An L^{p} theory for Schrödinger operators with nonnegative potentials

By Noboru Okazawa

(Received Nov. 17, 1983)

Introduction.

This paper is concerned with some properties of the Schrödinger type operator $-\Delta+V(x)$ with nonnegative potential $V(x) \geqq 0$ in $L^{p}=L^{p}\left(\boldsymbol{R}^{m}\right)(1<p<\infty)$. We consider the operator $-\Delta+V(x)$ as a linear accretive operator in L^{p}. The m-accretivity problem for such operators is a natural generalization of the selfadjointness problem for the special case of $p=2$.

A linear operator A with domain $D(A)$ and range $R(A)$ in L^{p} is said to be accretive if

$$
\begin{equation*}
\operatorname{Re}\left(A u,|u|^{p-2} u\right) \geqq 0 \quad \text { for } \quad u \in D(A) . \tag{A}
\end{equation*}
$$

Here (f, g) denotes the pairing between $f \in L^{p}$ and $g \in L^{q}\left(p^{-1}+q^{-1}=1\right)$, and (f, g) is linear in f and semilinear in g. It is well known (see e.g. Tanabe [17], Proposition 2.1.5) that condition (A) is equivalent to

$$
\|(A+\xi) u\| \geqq \xi\|u\| \quad \text { for all } \quad u \in D(A) \text { and } \quad \xi>0 .
$$

If in addition $R(A+\xi)=L^{p}$ for some (and hence for every) $\xi>0$ then we say that A is m-accretive. A nonnegative selfadjoint operator is a typical example of m-accretive operators in L^{2}.

Now let $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$. Then we have, for $p \geqq 2$,

$$
\operatorname{Re}\left(-\Delta u,|u|^{p-2} u\right) \geqq(p-1) \int_{R^{m}}|u(x)|^{p-4} \sum_{j=1}^{m}\left[\operatorname{Re} \frac{\partial u}{\partial x_{j}} \overline{u(x)}\right]^{2} d x .
$$

If $1<p<2$ then the integral on the right-hand side should be replaced by

$$
(p-1) \lim _{\delta \downarrow 0} \int_{R^{m}}\left[|u(x)|^{2}+\delta\right]^{(p-4) / 2} \sum_{j=1}^{m}\left[\operatorname{Re} \frac{\partial u}{\partial x_{j}} \overline{u(x)}\right]^{2} d x
$$

Let $V(x) \in L_{\mathrm{loc}}^{p}\left(\boldsymbol{R}^{m}\right)$. Then we have

$$
\operatorname{Re}\left(V(x) u,|u|^{p-2} u\right)=\int_{R^{m}} V(x)|u(x)|^{p} d x .
$$

[^0]Therefore, $-\Delta+V(x)+c$ (c a constant) is accretive in L^{p} if $V(x)$ is bounded below. So, we assume throughout this paper that $V(x)$ is nonnegative and hence $-\Delta+V(x)$ itself is accretive.

The main purpose of this paper is to present sufficient conditions for $-\Delta+V(x)$ to be m-accretive in L^{p}. Here the domain of $-\Delta+V(x)$ is equal to the intersection of those of $-\Delta$ and $V(x)$. The result is a generalization of those in Everitt-Giertz [3], Sohr [16] and Okazawa [11] to the case of $p \neq 2$. For example, $-\Delta+t|x|^{-2}$ is m-accretive in L^{p} if $t>p-1$. The proof is based on an abstract perturbation theorem for linear m-accretive operators in a reflexive Banach space. It should be noted that the result is also regarded as an explicit characterization of the domain of $[-\Delta+V(x)]_{\max }$ in the sense of Kato [77]. In this connection we note that the closure of $[-\Delta+V(x)]_{\min }$ is m-accretive in L^{p} because $V(x) \geqq 0$ is in $L_{\text {loc }}^{p}\left(\boldsymbol{R}^{m}\right)$. This fact is pointed out by Semenov [15] as an application of the Kato inequality.

This paper is divided into four sections. The assertions on the m-accretivity of $-\Delta+V(x)$ are stated in $\S 2$ (see Theorems 2.1 and 2.5). $\S 1$ is the preliminaries. In $\S 3$ we consider the regularity of solutions of the Schrödinger type equations:

$$
-\Delta u(x)+V(x) u(x)+\xi u(x)=v(x) \quad \text { on } \quad \boldsymbol{R}^{m} .
$$

The result is a generalization of that in Sohr [16] to the case of $p \neq 2$. The proof depends on the relation of $-\Delta+V(x)$ to its adjoint operator $[-\Delta+V(x)]^{*}$ which will be established in $\S 2$. In particular, we shall present a criterion for the equality

$$
D\left([-\Delta \div V(x)]^{\infty}\right)=\bigcap_{n=1}^{\infty} D\left([-\Delta+V(x)]^{n}\right)=S\left(\boldsymbol{R}^{m}\right)
$$

to hold, where $S\left(\boldsymbol{R}^{m}\right)$ is the Schwartz space of all rapidly decreasing functions on \boldsymbol{R}^{m} (see Theorem 3.6 and Corollary 3.7). The result seems to be new even if $p=2$. The last $\S 4$ is concerned with the compactness of the resolvent

$$
[-\Delta+V(x)+\zeta]^{-1}, \quad \operatorname{Re} \zeta>0
$$

under an additional assumption that $V(x) \rightarrow \infty \quad(|x| \rightarrow \infty)$.

§ 1. Preliminaries.

Let $V(x) \geqq 0$ be a function in $L_{\text {loc }}^{p}\left(\boldsymbol{R}^{m}\right)(1<p<\infty)$. Then $S_{p}=-\Delta+V(x)$ is well defined as a linear accretive operator in $L^{p}=L^{p}\left(\boldsymbol{R}^{m}\right) ; D\left(S_{p}\right)$ contains $C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$.

Let A be a linear accretive operator defined on a dense linear subspace D of a Banach space. Then A is closable (see Lumer-Phillips [9], Lemma 3.3) and its closure \tilde{A} is also accretive. If in particular the closure \tilde{A} is m-accretive,
then we say that A is essentially m-accretive on D. In this case \tilde{A} is a unique m-accretive extension of A.

The following theorem is an L^{p} version of the well known result of Kato [6] (see e.g. Faris [4], Kuroda [8] or Reed-Simon [12]) and is explicitly stated in Semenov [15].

Theorem 1.1. Let $V(x) \geqq 0$ be a function in $L_{\mathrm{loc}}^{p}\left(\boldsymbol{R}^{m}\right)(1<p<\infty)$. Then $S_{p}=-\Delta+V(x)$ is essentially m-accretive on $C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$.

Let X be a reflexive Banach space and X^{*} be its adjoint. Then a linear accretive operator A with domain dense in X is essentially m-accretive on $D(A)$ if and only if its adjoint A^{*} is accretive in X^{*}. Note that in this case A^{*} is also m-accretive because $A^{* *}=\tilde{A}$.

