The normality of Σ-products and the perfect κ-normality of Cartesian products

By Yukinobu YajIma

(Received March 3, 1983)
(Revised Nov. 29, 1983)

§ 0. Introduction.

Corson [3] introduced the concept of Σ-products, which are quite important subspaces of Cartesian products of topological spaces. He studied there the normality of Σ-products. On the other hand, Blair [2], Ščepin [16] and Terada [19] independently introduced the concept of perfect κ-normality (or Oz) which is analogous to that of normality. The former two studied there when Cartesian products of topological spaces are perfectly κ-normal. In these connections, the following two results (I) and (II) seem to be most remarkable:
(I) A Σ-product of metric spaces is (collectionwise) normal.
(II) A Cartesian product of metric spaces is perfectly κ-normal.

The former was proved by Gul'ko [4] and Rudin [9]. The latter was given by Ščepin [16]. Subsequently, Kombarov [8] obtained a nice extension of (I) as follows:
(III) For a Σ-product Σ of paracompact p-spaces, (a) Σ is normal, (b) Σ is collectionwise normal and (c) Σ has countable tightness are equivalent.

As another generalized metric spaces, Okuyama [13] introduced the concept of σ-spaces. Subsequently, Nagami [11] introduced the class of Σ-spaces which contains both ones of σ-spaces and paracompact p-spaces. These generalized metric spaces play important roles in this paper.

Recently, the author [21] has proved that for a Σ-product Σ of paracompact Σ-spaces the implication (c) $\Rightarrow(\mathrm{b})$ in (III) is true. The first purpose of this paper is to prove that for such a Σ-product Σ the implication (a) \Leftrightarrow (b) is true. We also discuss the countable paracompactness of Σ-products. The second purpose of this paper is to obtain an extension of (II) for a Cartesian product of paracompact σ-spaces, the form of which is resemble to that of (c) \Rightarrow (a) in (III). In process of proving this result, we consider the union of \aleph_{0}-cubes in a Cartesian product of σ-spaces. This is closely related to a certain question of R. Pol and E. Pol [14] though it has been already solved by Klebanov [5].

All spaces considered here are assumed to be Hausdorff. The letters n, i, j,
k and r denote non-negative integers. The letter \mathfrak{m} denotes an infinite cardinal number. For a set Λ, the cardinality of Λ is denoted by $|\Lambda|$. For a subset T of a space S, the closure of T in S is denoted by $\mathrm{Cl} T$.

§ 1. Main theorems.

Let $X=\prod_{\lambda \in A} X_{i}$ be a Cartesian product of spaces. Take a point $s=\left\{s_{i}\right\} \in X$. For each $x=\left\{x_{i}\right\} \in X$, let $\operatorname{Supp}(x)=\left\{\lambda \in \Lambda: x_{i} \neq s_{i}\right\}$. The subspace $\Sigma=\{x \in X$: $\left.|\operatorname{Supp}(x)| \leqq \aleph_{0}\right\}$ of X is called a Σ-product [3] of spaces $X_{\lambda}, \lambda \in \Lambda$. Such an $s \in \Sigma$ is called the base point of Σ, which is often omitted. For a finite subset $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ of A, the finite product $\sum_{i=1}^{n} X_{\lambda_{i}}$ is called a finite subproduct of X or Σ.

A space S is called a Σ-space [11] if there exists a sequence $\left\{\mathcal{I}_{n}\right\}_{n=1}^{\infty}$ of locally finite closed covers of S such that each sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of S, with $x_{n} \in \bigcap\left\{F: x \in F \in \mathscr{F}_{n}\right\}$ for each $n \geqq 1$ and some $x \in S$, has a cluster point.

A space S is called a σ-space [13] if it has a σ-locally finite closed net.
A space S has tightness $\leqq \mathfrak{m}$ if for any $T \subset S$ and $x \in \mathrm{Cl} T$ there exists some $A \subset T$ such that $|A| \leqq \mathfrak{m}$ and $x \in \mathrm{Cl} A$. In particular, we say that the space S has countable tightness if $\mathfrak{m}=\aleph_{0}$.

Normal spaces and collectionwise normal spaces are quite well-known. A space S is said to be perfectly κ-normal [16] (or Oz [2], [19]) if for each disjoint open sets V_{1} and V_{2} in S there exist disjoint cozero-sets U_{1} and U_{2} in S such that $V_{k} \subset U_{k}(k=1,2)$.

The author [21] has proved the following theorem, which causes the motivations for our main theorems.

Theorem 0. Let Σ be a Σ-product of paracompact Σ-spaces. If (each finite subproduct of) Σ has countable tightness, then it is collectionuise normal.

The first main theorem is
Theorem 1. Let Σ be a Σ-product of paracompact Σ-spaces. Then Σ is collectionwise normal if and only if it is normal.

The proof is performed in $\S 2$.
Remark 1. There exists a non-normal Σ-product of compact spaces (cf. [6]). The normality of Σ-products of paracompact Σ-spaces does not imply that they have countable tightness. Because there are two Lašnev spaces S and T such that $S \times T$ has not countable tightness (cf. [1, p. 68]).

The second main theorem is
Theorem 2. Let X be a Cartesian product of paracompact σ-spaces. If each finite subproduct of X has countable tightness, then X is perfectly κ-normal.

