J. Math. Soc. Japan Vol. 36, No. 4, 1984

An L^p theory for Schrödinger operators with nonnegative potentials

By Noboru OKAZAWA

(Received Nov. 17, 1983)

Introduction.

This paper is concerned with some properties of the Schrödinger type operator $-\Delta + V(x)$ with nonnegative potential $V(x) \ge 0$ in $L^p = L^p(\mathbb{R}^m)$ $(1 . We consider the operator <math>-\Delta + V(x)$ as a linear *accretive* operator in L^p . The *m*-accretivity problem for such operators is a natural generalization of the self-adjointness problem for the special case of p=2.

A linear operator A with domain D(A) and range R(A) in L^p is said to be *accretive* if

(A)
$$\operatorname{Re}(Au, |u|^{p-2}u) \geq 0$$
 for $u \in D(A)$.

Here (f, g) denotes the pairing between $f \in L^p$ and $g \in L^q$ $(p^{-1}+q^{-1}=1)$, and (f, g) is linear in f and semilinear in g. It is well known (see e.g. Tanabe [17], Proposition 2.1.5) that condition (A) is equivalent to

(A')
$$||(A+\xi)u|| \ge \xi ||u||$$
 for all $u \in D(A)$ and $\xi > 0$.

If in addition $R(A+\xi)=L^p$ for some (and hence for every) $\xi>0$ then we say that A is *m*-accretive. A nonnegative selfadjoint operator is a typical example of *m*-accretive operators in L^2 .

Now let $u \in C_0^{\infty}(\mathbb{R}^m)$. Then we have, for $p \ge 2$,

$$\operatorname{Re}(-\Delta u, |u|^{p-2}u) \geq (p-1) \int_{\mathbb{R}^m} |u(x)|^{p-4} \sum_{j=1}^m \left[\operatorname{Re}\frac{\partial u}{\partial x_j} \overline{u(x)}\right]^2 dx.$$

If 1 then the integral on the right-hand side should be replaced by

$$(p-1)\lim_{\delta \downarrow 0} \int_{\mathbb{R}^m} \left[|u(x)|^2 + \delta \right]^{(p-4)/2} \sum_{j=1}^m \left[\operatorname{Re} \frac{\partial u}{\partial x_j} \overline{u(x)} \right]^2 dx$$

Let $V(x) \in L_{loc}^{p}(\mathbb{R}^{m})$. Then we have

$$\operatorname{Re}(V(x)u, |u|^{p-2}u) = \int_{\mathbb{R}^m} V(x) |u(x)|^p dx.$$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 58540091), Ministry of Education.

N. Okazawa

Therefore, $-\Delta + V(x) + c$ (c a constant) is accretive in L^p if V(x) is bounded below. So, we assume throughout this paper that V(x) is nonnegative and hence $-\Delta + V(x)$ itself is accretive.

The main purpose of this paper is to present sufficient conditions for $-\Delta+V(x)$ to be *m*-accretive in L^p . Here the domain of $-\Delta+V(x)$ is equal to the intersection of those of $-\Delta$ and V(x). The result is a generalization of those in Everitt-Giertz [3], Sohr [16] and Okazawa [11] to the case of $p \neq 2$. For example, $-\Delta+t|x|^{-2}$ is *m*-accretive in L^p if t > p-1. The proof is based on an abstract perturbation theorem for linear *m*-accretive operators in a reflexive Banach space. It should be noted that the result is also regarded as an explicit characterization of the domain of $[-\Delta+V(x)]_{max}$ in the sense of Kato [7]. In this connection we note that the closure of $[-\Delta+V(x)]_{min}$ is *m*-accretive in L^p because $V(x) \ge 0$ is in $L_{loc}^p(\mathbb{R}^m)$. This fact is pointed out by Semenov [15] as an application of the Kato inequality.

This paper is divided into four sections. The assertions on the *m*-accretivity of $-\Delta+V(x)$ are stated in §2 (see Theorems 2.1 and 2.5). §1 is the preliminaries. In §3 we consider the regularity of solutions of the Schrödinger type equations:

$$-\Delta u(x)+V(x)u(x)+\xi u(x)=v(x)$$
 on \mathbb{R}^m

The result is a generalization of that in Sohr [16] to the case of $p \neq 2$. The proof depends on the relation of $-\Delta + V(x)$ to its adjoint operator $[-\Delta + V(x)]^*$ which will be established in §2. In particular, we shall present a criterion for the equality

$$D([-\Delta + V(x)]^{\infty}) = \bigcap_{n=1}^{\infty} D([-\Delta + V(x)]^n) = S(\mathbf{R}^m)$$

to hold, where $S(\mathbf{R}^m)$ is the Schwartz space of all rapidly decreasing functions on \mathbf{R}^m (see Theorem 3.6 and Corollary 3.7). The result seems to be new even if p=2. The last §4 is concerned with the compactness of the resolvent

 $[-\Delta+V(x)+\zeta]^{-1}$, $\operatorname{Re}\zeta>0$,

under an additional assumption that $V(x) \rightarrow \infty$ $(|x| \rightarrow \infty)$.