Corollary 1.2. Let $V(x) \geqq 0$ be a function in $L_{\mathrm{loc}}^{p}\left(\boldsymbol{R}^{m}\right) \cap L_{\mathrm{loc}}^{q}\left(\boldsymbol{R}^{m}\right), p^{-1}+q^{-1}$ $=1(1<p<\infty)$. Let S_{p} be as in Theorem 1.1. Then the adjoint of S_{q} is equal to $\tilde{S}_{p}: S_{q}^{*}=\tilde{S}_{p}$.

In particular, \tilde{S}_{2} is a nonnegative selfadjoint operator in L^{2}.
Proof. Let $\phi, \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$. Then we have

$$
(-\Delta \phi+V(x) \phi, \phi)=(\phi,-\Delta \psi+V(x) \psi)
$$

and hence $\left(\widetilde{S}_{p} u, \psi\right)=\left(u, S_{q} \psi\right)$ for all $u \in D\left(\widetilde{S}_{p}\right)$. This implies that $S_{q}^{*} \supset \widetilde{S}_{p}$. But, $S_{q}^{*}=\left(\widetilde{S}_{q}\right)^{*}$ is also m-accretive in L^{p}. Therefore, we obtain $S_{q}^{*}=\widetilde{S}_{p}$. Q.E.D.

REMARK 1.3. $\quad L_{\mathrm{loc}}^{p}\left(\boldsymbol{R}^{m}\right) \cap L_{\mathrm{loc}}^{q}\left(\boldsymbol{R}^{m}\right)=L_{\mathrm{ioc}}^{r}\left(\boldsymbol{R}^{m}\right)$ when we set $r=\max \{p, q\}$.
Let B be a linear m-accretive operator in L^{p}. Then $\left\{B_{\varepsilon}\right\}$ denotes the Yosida approximation of B :

$$
B_{\varepsilon}=B(1+\varepsilon B)^{-1}=\varepsilon^{-1}\left[1-(1+\varepsilon B)^{-1}\right], \quad \varepsilon>0 .
$$

B is approximated by $\left\{B_{\varepsilon}\right\}$ in the following sense:

$$
\left\|B u-B_{\varepsilon} u\right\| \rightarrow 0 \quad(\varepsilon \rightarrow+0) \quad \text { for every } \quad u \in D(B) .
$$

Note that $D(B)$ is necessarily dense in L^{p} (see Yosida [18], VIII-§ 4).
Lemma 1.4. Let A and B be linear m-accretive operators in L^{p}. Let D be a core of A. Assume that there are nonnegative constants c, a and $b(b \leqq 1)$ such that for all $u \in D$,

$$
\begin{equation*}
\operatorname{Re}\left(A u, F\left(B_{\varepsilon} u\right)\right) \geqq-c\|u\|^{2}-a\left\|B_{\varepsilon} u\right\|\|u\|-b\left\|B_{\varepsilon} u\right\|^{2}, \tag{1.1}
\end{equation*}
$$

where $F\left(B_{\varepsilon} u\right)=\left\|B_{\varepsilon} u\right\|^{2-p}\left|B_{\varepsilon} u\right|^{p-2} B_{\varepsilon} u, \varepsilon>0$.
If $b<1$ then $A+B$ with $D(A+B)=D(A) \cap D(B)$ is also m-accretive. If $b=1$ then $A+B$ is essentially m-accretive on $D(A+B)$.

Proof. It suffices to show that (1.1) holds for all $u \in D(A)$ (see [11], Theorem 4.2). Let $u \in D(A)$. Then there is a sequence $\left\{u_{n}\right\}$ in D such that
$u_{n} \rightarrow u$ and $A u_{n} \rightarrow A u(n \rightarrow \infty) . \quad B_{\varepsilon} u_{n} \rightarrow B_{\varepsilon} u(n \rightarrow \infty)$ is a consequence of the boundedness of B_{ε}. Therefore, $F\left(B_{\varepsilon} u_{n}\right) \rightarrow F\left(B_{\varepsilon} u\right)(n \rightarrow \infty)$ follows from the continuity of the "duality map" F (see Kato [5], Lemma 1.2).
Q.E.D.

Remark 1.5. It is easy to see that $F\left(B_{\mathrm{s}} u_{n}\right)$ tends to $F\left(B_{\mathrm{s}} u\right)$ weakly. Let $\left\{F\left(B_{\varepsilon} u_{n_{k}}\right)\right\}$ be any weakly convergent subsequence of $\left\{F\left(B_{\varepsilon} u_{n}\right)\right\}$. Then $\|f\| \leqq \underset{k \rightarrow \infty}{\liminf }\left\|F\left(B_{\varepsilon} u_{n_{k}}\right)\right\|=\left\|B_{\varepsilon} u\right\|$ where $f=\underset{k \rightarrow \infty}{\mathrm{w}-\lim _{k}} F\left(B_{\varepsilon} u_{n_{k}}\right)$. On the other hand, we have $\left(B_{\varepsilon} u_{n}, F\left(B_{\varepsilon} u_{n}\right)\right)=\left\|B_{\varepsilon} u_{n}\right\|^{2}$ and hence $\left(B_{\varepsilon} u, f\right)=\left\|B_{\varepsilon} u\right\|^{2}$. So, we obtain $f=F\left(B_{\varepsilon} u\right)$.
$\S 2$. The m-accretivity of $-\Delta+V(x)$.
Let $V(x)>0$ be a function in $L_{\text {loc }}^{p}\left(\boldsymbol{R}^{m} \backslash\{0\}\right)$ and set

$$
V_{\varepsilon}(x)=V(x)[1+\varepsilon V(x)]^{-1}, \quad \varepsilon>0 .
$$

We denote by $B=B_{p}$ the maximal multiplication operator by $V(x)$:

$$
B u(x)=B_{p} u(x)=V(x) u(x)
$$

for $u \in D(B)=\left\{u, V(x) u \in L^{p}\right\}$. Then B_{p} is m-accretive in L^{p} and the Yosida approximation of B_{p} is given by

$$
B_{\varepsilon} u(x)=B_{p, \varepsilon} u(x)=V_{\varepsilon}(x) u(x) .
$$

Let $A=A_{p}$ be the minus Laplacian in L^{p} :

$$
A u(x)=A_{p} u(x)=-\Delta u(x) \quad \text { for } \quad u \in D(A)=W^{2, p}\left(\boldsymbol{R}^{m}\right),
$$

where $W^{2, p}\left(\boldsymbol{R}^{m}\right)$ is the usual Sobolev space. Then A_{p} is also m-accretive in L^{p} (cf. Tanabe [17], Chapter 3, § 3.1).