The proof is obtained in the final part of §4. It may be interesting to compare the forms of Theorems 0 and 2.

REMARK 2. Since perfect κ-normality is hereditary with respect to dense subspaces (cf. [2], [19]), the "Cartesian product" in Theorem 2 can be replaced by the " Σ-product".

REMARK 3. Ščepin [17] introduced the concept of κ-metrizability, in terms of which he obtained an extension of his result (II) in the introduction. Of course, the form of it is quite different from that of Theorem 2.

§ 2. Proof of Theorem 1.

Lemma 1 ([11]). Let S be a (strong) Σ-space. Then there exists a sequence $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ of locally finite closed covers of S, satisfying the following conditions:
(1) $\mathscr{F}_{n}=\left\{F\left(\alpha_{1} \cdots \alpha_{n}\right): \alpha_{1}, \cdots, \alpha_{n} \in \Omega\right\}$ for each $n \geqq 1$.
(2) Each $F\left(\alpha_{1} \cdots \alpha_{n}\right)$ is the sum of all $F\left(\alpha_{1} \cdots \alpha_{n} \alpha_{n+1}\right), \alpha_{n+1} \in \Omega$.
(3) For each $x \in S$ there exists a sequence $\alpha_{1}, \alpha_{2}, \cdots \in \Omega$, satisfying
(i) $\bigcap_{n=1}^{\infty} F\left(\alpha_{1} \cdots \alpha_{n}\right)$ contains x (and is compact),
(ii) if $\left\{K_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of non-empty closed sets in S such that $K_{n} \subset F\left(\alpha_{1} \cdots \alpha_{n}\right)$ for each $n \geqq 1$, then $\bigcap_{n=1}^{\infty} K_{n} \neq \varnothing$.

The above sequence $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ is called a spectral (strong) Σ-net of S. Moreover, we say that the above sequence $\left\{F\left(\alpha_{1} \cdots \alpha_{n}\right)\right\}_{n=1}^{\infty}$ in (3) is a local \sum-net of x. Note that paracompact Σ-spaces and σ-spaces are strong Σ-spaces and that the classes of paracompact Σ-spaces and strong Σ-spaces are countably productive (cf. [11]).

The idea of the proof of Theorem 1 is essentially due to that of Theorem 0 . So we use again the following notations which have been used in [21].

Notations for Σ : Let Σ be a Σ-product of spaces $X_{2}, \lambda \in \Lambda$. For the set Λ, let Λ_{ω} be the set of all non-empty countable subsets of Λ. Let Ξ be an index set such that $R_{\xi} \in \Lambda_{\omega}$ is assigned for each $\xi \in \Xi$. Then a countable subproduct $\prod_{\lambda \in R_{\xi}} X_{\lambda}$ of Σ is abbreviated by X_{ξ} and the projection of Σ onto X_{ξ} is denoted by p_{ξ} for each $\xi \in \Xi$. For a collection \mathcal{A} of subsets of $\Sigma, \cup \mathcal{A}$ denotes $\cup\{A: A \in \mathcal{A}\}$.

Notations for a $n \times n$ matrix $\xi=\left(\alpha_{i j}\right)_{i, j \leq n}$: The $k \times k$ matrix $\left(\alpha_{i j}\right)_{i, j \leq k}$ is denoted by ξ_{k} for $1 \leqq k \leqq n$. In particular, ξ_{n-1} is often abbreviated by ξ_{-}and ξ_{0} implies the 0×0 matrix which is the empty matrix (\varnothing).

Proof of Theorem 1. Let Σ be a Σ-product of paracompact Σ-spaces X_{λ}, $\lambda \in \Lambda$, with a base point $s \in \Sigma$. Assume that Σ is normal. Let \mathscr{D} be a discrete collection of closed sets in Σ.

Now, for each $n \geqq 0$ we construct a collection U_{n} of open sets in Σ and an
index set Ξ_{n} of $n \times n$ matrices such that $R_{\xi} \in \Lambda_{\omega}, \Omega(\xi), E(\xi) \subset \Sigma, G(\xi) \subset \Sigma$, $\mathscr{D}(\xi) \subset \mathscr{D}$ and $\{x(\xi, D): D \in \mathscr{D}(\xi)\} \subset \Sigma$ are given for each $\xi \in \Xi_{n}$, satisfying the following conditions (1)-(7):
(1) Each \mathcal{U}_{n} is locally finite in Σ such that for each $U \in \mathcal{U}_{n} \mathrm{Cl} U$ intersects at most one member of \mathscr{D}.
(2) For each $\xi \in \Xi_{n},\left\{F\left(\alpha_{1} \cdots \alpha_{k}\right): \alpha_{1}, \cdots, \alpha_{k} \in \Omega(\xi)\right\}, k \geqq 1$, is a spectral Σ net of X_{ξ}.
(3) For each $\hat{\xi}=\left(\alpha_{i j}\right)_{i, j \leqq n} \in \Xi_{n}$ and $1 \leqq k \leqq n, \xi_{k-1} \in \Xi_{k-1}$ and $\alpha_{k 1}, \cdots, \alpha_{k n} \in$ $\Omega\left(\xi_{k-1}\right)$.
(4) $\left\{G(\xi): \xi \in \Xi_{n}\right\}$ is a locally finite collection of open sets in Σ such that for each $\xi=\left(\alpha_{i j}\right)_{i, j \leqslant n} \in \Xi_{n}$

