubes. It follows from Theorem 6 that $f^{-1}(F)$ is a $G_{\delta}$-set.
Since $f$ is a closed map, $F$ is also a $G_{\delta}$-set.

Next, we show a generalization of [14, Corollary 2].

THEOREM 7. Let $X$ be a Cartestan product of spaces, each finite subproduct
of which has tightness $\leqq \mathfrak{m}$ . If $Y$ is a union of $\mathfrak{m}$ -cubes in $X$, then Cl $Y$ is also
a union of m-cubes.

PROOF. Let $X= \prod_{\lambda\in\Lambda}X_{\lambda}$ . Pick a point $y$ of Cl $Y$ . We construct two sequences
$\{A_{n}\}_{n=0}^{\infty}$ and $\{R_{n}\}_{n=0}^{\infty}$ of subsets of $Y$ and $\Lambda$ , respectively, satisfying for each
$n\geqq 0$

(1) $|A_{n}|\leqq \mathfrak{m}$ , $|R_{n}|\leqq \mathfrak{m}$ ,
(2) $p_{R_{n-1}}(y)\in C1p_{R_{n-1}}(A_{n})$ ,
(3) $p_{R_{n}}^{-1}p_{R_{n}}(A_{n})\subset Y$ and $R_{n}\subset R_{n+1}$ .
Assume that the construction has been already performed for no greater

than $n$ . It follows from [9, Remark 3] and (1) that $X_{R_{n}}$ has tightness $\leqq \mathfrak{m}$ .
Since $p_{R_{n}}(y)\in C1p_{R_{n}}(Y)$ , we can take some $A_{n+1}\subset Y$ satisfying (1) and (2). For
each $a\in A_{n+1}$ , there exists some $R_{a}\subset\Lambda$ such that $|R_{a}|\leqq \mathfrak{m}$ and $p_{R_{a}}^{-1}p_{R_{a}}(a)\subset Y$ .
Here, we set $R_{n+1}=\cup\{R_{a} : a\in A_{n+1}\}\cup R_{n}$ . Then $R_{n+1}$ and $A_{n+1}$ satisfy (1) and
(3). The construction has been accomplished.

Now, we set $R= \bigcup_{n=0}^{\infty}R_{n}$ . Then $|R|\leqq \mathfrak{m}$ is clear. We show that the $\mathfrak{m}$ -cube

$p_{R}^{-1}p_{R}(y)$ is contained in Cl $Y$ . Pick any point $x$ of $p_{R}^{-1}p_{R}(y)$ and take $.any$ basic
open neighborhood $U$ of $x$ in $X$. We can take some $k\geqq 1$ such that

$p_{R_{k}}(U)X\Pi\{X_{\lambda} : \lambda\in R\backslash R_{k}\}\cross p_{\Lambda\backslash R}(U)=U$ .
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Since $p_{R_{k}}(y)=p_{R_{k}}(x)\in p_{R_{k}}(U)$ , by (2), there exists some $a\in R_{k+1}$ such that
$p_{R_{k}}(a)\in p_{R_{k}}(U)$ . So we take the point $z$ of $X$ defined by $p_{R}(z)=p_{R}(a)$ and
$p_{\Lambda\backslash R}(z)=p_{\Lambda\backslash R}(x)$ . Then we have $z\in U$ . On the other hand, by (3), we have
$z\in Y$ . Hence $U$ intersects $Y$ , which implies $x\in C1Y$ . The proof is complete.

In the case of $\mathfrak{m}=\aleph_{0}$ , we have

COROLLARY 3. Let $X$ be a Cartesian product of spaces, each finite subproduct
of which has countable tightness. Then the closure of a union of $\aleph_{0}$-cubes in
$X$ is also a union of $\aleph_{0}$-cubes.

Let’s complete the proof of Theorem 2 in \S 1. Note that a perfectly $\kappa$-normal
space is equivalently a space whose regular closed sets are always zero-sets (cf.

[2], [16]). So, in order to prove Theorem 2, it suffices to show the following
result, which is barely more general than it.

THEOREM 2’. Let $X$ be a Cartesian product of paracompact $\sigma$-spaces. If
each finite subpr0duct of $X$ has countable tightness, then the closure of a union
of $\aleph_{0}$-cubes in $X$ is a zero-set.

PROOF. Let $X= \prod_{\lambda\in\Lambda}X_{\lambda}$ . Let $\Sigma$ be a $\Sigma$-product of the spaces $X_{\lambda},$ $\lambda\in\Lambda$ .
It follows from Theorem $0$ and [20, Theorem 1] that $\Sigma$ is normal and C-
embedded. Let $F$ be the closure of a union of $\aleph_{0}$-cubes in $X$. By Corollary 3,
$F$ is a closed union of $\aleph_{0}$-cubes. Moreover, by Theorem 6, $F$ is a $G_{\delta}$-set.
Hence it follows from [14, Proposition 2] that $F$ is a zero-set. The proof is
complete.
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