We consider the m-accretivity of $A+B=A_{p}+B_{p}=-\Delta+V(x)$ with $D(A+B)$ $=W^{2, p}\left(\boldsymbol{R}^{m}\right) \cap D(B)$ in $L^{p}=L^{p}\left(\boldsymbol{R}^{m}\right)$.

Theorem 2.1. Let A and B be as above. Assume that $V_{\varepsilon}(x)$ is a function of class $C^{1}\left(\boldsymbol{R}^{m}\right)$ and there are nonnegative constants c, a and $b\left(b \leqq 4(p-1)^{-1}\right)$ such that on \boldsymbol{R}^{m}

$$
\begin{equation*}
\left|\operatorname{grad} V_{\varepsilon}(x)\right|^{2} \leqq c V_{\varepsilon}(x)+a\left[V_{\varepsilon}(x)\right]^{2}+b\left[V_{\varepsilon}(x)\right]^{3}, \quad \varepsilon>0 . \tag{2.1}
\end{equation*}
$$

In the case of $1<p<2$ assume further that $c=0$.
If $b<4(p-1)^{-1}$ then $A+B=-\Delta+V(x)$ is m-accretive in L^{p}. If $b=4(p-1)^{-1}$ then $A+B$ is essentially m-accretive on $D(A+B)$.

Proof. In order to apply Lemma 1.4, we shall show that for all $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$,

$$
\begin{equation*}
4 \operatorname{Re}\left(A u, F\left(B_{\varepsilon} u\right)\right) \geqq-(p-1)\left(c\|u\|^{2}+a\left\|B_{s} u\right\|\|u\|+b\left\|B_{\varepsilon} u\right\|^{2}\right) . \tag{2.2}
\end{equation*}
$$

Since $\left|B_{\varepsilon} u(x)\right|^{p-2} B_{\varepsilon} u(x)=\left[V_{\varepsilon}(x)\right]^{p-1}|u(x)|^{p-2} u(x)$, we have

$$
\left(A u,\left|B_{\varepsilon} u\right|^{p-2} B_{\varepsilon} u\right)=-\int_{R^{m}} a(x)|u(x)|^{p-2} \overline{u(x)} \Delta u(x) d x
$$

where we set $a(x)=\left[V_{\varepsilon}(x)\right]^{p-1}$. Let $p \geqq 2$. Then it follows from the same calculation as in $\S 5.1$ of [10] that

$$
\begin{aligned}
& \operatorname{Re}\left(A u,\left|B_{\varepsilon} u\right|^{p-2} B_{\varepsilon} u\right) \geqq \frac{1}{p} \sum_{j=1}^{m} \int_{R^{m}} \frac{\partial a}{\partial x_{j}} \frac{\partial}{\partial x_{j}}|u(x)|^{p} d x \\
& \quad+(p-1) \int_{R^{m}} a(x)|u(x)|^{p-4} \sum_{j=1}^{m}\left[\operatorname{Re} \frac{\partial u}{\partial x_{j}} \overline{u(x)}\right]^{2} d x .
\end{aligned}
$$

The first term on the right-hand side is larger than

$$
\begin{aligned}
& -(p-1) \int_{R^{m}} a(x)|u(x)|^{p-4} \sum_{j=1}^{m}\left[\operatorname{Re} \frac{\partial u}{\partial x_{j}} \overline{u(x)}\right]^{2} d x \\
& -4^{-1}(p-1)^{-1} \int_{R^{m}}[a(x)]^{-1}|\operatorname{grad} a(x)|^{2}|u(x)|^{p} d x
\end{aligned}
$$

Therefore, we obtain

$$
\operatorname{Re}\left(A u, F\left(B_{\varepsilon} u\right)\right) \geqq-\frac{\left\|B_{\varepsilon} u\right\|^{2-p}}{4(p-1)} \int_{R^{m}}|\operatorname{grad} a(x)|^{2} \frac{|u(x)|^{p}}{a(x)} d x
$$

This inequality holds even if $1<p<2$. In fact, we can show that for any $\delta>0$.

$$
\begin{aligned}
& -\operatorname{Re} \int_{R^{m}} a(x)\left[|u(x)|^{2}+\delta\right]^{(p-2) / 2} \overline{u(x)} \Delta u(x) d x \\
\geqq & -4^{-1}(p-1)^{-1} \int_{U}[a(x)]^{-1}|\operatorname{grad} a(x)|^{2}\left[|u(x)|^{2}+\delta\right]^{p / 2} d x
\end{aligned}
$$

where U is a sufficiently large ball containing the support of u. By a simple calculation we see from (2.1) that

$$
(p-1)^{-2}[a(x)]^{-1}|\operatorname{grad} a(x)|^{2} \leqq c\left[V_{\varepsilon}(x)\right]^{p-2}+a\left[V_{\varepsilon}(x)\right]^{p-1}+b\left[V_{\varepsilon}(x)\right]^{p}
$$

Using the Hölder inequality we obtain (2.2) for all $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$. Noting that $C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$ is a core of A, the conclusion follows from Lemma 1.4 \quad Q.E.D.

Let $W(x)>0$ be another function in $L_{\mathrm{loc}}^{p}\left(\boldsymbol{R}^{m} \backslash\{0\}\right)$. We denote by C the maximal multiplication operator by $W(x)$. As for the m-accretivity of $A+B+C$ with

$$
D(A+B+C)=W^{2, p}\left(\boldsymbol{R}^{m}\right) \cap D(B) \cap D(C)
$$

we have
Corollary 2.2. Let A, B and C be as above. Assume that both $V_{\varepsilon}(x)$ and $W_{\varepsilon}(x)$ are functions of class $C^{1}\left(\boldsymbol{R}^{m}\right)$ satisfying (2.1) with $b<4(p-1)^{-1}$. Then $A+B+C=-\Delta+V(x)+W(x)$ is m-accretive in L^{p}.