$$
E(\xi)=\bigcap_{i=1}^{n} p_{\bar{\xi}-1}^{1}\left(F\left(\alpha_{i 1} \cdots \alpha_{i n}\right)\right) \subset G(\xi)
$$

and $p_{\xi-1}^{-1} p_{\xi-}(G(\xi))=G(\xi)$.
(5) Let $\mu=\left(\alpha_{i j}\right)_{i, j \leq n-1} \in \Xi_{n-1}, \quad \alpha_{i n} \in \Omega\left(\mu_{i-1}\right)$ and $\alpha_{n j} \in \Omega(\mu)$ for $1 \leqq i, j \leqq n$. Then

$$
\bigcap_{i=1}^{n} p_{\mu_{i-1}}^{-1}\left(F\left(\left(\alpha_{i 1} \cdots \alpha_{i n}\right)\right) \cap(\cup \mathscr{D}) \not \subset \bigcup \mathcal{G}_{n}\right.
$$

implies $\left(\alpha_{i j}\right)_{i, j \leqslant n} \in \Xi_{n}$.
(6) For each $\xi \in \Xi_{n}, n \geqq 1, \mathscr{D}(\xi)$ is an infinite countable subcollection of \mathscr{D} with $x(\xi, D) \in E(\xi) \cap D$ for each $D \in \mathscr{D}(\xi)$.
(7) For each $\xi \in \Xi_{n}, n \geqq 1$,

$$
R_{\xi}=R_{\xi-} \cup \bigcup\{\operatorname{Supp}(x(\xi, D): D \in \mathscr{D}(\xi)\} .
$$

Let $\Xi_{0}=\left\{\xi_{0}\right\}$ and $\mathcal{U}_{0}=\{\varnothing\}$. Let $E\left(\xi_{0}\right)=G\left(\xi_{0}\right)=\Sigma$. Take an arbitrary $R_{\xi_{0}} \in \Lambda_{\omega}$.
Assume that the above construction has been already performed for no greater than n. Take a $\xi \in \Xi_{n}$. Since ${ }^{*} \xi_{i} \in \Xi_{i}$ and $\Omega\left(\xi_{i}\right)$ for $0 \leqq i \leqq n$ have been already constructed, we set

$$
\begin{array}{r}
\Xi(\xi)=\left\{\eta=\left(\alpha_{i j}\right)_{i, j \leq n+1}: \eta-=\xi, \alpha_{i n+1} \in \Omega\left(\xi_{i-1}\right)\right. \\
\\
\text { and } \left.\alpha_{n+1 j} \in \Omega(\xi) \text { for } 1 \leqq i, j \leqq n+1\right\} .
\end{array}
$$

Moreover, for each $\eta=\left(\alpha_{i j}\right)_{i, j \leq n+1} \in \Xi(\xi)$ we set

$$
E(\eta)=\bigcap_{i=1}^{n+1} p_{\tilde{\xi}_{i-1}}^{-1}\left(F\left(\alpha_{i 1} \cdots \alpha_{i n+1}\right)\right) .
$$

Then we have

$$
p_{\hat{\xi}}(E(\eta))=\bigcap_{i=1}^{n+1} p_{\hat{\xi}} p_{\bar{\xi}_{i-1}^{1}}^{1}\left(F\left(\alpha_{i 1} \cdots \alpha_{i n+1}\right)\right) .
$$

By (2), $\left\{p_{\xi}(E(\gamma)): r_{\xi} \in \Xi(\xi)\right\}$ is locally finite in X_{ξ}. Since X_{ξ} is paracompact and $E(\eta) \subset E(\xi) \subset G(\xi)$, there exists a locally finite collection $\{G(\eta): \eta \in \Xi(\xi)\}$ of open
sets in Σ such that

$$
E(\eta) \subset G(\eta) \subset G(\xi) \quad \text { and } \quad p_{\xi}^{-1} p_{\xi}(G(\eta))=G(\eta)
$$

for each $\eta \in \Xi(\xi)$. We set
$\Xi_{+}(\xi)=\{\eta \in \Xi(\xi): E(\eta)$ intersects at most finitely many members of $\mathscr{D}\}$
and $\Xi_{-}(\xi)=\Xi(\xi) \backslash \Xi_{+}(\xi)$. Since Σ is normal, for each $\eta \in \Xi_{+}(\xi)$ there exists a finite collection $U(\eta)$ of open sets in Σ such that
(i) for each $U \in \mathcal{G}(\eta), \mathrm{Cl} U$ intersects exactly one member of \mathscr{D},
(ii) $E(\eta) \cap(\cup \mathscr{D}) \subset \cup q(\eta)$,
(iii) $\cup \mathcal{U}(\eta) \subset G(\eta)$.