In fact, we have (2.2) with A and B replaced by $A+B$ and C, respectively. Next, let $V(x)>0$ be a continuous function on $\boldsymbol{R}^{m} \backslash\{0\}$; namely, $V(x) \in$
$L_{\text {loc }}^{p}\left(\boldsymbol{R}^{m} \backslash\{0\}\right)$ for every $p(1<p<\infty)$. Set

$$
\begin{equation*}
b_{0}(p)=\min \left\{4(p-1), 4(p-1)^{-1}\right\} \quad(1<p<\infty) . \tag{2.3}
\end{equation*}
$$

Then we have
Corollary 2.3. Let A_{p} and B_{p} be as in Theorem 2.1. If $b<b_{0}(p)$ in (2.1) then

$$
\begin{equation*}
A_{p}+B_{p}=\left(A_{q}+B_{q}\right)^{*} \quad\left(p^{-1}+q^{-1}=1\right) . \tag{2.4}
\end{equation*}
$$

Proof. Noting that $p-1=(q-1)^{-1}$, we see from Theorem 2, (with $c=0$ except the case of $p=2$) that $A_{p}+B_{p}$ and $A_{q}+B_{q}$ are m-accretive in L^{p} and L^{q}, respectively. For $u \in W^{2, p}\left(\boldsymbol{R}^{m}\right)$ and $v \in W^{2, q}\left(\boldsymbol{R}^{m}\right)$ we have

$$
\left(\left(A_{p}+B_{p, \varepsilon}\right) u, v\right)=\left(u,\left(A_{q}+B_{q, \varepsilon}\right) v\right)
$$

Going to the limit $\varepsilon \rightarrow+0$, we obtain

$$
\left(\left(A_{p}+B_{p}\right) u, v\right)=\left(u,\left(A_{q}+B_{q}\right) v\right)
$$

for all $u \in D\left(A_{p}+B_{p}\right)$ and $v \in D\left(A_{q}+B_{q}\right)$. The rest part is the same as in the proof of Corollary 1.2.
Q.E.D.

Remark 2.4. The maximum of $b_{0}(p)$ is attained at $p=2$ (the selfadjoint case).

Theorem 2.5. Let A and B be as in Theorem 2.1. Assume instead of (2.1) that $V(x) \geqq 0$ is of class $C^{1}\left(\boldsymbol{R}^{m}\right)$ and

$$
\begin{equation*}
|\operatorname{grad} V(x)|^{2} \leqq a\left[V(x)+c_{1}\right]^{2}+b\left[V(x)+c_{2}\right]^{3} \quad \text { on } \quad \boldsymbol{R}^{m}, \tag{2.5}
\end{equation*}
$$

where c_{1}, c_{2}, a and $b\left(b \leqq 4(p-1)^{-1}\right)$ are nonnegative constants. Then the conclusion of Theorem 2.1 holds. If in particular $b<4(p-1)^{-1}$ then $C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$ is a core of $A+B$.

Proof. It suffices to show that $A+(B+1)$ (or its closure) is m-accretive. So, we may assume that $V(x) \geqq 1$. In fact, $V(x)$ in (2.5) can be replaced by $V(x)+1$. Noting this, we obtain (2.1) with $c=0$:

$$
\begin{aligned}
\left|\operatorname{grad} V_{\varepsilon}(x)\right|^{2} & =|\operatorname{grad} V(x)|^{2}[1+\varepsilon V(x)]^{-4} \\
& \leqq b\left[V_{\varepsilon}(x)\right]^{3}+\left[a\left(c_{1}+1\right)^{2}+b\left(c_{2}+1\right)^{3}\right]\left[V_{\varepsilon}(x)\right]^{2} .
\end{aligned}
$$

It remains to show that $\left[(A+B) \mid C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)\right]^{\sim}=A+B$. But, since $V(x) \geqq 0$ is a function in $L_{\mathrm{loc}}^{p}\left(\boldsymbol{R}^{m}\right)$, this follows from Theorem 1.1.
Q.E.D.

Example 2.6. (i) Let $V(x)=\exp \left(|x|^{k}\right), k \geqq 1$. Then for any $\delta>0$ we have

$$
\begin{aligned}
|\operatorname{grad} V(x)|^{2} & =k^{2}|x|^{2(k-1)}[V(x)]^{2} \\
& \leqq k \delta^{-(k-1)}[V(x)]^{2}+2 k(k-1) \delta[V(x)]^{3} .
\end{aligned}
$$

(ii) Let $W(x)=|x|^{-l}(l>2)$. Then $W_{\varepsilon}(x)=\left(|x|^{l}+\varepsilon\right)^{-1}$ and for any $\delta>0$ we have

$$
\begin{aligned}
\left|\operatorname{grad} W_{\varepsilon}(x)\right|^{2} & \leqq l^{2}|x|^{l-2}\left[W_{\varepsilon}(x)\right]^{3} \\
& \leqq l(l-2) \delta^{-2 /(l-2)}\left[W_{\varepsilon}(x)\right]^{2}+2 l \delta\left[W_{\varepsilon}(x)\right]^{3} .
\end{aligned}
$$

Thus, we see from Corollary 2.2 that $-\Delta+c_{1} \exp \left(|x|^{k}\right)+c_{2}|x|^{-l}$ is m-accretive in $L^{p}(k \geqq 1, l>2)$, where $c_{1}, c_{2} \geqq 0$ are constants.

Example 2.7. Let $V(x)=\beta|x|^{-2}$, where $\beta \geqq p-1$ is a constant. Then $\left|\operatorname{grad} V_{\varepsilon}(x)\right|^{2} \leqq 4 \beta^{-1}\left[V_{\varepsilon}(x)\right]^{3}$ (cf. [11], Example 6.6). So, we have

$$
\operatorname{Re}\left(A u, F\left(B_{\varepsilon} u\right)\right) \geqq-(p-1) \beta^{-1}\left\|B_{\varepsilon} u\right\|^{2} \quad \text { for } \quad u \in W^{2, p}\left(\boldsymbol{R}^{m}\right)
$$

Therefore, $\quad A+B=-\Delta+\beta|x|^{-2} \quad(\beta>p-1)$ is m-accretive in L^{p} and $-\Delta+(p-1)|x|^{-2}$ is essentially m-accretive on $D(A+B)$.

Remark 2.8. Let A and B be as in Theorem 2.1 or 2.5. Then it follows from (2.2) that for all $u \in D(A)$,

$$
\left\|B_{\varepsilon} u\right\| \leqq\left(1-b_{1}\right)^{-1}\left\|\left(A+B_{\varepsilon}\right) u\right\|+K\|u\|
$$

where $K=a_{1}\left(1-b_{1}\right)^{-1}+\left[c_{1}\left(1-b_{1}\right)^{-1}\right]^{1 / 2}$ and we have set $b_{1}=(p-1) b / 4<1$ and so on (see [11], Lemma 1.1). Going to the limit $\varepsilon \rightarrow+0$, we have

$$
\|B u\| \leqq\left(1-b_{1}\right)^{-1}\|(A+B) u\|+K\|u\|, \quad u \in D(A+B)
$$

and hence

$$
\begin{equation*}
\|A u\| \leqq\left[\left(1-b_{1}\right)^{-1}+1\right]\|(A+B) u\|+K\|u\|, \quad u \in D(A+B) . \tag{2.6}
\end{equation*}
$$

These inequalities represent the separation property of $A+B$ (see e.g. EvansZettl [2], Everitt-Giertz [3]].

§ 3. The invariant sets for the resolvents.

Let \boldsymbol{N} be the set of all positive integers. In this section we shall use the multi-index notation:

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right) \quad \text { with } \quad|\alpha|=\sum_{j=1}^{m} \alpha_{j}, \quad \alpha_{j} \in \boldsymbol{N} \cup\{0\} ;
$$

$D^{\alpha} u$ denotes a mixed partial derivative of u :

$$
D^{\alpha} u=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \cdots D_{m}^{\alpha_{m}} u, \quad D_{j}^{\alpha_{j}} u=\partial^{\alpha} j u / \partial x_{j}^{\alpha_{j}}(1 \leqq j \leqq m) .
$$

Let $W^{k, p}\left(\boldsymbol{R}^{m}\right)$ be the usual Sobolev space. Let A_{p} and B_{p} be as in Theorem 2.1:

$$
A_{p}+B_{p}=-\Delta+V(x) \quad \text { with } \quad D\left(A_{p}+B_{p}\right)=W^{2, p}\left(\boldsymbol{R}^{m}\right) \cap D\left(B_{p}\right) .
$$

Then, under some additional assumption, it is expected that $W^{k, p}\left(\boldsymbol{R}^{m}\right)$ is mapped
into $W^{k+2, p}\left(\boldsymbol{R}^{m}\right)$ by $\left(A_{p}+B_{p}+\xi\right)^{-1}, \xi>0$. More precisely, we have
Proposition 3.1. Let $k \in \boldsymbol{N}$ and $V(x) \geqq 0$ be a function of class $C^{k}\left(\boldsymbol{R}^{m}\right)$. Assume that there exist constants $c_{1}, c_{2} \geqq 0$ such that for all α with $|\alpha| \leqq k$,

$$
\begin{equation*}
\left|D^{\alpha} V(x)\right| \leqq c_{1}+c_{2} V(x) \quad \text { on } \quad \boldsymbol{R}^{m} . \tag{3.1}
\end{equation*}
$$

Set $u=\left(A_{p}+B_{p}+\xi\right)^{-1} v$ for $v \in W^{k, p}\left(\boldsymbol{R}^{m}\right)$ and $\xi>0$. Then we have

$$
\begin{equation*}
u \in W^{k+2, p}\left(\boldsymbol{R}^{m}\right), \quad D^{\alpha} u \in D\left(B_{p}\right) \quad(|\alpha| \leqq k) . \tag{3.2}
\end{equation*}
$$

Proof. It follows from (3.1) with $|\alpha|=1$ that (2.5) with $b=0$ is satisfied. So, we see from Theorem 2.5 and Corollary 2.3 that $A_{p}+B_{p}$ is m-accretive in L^{p} for all $p(1<p<\infty)$ and (2.4) holds.

Now we show that the assertion is true for $k=1$. To this end, it suffices to show that $\partial u / \partial x_{j} \in D\left(A_{p}+B_{p}\right)(1 \leqq j \leqq m)$ if $v \in W^{1, p}\left(\boldsymbol{R}^{m}\right)$. Since $u \in D\left(B_{p}\right)$, it follows from (3.1) with $|\alpha|=1$ that $\left(\partial V / \partial x_{j}\right) u \in L^{p}$. Consequently, we have

$$
\left(\frac{\partial u}{\partial x_{j}},-\Delta \phi+V(x) \phi+\xi \phi\right)=\left(\frac{\partial v}{\partial x_{j}}-\frac{\partial V}{\partial x_{j}} u, \phi\right), \quad \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right) .
$$

Noting that $C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right)$ is a core of $A_{q}+B_{q}\left(p^{-1}+q^{-1}=1\right)$, we see that for all $\phi \in D\left(A_{q}+B_{q}\right)$,

$$
\left(\frac{\partial u}{\partial x_{j}},\left(A_{q}+B_{q}+\xi\right) \phi\right)=\left(\frac{\partial v}{\partial x_{j}}-\frac{\partial V}{\partial x_{j}} u, \phi\right) .
$$

This implies that $\partial u / \partial x_{j} \in D\left(A_{p}+B_{p}\right)$ (see (2.4)).
Next, suppose that the assertion is true for all α with $|\alpha| \leqq k-1$. It then follows that

$$
u \in W^{k+1, p}\left(\boldsymbol{R}^{m}\right), \quad D^{\beta} u \in D\left(B_{p}\right) \quad(|\beta| \leqq k-1)
$$

because $v \in W^{k-1, p}\left(\boldsymbol{R}^{m}\right)$. Let $|\alpha|=k$. Then we have

$$
\left(D^{\alpha} u, V(x) \phi\right)=(-1)^{|\alpha|}\left(V(x) u, D^{\alpha} \phi\right)-(w, \phi), \quad \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right),
$$

where $w(x)=\sum_{\beta<\alpha}\binom{\alpha}{\beta} D^{\alpha-\beta} V(x) \cdot D^{\beta} u(x)$. By virtue of (3.1) we see that $D^{\alpha-\beta} V(x)$ - $D^{\beta} u \in L^{p}$ and hence so is w, too. So, we obtain

$$
\left(D^{\alpha} u,-\Delta \phi+V(x) \phi+\xi \phi\right)=\left(D^{\alpha} v-w, \phi\right), \quad \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right) .
$$

In the same way as in the case of $k=1$ we can conclude that $D^{\alpha} u \in D\left(A_{p}+B_{p}\right)$ for $|\alpha|=k$.
Q.E.D.

It follows from (3.2) that for $u=\left(A_{p}+B_{p}+\xi\right)^{-1} v$,

$$
\begin{equation*}
D^{\alpha}[V(x) u]=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D^{\alpha-\beta} V(x) \cdot D^{\beta} u \quad(|\alpha| \leqq k) . \tag{3.3}
\end{equation*}
$$

Let $b_{0}(p)$ be the function which was used in Corollary 2.3, Writing
$x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{m}^{\alpha_{m}}$ for a multi-index α, we have
Proposition 3.2. Let $V(x) \geqq 0$ be a function of class $C^{1}\left(\boldsymbol{R}^{m}\right)$ satisfying (2.5) with $b<b_{0}(p)$. Assume that there is a constant $M>0$ such that

$$
\begin{equation*}
V(x) \geqq M|x| \quad \text { for sufficiently large } x \text {. } \tag{3.4}
\end{equation*}
$$

If $v \in L^{p}$ and $x^{\alpha} v(x) \in L^{p}$ then we have

$$
x^{\alpha}\left(A_{p}+B_{p}+\xi\right)^{-1} v(x) \in D\left(A_{p}+B_{p}\right) \quad \text { for } \quad \xi>0 .
$$

Proof. By assumption we see from Theorem 2. 5 and Corollary 2.3 that $A_{p}+B_{p}=\left(A_{q}+B_{q}\right)^{*}$ is m-accretive for all p and $q, p^{-1}+q^{-1}=1(1<p<\infty)$.