Here, running $\xi \in \Xi_{n}$, we set

$$
Q_{n+1}=\bigcup\left\{q(\eta): \eta \in \Xi_{+}(\xi) \text { and } \xi \in \Xi_{n}\right\}
$$

and $\Xi_{n+1}=\bigcup\left\{\Xi_{-}(\xi): \xi \in \Xi_{n}\right\}$. Then (1), (3), (4) and (5) are satisfied. By the choices of $\Xi_{-}(\xi)$ and Ξ_{n+1}, for each $\eta \in \Xi_{n+1}$ we can take some $\mathscr{D}(\eta) \subset \mathscr{D}$ and $\{x(\eta, D): D \in \mathscr{D}(\eta)\}$, satisfying (6). Moreover, we define $R_{\eta} \in \Lambda_{\omega}$ as it satisfies (7). Since X_{η} is a Σ-space, it follows from Lemma 1 that there exists a spectral Σ-net of X_{η} with an index set $\Omega(\eta)$, which satisfies (2). Thus, we have inductively accomplished the desired construction.

Set $U=\bigcup_{n=1}^{\infty} U_{n}$. Then, by (1), U is a σ-locally finite collection of open sets in Σ such that the closure of each member of \mathcal{U} intersects at most one member of \mathscr{D}. In order to prove that Σ is collectionwise normal, it suffices to prove that \mathcal{U} covers $\cup \mathscr{D}$. Assume the contrary and pick some $y \in \cup \mathscr{D} \backslash \cup Q$. By (2) and (5), we can inductively choose a sequence ($\left.\alpha_{i j}\right)_{i, j=1,2, \ldots}$ such that for each $n \geqq 1 \xi^{n}=\left(\alpha_{i j}\right)_{i, j \leq n} \in \Xi_{n}$ and $\left\{F\left(\alpha_{n 1} \cdots \alpha_{n k}\right)\right\}_{k=1}^{\infty}$ is a local \sum-net of $p_{\xi^{n-1}}(y)$ in $X_{\xi^{n-1}}$, where $\alpha_{n k} \in \Omega\left(\xi^{n-1}\right)$ and $\xi^{0}=(\varnothing)$. By (6), we can also choose a sequence $\left\{D_{n}\right\}_{n=1}^{\infty}$ of distinct members of \mathscr{D} such that $D_{n} \in \mathscr{D}\left(\xi^{n}\right)$ for each $n \geqq 1$. Let $x_{n}=x\left(\xi^{n}, D_{n}\right)$ for each $n \geqq 1$. Moreover, for each n, k with $1 \leqq n \leqq k$, we set $L_{n k}=\left\{p_{\xi_{-}^{n}}\left(x_{i}\right)\right.$: $i \geqq k\}$. Then we have

$$
\mathrm{Cl} L_{n k} \subset F\left(\alpha_{n 1} \cdots \alpha_{n k}\right) \quad \text { and } \quad \mathrm{Cl} L_{n k+1} \subset \mathrm{Cl} L_{n k} .
$$

In the same way as the both proofs of [6, Theorem 1] and [21, Theorem 1], one can find a point x_{∞} of Σ such that each basic open neighborhood of x_{∞} in Σ contains infinitely many x_{n} 's. This verification is a standard one. So the detail of it is left to the reader. Thus the infinite subcollection $\left\{D_{n}: n \geqq 1\right\}$ of \mathscr{D} is not discrete at x_{∞} in Σ. This is a contradiction. The proof of Theorem 1 is complete.

Recall that a space S is said to be collectionwise Hausdorff if for each closed discrete set D in S there exists a disjoint collection $\left\{V_{x}: x \in D\right\}$ of open sets
such that each V_{x} contains x.
Theorem 3. A Σ-product of paracompact Σ-spaces is collectionwise Hausdorff.
In the proof of Theorem 1, we consider a discrete closed set D and the regularity of Σ instead of the above \mathscr{D} and the normality of it, respectively. Then the proof of Theorem 3 is quite parallel to that of Theorem 1 .

For a Cartesian product $X=\prod_{\lambda \in A} X_{\lambda}$ of spaces, the subspace $\Sigma_{\mathrm{m}}=\{x \in X$: $|\operatorname{Supp}(x)| \leqq \mathfrak{m}\}$ is called a Σ_{m}-product [7] (with a base point $s \in \Sigma_{\mathrm{m}}$). We can also obtain the following result which is more general than Theorem 1 .

Theorem 4. Let $\Sigma_{\mathfrak{m}}$ be a Σ_{m}-product of paracompact Σ-spaces. Then Σ_{m} is collectionwise normal if and only if it is normal.

Using [12, Theorem 2.7], one will notice that the proof is also quite parallel to that of Theorem 1.

§3. The countable paracompactness of Σ-products.

Until now, the countable paracompactness of Σ-products has been hardly discussed. Because, as in [3], the normality of Σ-products often yields the countable paracompactness of them as a corollary. Here, for a Σ-product which may be non-normal, we consider when it is a P-space (in the sense of Morita [10]]. In the sequel, such a Σ-product is countably paracompact if it is normal.

We use a certain characterization of P-spaces in [18]: A space S is called a P-space if for each finite decreasing sequence $\left\{K_{1}, \cdots, K_{r}\right\}$ of closed sets in S one can assign a closed set $\Phi\left(K_{1}, \cdots, K_{r}\right)$ in S, satisfying
(i) $\Phi\left(K_{1}, \cdots, K_{r}\right) \cap K_{r}=\varnothing$,
(ii) for each decreasing sequence $\left\{K_{r}\right\}_{r=1}^{\infty}$ of closed sets in S with $\bigcap_{r=1}^{\infty} K_{r}=\varnothing$, $\left\{\Phi\left(K_{1}, \cdots, K_{r}\right): r \geqq 1\right\}$ covers S.

Theorem 5. A Σ-product of strong Σ-spaces is a P-space.
Proof. Let Σ be a Σ-product of strong Σ-spaces $X_{\lambda}, \lambda \in \Lambda$, with a base point $s \in \Sigma$. We also use the notations in $\S 2$.

Let $\left\{K_{1}, \cdots, K_{r}\right\}$ be a finite decreasing sequence of closed sets in Σ. For each $0 \leqq n \leqq r$, we construct two index sets Ξ_{n} and Ξ_{n}^{*} of $n \times n$ matrices with $\Xi_{n}^{*} \subset \Xi_{n}$ such that for each $\xi \in \Xi_{n} E(\xi) \subset \Sigma$ is given and for each $\xi \in \Xi_{n}^{*} R_{\xi} \in \Lambda_{\omega}$, $\Omega(\xi)$ and $x_{\xi} \in \Sigma$ are given, satisfying the following conditions (1)-(6):
(1) For each $\xi \in \Xi_{n}^{*}, \quad\left\{F\left(\alpha_{1} \cdots \alpha_{k}\right): \alpha_{1}, \cdots, \alpha_{k} \in \Omega(\xi)\right\}, \quad k \geqq 1$, is a spectral strong \sum-net of X_{ξ}.
(2) For each $\xi=\left(\alpha_{i j}\right)_{i, j \leqq n} \in \Xi_{n}$ and $1 \leqq k \leqq n, \xi_{k-1} \in \Xi_{k-1}^{*}$ and $\alpha_{k 1}, \cdots, \alpha_{k n} \in$ $\Omega\left(\xi_{k-1}\right)$.
(3) For each $\xi=\left(\alpha_{i j}\right)_{i, j \leq n} \in \Xi_{n}, E(\xi)=\bigcap_{i=1}^{n} p_{\overline{\xi_{i-1}}}^{1}\left(F\left(\alpha_{i 1} \cdots \alpha_{i n}\right)\right)$.
(4) If $\mu=\left(\alpha_{i j}\right)_{i, j \leqq n-1} \in \Xi_{n-1}^{*}, \quad \alpha_{i n} \in \Omega\left(\mu_{i-1}\right)$ and $\alpha_{n j} \in \Omega(\mu)$ for $1 \leqq i, j \leqq n$, then $\xi=\left(\alpha_{i j}\right)_{i, j \leq n} \in \Xi_{n}$. If $\xi \in \Xi_{n}$ and $E(\xi) \cap K_{n} \neq \varnothing$, then $\xi \in \Xi_{n}^{*}$.
(5) For each $\xi \in \Xi_{n}^{*}, n \geqq 1, x_{\hat{\xi}} \in E(\xi) \cap K_{n}$.
(6) For each $\xi \in \Xi_{n}^{*}, n \geqq 1, R_{\xi}=R_{\xi-} \cup \operatorname{Supp}\left(x_{\xi}\right)$.

The above construction is rather easier than that of the proof of Theorem 1. So the detail is left to the reader.

Now, we set

$$
\Phi\left(K_{1}, \cdots, K_{r}\right)=\bigcup\left\{E(\xi): \xi \in \Xi_{n} \backslash \Xi_{n}^{*} \text { and } n \leqq r\right\}
$$

Since it follows from (1) and (3) that $\left\{E(\xi): \xi \in \Xi_{n}\right\}$ is locally finite in Σ, $\Phi\left(K_{1}, \cdots, K_{r}\right)$ is closed in Σ. Moreover, by (4), $\Phi\left(K_{1}, \cdots, K_{r}\right)$ is disjoint from K_{r}.

Let $\left\{K_{r}\right\}_{r=1}^{\infty}$ be a decreasing sequence of closed sets in Σ with the empty intersection. It suffices to show that $\left\{\Phi\left(K_{1}, \cdots, K_{r}\right)\right\}_{r=1}^{\infty}$ covers \sum. Assuming the contrary, pick some $y \in \Sigma \backslash \bigcup_{r=1}^{\infty} \Phi\left(K_{1}, \cdots, K_{r}\right) . \quad B y$ (1) and (4), we can inductively choose a sequence $\left(\alpha_{i j}\right)_{i, j=1,2}, \ldots$ such that for each $n \geqq 1 \xi^{n}=\left(\alpha_{i j}\right)_{i, j \leqq n} \in \Xi_{n}^{*}$ and $\left\{F\left(\alpha_{n 1} \cdots \alpha_{n k}\right)\right\}_{k=1}^{\infty}$ is a local strong \sum-net of $p_{\xi^{n-1}}(y)$ in $X_{\xi^{n-1}}$, where $\alpha_{n k} \in$ $\Omega\left(\xi^{n-1}\right)$ and $\xi^{0}=(\varnothing)$. For each n, k with $1 \leqq n \leqq k$, we set $L_{n k}=\left\{p_{\xi^{n}}\left(x_{\xi^{i}}\right): i \geqq k\right\}$. In the same way as the both proofs of [6, Theorem 1] and [21, Theorem 1], one can find a point $x_{\infty} \in \Sigma$ such that each basic open neighborhood of x_{∞} in Σ intersects all K_{r} 's. This implies $x_{\infty} \in \bigcap_{r=1}^{\infty} K_{r}$, which is a contradiction. The proof is complete.