Set $u=\left(A_{p}+B_{p}+\xi\right)^{-1} v$. Then we have formally

$$
\begin{align*}
\left(x^{\alpha} u, \Delta \phi\right)= & \left(\Delta u, x^{\alpha} \phi\right)-\left(u, \phi \Delta x^{\alpha}\right) \tag{3.5}\\
& -2 \sum_{j=1}^{m}\left(u, \frac{\partial x^{\alpha}}{\partial x_{j}} \frac{\partial \phi}{\partial x_{j}}\right), \quad \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{m}\right) .
\end{align*}
$$

Now let $|\alpha|=1$, i. e., $x^{\alpha}=x_{i}$ for some i. Then we see from (3.4) that $u \in D\left(B_{p}\right)$ implies $x_{i} u(x) \in L^{p}(1 \leqq i \leqq m)$ and hence (3.5) makes sense for $|\alpha|=1$. So, we obtain

$$
\left(x_{i} u,-\Delta \phi+V(x) \phi+\xi \phi\right)=\left(x_{i} v, \phi\right)-2\left(\frac{\partial u}{\partial x_{i}}, \phi\right) .
$$

In the same way as in the proof of Proposition 3.1 we can conclude that $x_{i} u(x)$ $\in D\left(A_{p}+B_{p}\right)(1 \leqq i \leqq m)$.

Next, suppose that the assertion is true for all α with $|\alpha| \leqq k-1$. Since $v \in L^{p}$ and $x^{\alpha} v(x) \in L^{p} \quad(|\alpha|=k)$, it follows that $x^{\beta} v(x) \in L^{p}$ and hence $x^{\beta} u(x)$ $\in D\left(A_{p}+B_{p}\right)$ for all β with $|\beta| \leqq k-1$. Consequently, $\left(\partial x^{\alpha} / \partial x_{j}\right) u(x)$ and $u(x) \Delta x^{\alpha}$ belong to $W^{2, p}\left(\boldsymbol{R}^{m}\right)$ for $|\alpha|=k$. Furthermore, by virtue of (3.4) we see that $x^{\beta} u(x) \in D\left(B_{p}\right)(|\beta| \leqq k-1)$ implies $x^{\alpha} u(x) \in L^{p}(|\alpha|=k)$. Therefore, (3.5) makes sense for $|\alpha|=k$ and we obtain $x^{\alpha} u(x) \in D\left(A_{p}+B_{p}\right)$.
Q.E.D.

Example 3.3. Let $m=1$ and $V(x)=\cosh x$ on \boldsymbol{R}. Then $\left|V^{(n)}(x)\right| \leqq V(x)$ $(n \in \boldsymbol{N})$ and $V(x) \geqq \sqrt{2}|x|$ on \boldsymbol{R}.

Remark 3.4. Let $V(x)=|x|^{2}$. Then $|\operatorname{grad} V(x)|^{2} \leqq 4[V(x)+1]^{2}$. Set $u=\left(A_{p}+B_{p}+\xi\right)^{-1} v$ for $v \in D\left(B_{p}\right)$ and $\xi>0$. Then Proposition 3.2 implies that $B_{p} u \in D\left(A_{p}+B_{p}\right)$.

Propositions 3.1 and 3.2 are unified as follows.
Proposition 3.5. Let $k \in \boldsymbol{N}$ and $V(x) \geqq 0$ be a function of class $C^{k}\left(\boldsymbol{R}^{m}\right)$ satisfying (3.1) and (3.4). Assume that

$$
x^{\alpha} D^{\beta} v(x) \in L^{p} \quad \text { for all } \alpha, \beta \text { with } \quad|\alpha+\beta| \leqq k .
$$

Setting $u=\left(A_{p}+B_{p}+\xi\right)^{-1} v$, we have

$$
x^{\alpha} D^{\beta} u(x) \in D\left(A_{p}+B_{p}\right) \quad \text { for all } \alpha, \beta \text { with } \quad|\alpha+\beta| \leqq k .
$$

Proof. (3.1) implies that $A_{p}+B_{p}$ is m-accretive in L^{p} for all $p(1<p<\infty)$. If $k=1$ then the assertion is reduced to the preceding Propositions.

Suppose that the assertion is true for $k-1$:

$$
\begin{equation*}
x^{\alpha} D^{\gamma} u(x) \in D\left(A_{p}+B_{p}\right) \quad \text { for all } \alpha, \gamma \text { with } \quad|\alpha+\gamma| \leqq k-1 \tag{3.6}
\end{equation*}
$$

Since $v \in W^{k, p}\left(\boldsymbol{R}^{m}\right)$ and $x^{\alpha} v(x) \in L^{p}(|\alpha|=k)$, it follows from Propositions 3.1 and 3.2 that $D^{\beta} u \in D\left(A_{p}+B_{p}\right)(|\beta| \leqq k)$ and $x^{\alpha} u(x) \in D\left(A_{p}+B_{p}\right) \quad(|\alpha|=k)$, respectively. Furthermore, in view of (3.3) we have

$$
\begin{equation*}
[-\Delta+V(x)+\xi] D^{\beta} u(x)=D^{\beta} v(x)-\sum_{\gamma<\beta}\binom{\beta}{\gamma} D^{\beta-\gamma} V(x) \cdot D^{\gamma} u(x) . \tag{3.7}
\end{equation*}
$$

Here, we see from (3.1) and (3.6) that

$$
D^{\beta-r} V(x) \cdot\left[x^{\alpha} D^{r} u(x)\right] \in L^{p} \quad(|\alpha+\gamma| \leqq k-1) .
$$

Denoting by $w(x)$ the right-hand side of (3.7), we have $w \in L^{p}$ and $x^{\alpha} w(x) \in L^{p}$. Applying Proposition 3.2 to the equation $[-\Delta+V(x)+\xi] D^{\beta} u=w$, we obtain

$$
x^{\alpha} D^{\beta} u(x) \in D\left(A_{p}+B_{p}\right) \quad(|\alpha+\beta| \leqq k,|\alpha| \geqq 1,|\beta| \geqq 1) .
$$

Q.E.D.