Immediately, we have
Corollary 1. A (normal) Σ-product of strong Σ-spaces is countably metacompact (paracompact).

$\S 4$. Subsets of Cartesian products of σ-spaces.

Let $X=\prod_{\lambda \in \Lambda} X_{\lambda}$ be a Cartesian product of spaces. For a subset R of Λ, the subproduct $\prod_{\lambda \in R} X_{\lambda}$ of X is denoted by X_{R} and the projection of X onto X_{R} is denoted by p_{R}. A subset of the form $\prod_{\lambda \in \Lambda} K_{\lambda}$, where $K_{\lambda} \subset X_{\lambda}$ for each $\lambda \in \Lambda$, is called an \mathfrak{m}-cube in X if $\left|\left\{\lambda \in \Lambda: K_{\lambda} \neq X_{\lambda}\right\}\right| \leqq \mathfrak{m}$. In particular, we call it an \aleph_{0}-cube if $\mathfrak{m}=\aleph_{0}$.
R. Pol and E. Pol [14] raised the question of whether, for a Cartesian product of completely metric spaces, a closed union of \aleph_{0}-cubes in it is a $G_{\delta^{-}}$ set. Recently, Klebanov [5] gave an affirmative answer to this question, showing that, for a Cartesian product of metric spaces, the closure of union of \aleph_{0} cubes in it is a zero-set. Here, we prove the following result, which yields an extension of his one in the sequel (see our Theorem 2' below).

Theorem 6. Let X be a Cartesian product of σ-spaces. Then a closed set in X is a G_{δ}-set if and only if it is a union of \aleph_{0}-cubes.

Proof. Let X be a Cartesian product of σ-spaces $X_{\lambda}, \lambda \in \Lambda$. Let K be a closed set in X which is a union of \aleph_{0}-cubes.

As before, let Λ_{ω} be the set of all non-empty countable subset of Λ. In the below, for an $R(F) \in \Lambda_{\omega}$, the subproduct of $X_{R(F)}$ of X and the projection $p_{R(F)}$ are abbreviated by X_{F} and p_{F}, respectively.

For each $n \geqq 0$, we construct two collections \mathscr{I}_{n} and \mathscr{T}_{n}^{*} of closed sets in X, a function ϕ of \mathscr{I}_{n+1} into \mathscr{q}_{n}^{*} and two functions x and R of \mathscr{F}_{n}^{*} into X and Λ_{ω}, respectively, satisfying the following conditions (1)-(5) for each $n \geqq 0$:
(1) \mathscr{I}_{n} is σ-locally finite in X, where $\mathscr{I}_{0}=\{X\}$.
(2) $\mathscr{F}_{n}^{*}=\left\{F \in \mathscr{F}_{n}: F \cap K \neq \varnothing\right\}$.
(3) For each $F \in \mathscr{q}_{n}, p_{F_{-}}(F)$ is a closed set in $X_{F_{-}}$and $p_{F_{-}}^{\mathbf{1}} p_{F_{-}}(F)=F$, where $F_{-}=\phi(F)$.
(4) For each $F \in \mathscr{F}_{n}^{*}, \quad\left\{p_{F}(H): H \in \mathscr{F}_{n+1}\right.$ with $\left.\phi(H)=F\right\}$ forms a closed net of the closed set $p_{F}(F)$ in X_{F}.
(5) For each $F \in \mathcal{q}_{n}^{*}, x(F) \in F \cap K, R(\phi(F)) \subset R(F)$ and $p_{F}^{-1} p_{F}(x(F)) \subset K$.

For the case of $n=0$, the construction is easily performed. Assume that the construction has been already performed for no greater than n. Fix an $F \in \mathscr{F}_{n}^{*}$ with $\phi(F)=E$. It should be noted by (3) that $p_{E}(F)$ is closed in X_{E} and $p_{F}(F)=p_{F} p_{E}^{-1} p_{E}(F)$. Since X_{F} is a σ-space (cf. [13, Theorem 2.2]), so is $p_{F}(F)$. There exists a σ-locally finite closed net $\Re_{n+1}(F)$ of $p_{F}(F)$. We set $\mathscr{F}_{n+1}(F)=$ $\left\{p_{\bar{F}}^{-1}(N): N \in \bigcap_{n+1}(F)\right\}$. Here, running $F \in \mathscr{F}_{n}^{*}$, we set $\mathscr{I}_{n+1}=\bigcup\left\{\mathscr{F}_{n+1}(F): F \in \mathscr{F}_{n}^{*}\right\}$ and define the function ϕ of \mathscr{F}_{n+1} into \mathscr{F}_{n}^{*} as $\phi\left(\mathscr{F}_{n+1}(F)\right)=\{F\}$ for each $F \in \mathscr{F}_{n}^{*}$. Moreover, \mathscr{F}_{n+1}^{*} is defined as in (2). Then $\mathscr{F}_{n+1}, \mathscr{T}_{n+1}^{*}$ and ϕ satisfy (1)-(4). For each $H \in \mathscr{F}_{n+1}^{*}$, pick any point $x(H)$ of $H \cap K$. Since $x(H)$ is a point of some \aleph_{0}-cube contained in K, we can take some $R(H) \in \Lambda_{\omega}$ satisfying (5). Thus we have inductively accomplished the desired construction.

Now, we set $G=\bigcup\left\{F \in \mathscr{I}_{n}: F \cap K=\varnothing\right.$ and $\left.n \geqq 0\right\}$. It follows from (1) that G is an F_{σ}-set disjoint from K. Assume $G \neq X \backslash K$. Pick a point y of $X \backslash(G \cup K)$ and take a basic open neighborhood U of y in X, disjoint from K. Then we can inductively choose a sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ such that for each $n \geqq 0$
(i) $F_{n} \in \mathscr{I}_{n}^{*}$ with $\phi\left(F_{n}\right)=F_{n-1}$,
(ii) $p_{F_{n}}(y) \in p_{F_{n}}\left(F_{n+1}\right) \subset p_{F_{n}}(U)$.

Indeed, assume that $F_{i}, i \leqq n$, have been already chosen. By (ii) and (3), we have $p_{F_{n}}(y) \in p_{F_{n}}\left(F_{n}\right)$. By (4), we can choose some $F_{n+1} \in q_{n+1}$, satisfying (i) and (ii). Again by (3), we have $y \in F_{n+1}$. So $F_{n+1} \notin \mathcal{F}_{n+1}^{*}$ implies $y \in F_{n+1} \subset G$, which is a contradiction. Hence $F_{n+1} \in \mathscr{F}_{n+1}^{*}$.

We set $R_{\infty}=\bigcup_{n=0}^{\infty} R\left(F_{n}\right)$. Since $\left\{R\left(F_{n}\right)\right\}_{n=0}^{\infty}$ is non-decreasing, we can take
some $k \geqq 1$ such that

$$
p_{F_{k-1}}(U) \times \Pi\left\{X_{\lambda}: \lambda \in R_{\infty} \backslash R\left(F_{k-1}\right)\right\} \times p_{\Lambda \backslash R_{\infty}}(U)=U .
$$

We take the point z of X defined by $p_{R_{\infty}}(z)=p_{R_{\infty}}\left(x_{k}\right)$, where $x_{k}=x\left(F_{k}\right)$, and $p_{A \backslash R_{\infty}}(z)=p_{\backslash \backslash R_{\infty}}(y)$. Then we have $z \in U \subset X \backslash K$. On the other hand, by (5), we have

$$
z \doteq p_{R_{\infty}}^{-1} p_{R_{\infty}}\left(x_{k}\right) \subset p_{\bar{F}_{k}}^{-1} p_{F_{k}}\left(x_{k}\right) \subset K .
$$

This is a contradiction. Hence K is a G_{δ}-set in X. Since the converse is obvious, the proof is complete.

Recall that a space S is said to be perfect if each closed set in S is a G_{δ}-set.
Corollary 2. Let Y be a space which is a closed continuous image of a Cartesian product of σ-spaces. Then Y is perfect if and only if each point of Y is a G_{δ}-set.

Proof. Let X be a Cartesian product of σ-spaces and f a closed continuous map of X onto Y. Assume that each $y \in Y$ is a G_{δ}-set. Let F be a closed set in Y. Since $f^{-1}(F)$ is a closed set in X which is a union of G_{0}-sets, it is a union of \aleph_{0}-cubes. It follows from Theorem 6 that $f^{-1}(F)$ is a G_{δ}-set. Since f is a closed map, F is also a G_{δ}-set.

Next, we show a generalization of [14, Corollary 2].
Theorem 7. Let X be a Cartesian product of spaces, each finite subproduct of which has tightness $\leqq \mathfrak{m}$. If Y is a union of \mathfrak{m}-cubes in X, then $\mathrm{Cl} Y$ is also a union of \mathfrak{m}-cubes.

Proof. Let $X=\prod_{\lambda \in A} X_{\lambda}$. Pick a point y of $\mathrm{Cl} Y$. We construct two sequences $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{R_{n}\right\}_{n=0}^{\infty}$ of subsets of Y and Λ, respectively, satisfying for each $n \geqq 0$
(1) $\left|A_{n}\right| \leqq \mathfrak{m}, \quad\left|R_{n}\right| \leqq \mathfrak{m}$,
(2) $p_{R_{n-1}}(y) \in \mathrm{Cl} p_{R_{n-1}}\left(A_{n}\right)$,
(3) $p_{R_{n}^{1}}^{-1} p_{R_{n}}\left(A_{n}\right) \subset Y \quad$ and $\quad R_{n} \subset R_{n+1}$.

Assume that the construction has been already performed for no greater than n. It follows from [9, Remark 3] and (1) that $X_{R_{n}}$ has tightness $\leqq \mathfrak{m}$. Since $p_{R_{n}}(y) \in \mathrm{Cl} p_{R_{n}}(Y)$, we can take some $A_{n+1} \subset Y$ satisfying (1) and (2). For each $a \in A_{n+1}$, there exists some $R_{a} \subset \Lambda$ such that $\left|R_{a}\right| \leqq \mathfrak{m}$ and $p_{R_{a}}^{-1} p_{R_{a}}(a) \subset Y$. Here, we set $R_{n+1}=\bigcup\left\{R_{a}: a \in A_{n+1}\right\} \cup R_{n}$. Then R_{n+1} and A_{n+1} satisfy (1) and (3). The construction has been accomplished.