Let $S\left(\boldsymbol{R}^{m}\right)$ be the Schwartz space of all rapidly decreasing functions on \boldsymbol{R}^{m} :

$$
S\left(\boldsymbol{R}^{m}\right)=\left\{f \in C^{\infty}\left(\boldsymbol{R}^{m}\right) ; \sup _{x}\left[\langle x\rangle^{k}\left|D^{\alpha} f(x)\right|\right]<\infty \text { for all } k, \alpha\right\},
$$

where $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}, k \in \boldsymbol{N} \cup\{0\}$.
Setting $D\left(\left(A_{p}+B_{p}\right)^{\infty}\right)=\bigcap_{n=1}^{\infty} D\left(\left(A_{p}+B_{p}\right)^{n}\right)$, we have
Theorem 3.6. Let $V(x) \geqq 0$ be a function of class $C^{\infty}\left(\boldsymbol{R}^{m}\right)$ satisfying (3.4). Assume that (3.1) is satisfied for all α (so that $A_{p}+B_{p}=-\Delta+V(x)$ is m-accretive in $\left.L^{p}\right)$. Let $n \in N$. Then $u \in D\left(\left(A_{p}+B_{p}\right)^{n}\right)$ implies that

$$
\begin{equation*}
x^{\alpha} D^{\beta} u(x) \in L^{p} \quad \text { for all } \alpha, \beta \text { with }|\alpha+\beta| \leqq n \tag{3.8}
\end{equation*}
$$

In particular, $D\left(\left(A_{p}+B_{p}\right)^{\infty}\right) \subset S\left(\boldsymbol{R}^{m}\right)$.
The proof will be given after
Corollary 3.7. Let $V(x)$ be a function as in Theorem 3.6. Then $D\left(\left(A_{p}+B_{p}\right)^{\infty}\right)$ $=S\left(\boldsymbol{R}^{m}\right)$ if and only if $V(x) f(x) \in S\left(\boldsymbol{R}^{m}\right)$ for every $f \in S\left(\boldsymbol{R}^{m}\right)$. In this case

$$
\left(A_{p}+B_{p}+\zeta\right)^{-1} S\left(\boldsymbol{R}^{m}\right)=S\left(\boldsymbol{R}^{m}\right), \quad \operatorname{Re} \zeta>0
$$

Proof of Theorem 3.6. (3.8) for $n=1$ is obvious. Suppose that (3.8) is true. Let $u \in D\left(\left(A_{p}+B_{p}\right)^{n+1}\right)$. Then, since $\left(A_{p}+B_{p}+1\right) u=v \in D\left(\left(A_{p}+B_{p}\right)^{n}\right)$, we have (3.8) with u replaced by v. Therefore, it follows from Proposition 3.5 that

$$
x^{\alpha} D^{\beta} u(x) \in D\left(A_{p}+B_{p}\right) \quad \text { for all } \alpha, \beta \text { with } \quad|\alpha+\beta| \leqq n .
$$

Thus, we can obtain (3.8) with n replaced by $n+1$.
Next, let $u \in D\left(\left(A_{p}+B_{p}\right)^{\infty}\right)$. Then we see that (3.8) is true for all $n \in \boldsymbol{N}$ and hence

$$
x^{\alpha} D^{\beta} u(x) \in W^{k, p}\left(\boldsymbol{R}^{m}\right) \quad \text { for all } \alpha, \beta, \quad \text { and } \quad k \in N
$$

Therefore, it follows from the Sobolev imbedding theorem (see e.g. Adams [1]) that $u \in C^{\infty}\left(\boldsymbol{R}^{m}\right)$ and

$$
\sup \left\{\left|x^{\alpha} D^{\beta} u(x)\right| ; x \in \boldsymbol{R}^{m}\right\}<\infty \quad \text { for all } \alpha, \beta .
$$

Thus, we obtain the desired inclusion.
Q.E.D.

Remark 3.8. Corollary 3.7 does not apply to $V(x)=\cosh x$ (see Example 3.3). In ${ }^{\text {『 }}$ fact, $2\left(e^{x}+e^{-x}\right)^{-1} \in S(\boldsymbol{R})$.

§ 4. The compactness of the resolvents.

Let $V(x) \geqq 0$ be a function of class $C^{1}\left(\boldsymbol{R}^{m}\right)$ satisfying (2.5) with $b<4(p-1)^{-1}$:

$$
|\operatorname{grad} V(x)|^{2} \leqq b[V(x)+c]^{3} \quad \text { on } \quad \boldsymbol{R}^{m} .
$$

Then $A+B=-\Delta+V(x)$ with $D(A+B)=W^{2, p}\left(\boldsymbol{R}^{m}\right) \cap D(B)$ is m-accretive in $L^{p}=$ $L^{p}\left(\boldsymbol{R}^{m}\right)$ (see Theorem 2, 5). Consequently, $A+B+\zeta$ is invertible for every ζ with $\operatorname{Re} \zeta>0$ and $(A+B+\zeta)^{-1}$ is a bounded linear operator on L^{p}

Theorem 4.1. Let $A+B=-\Delta+V(x)$ be the linear m-accretive operator obtained in Theorem 2.5. Assume further that

$$
V(x) \rightarrow \infty \quad(|x| \rightarrow \infty) .
$$

Then the resolvent $(A+B+\zeta)^{-1}$ is compact for $\operatorname{Re} \zeta>0$ and hence $A+B$ has discrete spectrum consisting entirely of eigenvalues with finite multiplicities.

Proof. It suffices by the resolvent equation to show that $(A+B+1)^{-1}$ is compact. Set

$$
U=\left\{v \in L^{p} ;\|v\| \leqq 1\right\} .
$$

We shall show that $(A+B+1)^{-1} U$ is relatively compact in L^{p}. Let $v \in U$ and set $u=(A+B+1)^{-1} v$. Then $u \in W^{2, p}\left(\boldsymbol{R}^{m}\right)$ and $\|u\| \leqq\|v\| \leqq 1$. Moreover, it follows from an estimate for the Laplacian that

$$
\|u\|_{1, p} \leqq c_{0}(\|A u\|+\|u\|),
$$

where $\|u\|_{1, p}$ is the norm of $W^{1, p}\left(\boldsymbol{R}^{m}\right)$ (see Schechter [14], Theorem 3.1 of Chapter 3, Lemma 2.1 of Chapter 11). So, we see from (2.6) that

$$
\|u\|_{1, p} \leqq c_{1}\|(A+B) u\|+\left(c_{2}+c_{0}\right)\|u\| \leqq c_{0}+2 c_{1}+c_{2} .
$$

Thus, $(A+B+1)^{-1} U$ is bounded in $W^{1, p}\left(\boldsymbol{R}^{m}\right)$. It follows from the Rellich compactness theorem (see Adams [1]) that for any $R>0,(A+B+1)^{-1} U$ is relatively compact in $L^{p}\left(\Omega_{R}\right)$, where

$$
\Omega_{R}=\left\{x \in \boldsymbol{R}^{m} ;|x| \leqq R\right\} .
$$

Now let $\left\{v_{n}\right\}$ be an arbitrary sequence in U and set $u_{n}=(A+B+1)^{-1} v_{n}$. Then by a diagonal method, we can find a subsequence of $\left\{u_{n}\right\}$ which converges in $L^{p}\left(\Omega_{R}\right)$ for any $R>0$. We denote this subsequence again by $\left\{u_{n}\right\}$. By the way, we note that

$$
\begin{aligned}
\int_{R^{m}} V(x)\left|u_{n}(x)\right|^{p} d x & \leqq \operatorname{Re}\left((A+B) u_{n},\left|u_{n}\right|^{p-2} u_{n}\right) \\
& \leqq\left\|(A+B) u_{n}\right\|\left\|u_{n}\right\|^{p-1} \leqq 2 .
\end{aligned}
$$

By assumption, for any $\varepsilon>0$ there is $R=R(\varepsilon)>0$ such that

$$
V(x) \geqq 2\left(2^{p}+1\right) \varepsilon^{-1} \quad \text { for } \quad|x| \geqq R .
$$

So, we have

$$
\begin{aligned}
\int_{|x| \geq R}\left|u_{n}(x)\right|^{p} d x & \leqq\left(2^{p}+1\right)^{-1} \frac{\varepsilon}{2} \int_{|x| \geq R} V(x)\left|u_{n}(x)\right|^{p} d x \\
& <\left(2^{p}+1\right)^{-1} \varepsilon .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is a Cauchy sequence in $L^{p}\left(\Omega_{R}\right)$, there is a positive integer $n_{0}=n_{0}(\varepsilon)$ such that for $n, m \geqq n_{0}$,

$$
\int_{|x| \leqslant R}\left|u_{n}(x)-u_{m}(x)\right|^{p} d x<\left(2^{p}+1\right)^{-1} \varepsilon .
$$

Therefore, we obtain for $n, m \geqq n_{0}$,

$$
\begin{aligned}
\left\|u_{n}-u_{m}\right\|^{p} & =\left(\int_{|x| \leq R}+\int_{|x| \geq R}\right)\left|u_{n}(x)-u_{m}(x)\right|^{p} d x \\
& <\left(2^{p}+1\right)^{-1} \varepsilon+2^{p-1} \int_{|x| 2 R}\left(\left|u_{n}(x)\right|^{p}+\left|u_{m}(x)\right|^{p}\right) d x \\
& <\left[\left(2^{p}+1\right)^{-1}+2^{p}\left(2^{p}+1\right)^{-1}\right] \varepsilon=\varepsilon
\end{aligned}
$$

i.e., $\left\{u_{n}\right\}$ is a Cauchy sequence in L^{p}.
Q.E.D.

In the case of $p=2$ the assertion of Theorem 4.1 holds under the simplest assumption on $V(x)$ (see Reed-Simon [13], Theorem XIII.67).

In view of Theorem 3.6 we obtain
Corollary 4.2. Let $V(x) \geqq 0$ be a function of class $C^{\infty}\left(\boldsymbol{R}^{m}\right)$ satisfying (3.4):

$$
V(x) \geqq M|x| \quad \text { for sufficiently large } x \text {. }
$$

Assume that (3.1) is satisfied for all α :

$$
\left|D^{\alpha} V(x)\right| \leqq c_{1}+c_{2} V(x) \quad \text { on } \quad \boldsymbol{R}^{m} .
$$

Then the eigenfunctions of $A_{p}+B_{p}=-\Delta+V(x)$ belong to $S\left(\boldsymbol{R}^{m}\right)$ and hence the spectrum of $A_{p}+B_{p}$ is independent of p.

The following example is well known.
Example 4.3. Let $m=1$ and $V(x)=x^{2}$ on \boldsymbol{R}. Then

$$
\left(A_{p}+B_{p}\right) u(x)=-u^{\prime \prime}(x)+x^{2} u(x) .
$$

The eigenvalues of $A_{p}+B_{p}$ and the associated eigenfunctions are given by

$$
\lambda_{n}=2 n+1, \quad \psi_{n}(x)=e^{-x / 2} H_{n}(x) \quad(n=0,1,2, \cdots),
$$

where $H_{n}(x)$ is the Hermite polynomial.

References

[1] R. A. Adams, Sobolev spaces, Pure and Applied Math., 65, Academic Press, New York, 1975.
[2] W. D. Evans and A. Zettl, Dirichlet and separation results for Schrödinger-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 151-162.
[3] W. N. Everitt and M. Giertz, Inequalities and separation for Schrödinger type operators in $L_{2}\left(\boldsymbol{R}^{n}\right)$, Proc. Roy. Soc. Edinburgh Sect. A, 79 (1977), 257-265.
[4] W. G. Faris, Selfadjoint operators, Lecture Notes in Math., 433, Springer-Verlag, 1975.
[5] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, ${ }_{1} 19$ (1967), 508-520.
[6] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148.
[7] T. Kato, Remarks on the selfadjointness and related problems for differential operators, Spectral theory of differential operators, Math. Studies, 55, North-Holland, Amsterdam and New York, 1981, 253-266.
[8] S. T. Kuroda, Spectral theory II, Iwanami-Shoten, Tokyo, 1979 (in Japanese).
[9] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679-698.
[10] N. Okazawa, Singular perturbations of m-accretive operators, J. Math. Soc. Japan, 32 (1980), 19-44.
[11] N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan, 34 (1982), 677-701.
[12] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. II, Fourier analysis, selfadjointness, Academic Press, New York, 1975.
[13] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV, Analysis of operators, Academic Press, New York, 1978.
[14] M. Schechter, Spectra of partial differential operators, Applied Math. and Mechanics, 14, North-Holland, Amsterdam, 1971.
[15] Yu. A. Semenov, Schrödinger operators with $L_{\text {loc }}^{p}$-potentials, Comm. Math. Phys., 53 (1977), 277-284.
[16] H. Sohr, Störungstheoretische Regularitätsuntersuchungen, Math. Z., 179 (1982), 179192.
[17] H. Tanabe, Equation of evolution, Monographs and Studies in Math., 6, Pitman,

London, 1979.
[18] K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, 123, Springer-Verlag, Berlin and New York, 1965; 5th ed., 1978.

Noboru Okazawa

Department of Mathematics Faculty of Science
Science University of Tokyo Wakamiya-cho 26, Shinjuku-ku Tokyo 162, Japan

Added in proof. After this paper was accepted for publication, the writer noticed that an estimate in Example 2.7 is partially improved as follows. Let $A=-\Delta$ and $B=\beta|x|^{-2}(\beta>0)$. Then for all $u \in W^{2, p}\left(\boldsymbol{R}^{m}\right)$ we have

$$
\operatorname{Re}\left(A u, F\left(B_{\varepsilon} u\right)\right) \geqq-2(p-1)(2 p-m) p^{-1} \beta^{-1}\left\|B_{\varepsilon} u\right\|^{2} .
$$

This makes sense when $p<2 m / 3$. If in particular $p<m / 2$ then we see that $\beta^{-1} B=|x|^{-2}$ is relatively bounded with respect to $A=-\Delta$: for $u \in D(A) \subset D(B)$,

$$
\beta^{-1}\|B u\| \leqq 2^{-1} p(p-1)^{-1}(m-2 p)^{-1}\|A u\|
$$

(cf. [11], Theorem 6.8).

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 58540091), Ministry of Education.