Now, we set $R=\bigcup_{n=0}^{\infty} R_{n}$. Then $|R| \leqq \mathfrak{m}$ is clear. We show that the \mathfrak{m}-cube $p_{R}^{-1} p_{R}(y)$ is contained in $\mathrm{Cl} Y$. Pick any point x of $p_{R}^{-1} p_{R}(y)$ and take any basic open neighborhood U of x in X. We can take some $k \geqq 1$ such that

$$
p_{R_{k}}(U) \times \Pi\left\{X_{\lambda}: \lambda \in R \backslash R_{k}\right\} \times p_{\Lambda \backslash R}(U)=U .
$$

Since $p_{R_{k}}(y)=p_{R_{k}}(x) \in p_{R_{k}}(U)$, by (2), there exists some $a \in R_{k+1}$ such that $p_{R_{k}}(a) \in p_{R_{k}}(U)$. So we take the point z of X defined by $p_{R}(z)=p_{R}(a)$ and $p_{\wedge \backslash R}(z)=p_{\Lambda \backslash R}(x)$. Then we have $z \in U$. On the other hand, by (3), we have $z \in Y$. Hence U intersects Y, which implies $x \in \mathrm{Cl} Y$. The proof is complete.

In the case of $\mathfrak{m}=\boldsymbol{\aleph}_{0}$, we have
Corollary 3. Let X be a Cartesian product of spaces, each finite subproduct of which has countable tightness. Then the closure of a union of \aleph_{0}-cubes in X is also a union of \aleph_{0}-cubes.

Let's complete the proof of Theorem 2 in § 1. Note that a perfectly κ-normal space is equivalently a space whose regular closed sets are always zero-sets (cf. [2], [16]). So, in order to prove Theorem 2, it suffices to show the following result, which is barely more general than it.

Theorem 2'. Let X be a Cartesian product of paracompact σ-spaces. If each finite subproduct of X has countable tightness, then the closure of a union of \aleph_{0}-cubes in X is a zero-set.

Proof. Let $X=\prod_{\lambda \in \Lambda} X_{\lambda}$. Let Σ be a Σ-product of the spaces $X_{\lambda}, \lambda \in \Lambda$. It follows from Theorem 0 and [20, Theorem 1] that Σ is normal and C embedded. Let F be the closure of a union of \aleph_{0}-cubes in X. By Corollary 3, F is a closed union of \aleph_{0}-cubes. Moreover, by Theorem 6, F is a G_{δ}-set. Hence it follows from [14, Proposition 2] that F is a zero-set. The proof is complete.

References

[1] A. V. Arhangel'skiǐ, Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys, 33 (1978), 33-96.
[2] R. L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math., 28 (1976), 673-690.
[3] H. H. Corson, Normality in subsets of product spaces, Amer. J. Math., 81 (1959), 785-796.
[4] S. P. Gul'ko, On the properties of subsets of Σ-products, Soviet Math. Dokl., 18 (1977), 1438-1442.
[5] B. S. Klebanov, Remarks on subsets of Cartesian products of metric spaces, Comment. Math. Univ. Carolinae, 23 (1982), 767-784.
[6] A. P. Kombarov, On Σ-products of topological spaces, Soviet Math. Dokl., 12 (1971), 1101-1104.
[7] A. P. Kombarov, On the normality of $\Sigma_{\mathfrak{m}}$-products, Soviet Math. Dokl., 14 (1973), 1050-1054.
[8] A. P. Kombarov, On tightness and normality of Σ-products, Soviet Math. Dokl., 19 (1978), 403-407.
[9] V.I. Malyhin, On tightness and Souslin number in $\exp X$ and in a product of spaces, Soviet Math. Dokl., 13 (1972), 496-499.
[10] K. Morita, Products of normal spaces with metric spaces, Math. Ann., 154 (1964),

365-382.
[11] K. Nagami, Σ-spaces, Fund. Math., 65 (1969), 169-192.
[12] K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math., 73 (1972), 261-270.
[13] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 9 (1967), 236-254.
[14] R. Pol and E. Pol, Remarks on Cartesian products, Fund. Math., 93 (1976), 57-69.
[15] M. E. Rudin, Book Review, Bull. Amer. Math. Soc., 84 (1978), 271-272.
[16] V. E. Sčepin, On topological products, groups and a new class of spaces more general than metric spaces, Soviet Math. Dokl., 17 (1976), 152-155.
[17] V. E. Sčepin, Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys, 31 (1976), 155-191.
[18] R. Telgársky, A characterization of P-spaces, Proc. Japan Acad., 51 (1975), 802-807.
[19] T. Terada, Note on z-, C^{*}-, and C-embedding, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 13 (1975), 129-132.
[20] M. G. Tkačenko, The notion of o-tightness and C-embedded subspaces of products, Topology and Appl., 15 (1983), 93-98.
[21] Y. Yajima, On Σ-products of Σ-spaces, Fund. Math., to appear.

Yukinobu YajIMA
Department of Mathematics
Kanagawa University
Yokohama 221, Japan