§1. Preliminaries.

Let $V(x) \ge 0$ be a function in $L_{loc}^{p}(\mathbf{R}^{m})$ $(1 . Then <math>S_{p} = -\Delta + V(x)$ is well defined as a linear accretive operator in $L^{p} = L^{p}(\mathbf{R}^{m})$; $D(S_{p})$ contains $C_{0}^{\infty}(\mathbf{R}^{m})$.

Let A be a linear accretive operator defined on a dense linear subspace D of a Banach space. Then A is closable (see Lumer-Phillips [9], Lemma 3.3) and its closure \tilde{A} is also accretive. If in particular the closure \tilde{A} is *m*-accretive,

then we say that A is essentially *m*-accretive on D. In this case A is a unique *m*-accretive extension of A.

The following theorem is an L^p version of the well known result of Kato [6] (see e.g. Faris [4], Kuroda [8] or Reed-Simon [12]) and is explicitly stated in Semenov [15].

THEOREM 1.1. Let $V(x) \ge 0$ be a function in $L_{loc}^{p}(\mathbf{R}^{m})$ $(1 . Then <math>S_{p} = -\Delta + V(x)$ is essentially m-accretive on $C_{0}^{\infty}(\mathbf{R}^{m})$.

Let X be a reflexive Banach space and X^* be its adjoint. Then a linear accretive operator A with domain dense in X is essentially *m*-accretive on D(A) if and only if its adjoint A^* is accretive in X^* . Note that in this case A^* is also *m*-accretive because $A^{**}=\tilde{A}$.

COROLLARY 1.2. Let $V(x) \ge 0$ be a function in $L_{loc}^{p}(\mathbf{R}^{m}) \cap L_{loc}^{q}(\mathbf{R}^{m})$, $p^{-1}+q^{-1} = 1$ $(1 . Let <math>S_{p}$ be as in Theorem 1.1. Then the adjoint of S_{q} is equal to $\tilde{S}_{p}: S_{q}^{*} = \tilde{S}_{p}$.

In particular, \tilde{S}_2 is a nonnegative selfadjoint operator in L^2 . PROOF. Let $\phi, \psi \in C_0^{\infty}(\mathbb{R}^m)$. Then we have

$$(-\Delta\phi + V(x)\phi, \phi) = (\phi, -\Delta\phi + V(x)\phi)$$

and hence $(\tilde{S}_p u, \phi) = (u, S_q \phi)$ for all $u \in D(\tilde{S}_p)$. This implies that $S_q^* \supset \tilde{S}_p$. But, $S_q^* = (\tilde{S}_q)^*$ is also *m*-accretive in L^p . Therefore, we obtain $S_q^* = \tilde{S}_p$. Q.E.D.

REMARK 1.3. $L_{\text{loc}}^{p}(\mathbb{R}^{m}) \cap L_{\text{loc}}^{q}(\mathbb{R}^{m}) = L_{\text{loc}}^{r}(\mathbb{R}^{m})$ when we set $r = \max\{p, q\}$.

Let B be a linear m-accretive operator in L^p . Then $\{B_{\varepsilon}\}$ denotes the Yosida approximation of B:

$$B_{\varepsilon} = B(1+\varepsilon B)^{-1} = \varepsilon^{-1}[1-(1+\varepsilon B)^{-1}], \quad \varepsilon > 0.$$

B is approximated by $\{B_{\varepsilon}\}$ in the following sense:

 $||Bu-B_{\varepsilon}u|| \rightarrow 0 \quad (\varepsilon \rightarrow +0) \quad \text{for every} \quad u \in D(B).$

Note that D(B) is necessarily dense in L^p (see Yosida [18], VIII-§4).

LEMMA 1.4. Let A and B be linear m-accretive operators in L^p . Let D be a core of A. Assume that there are nonnegative constants c, a and b $(b \le 1)$ such that for all $u \in D$,

(1.1)
$$\operatorname{Re}(Au, F(B_{\varepsilon}u)) \geq -c ||u||^{2} - a ||B_{\varepsilon}u|| ||u|| - b ||B_{\varepsilon}u||^{2},$$

where $F(B_{\varepsilon}u) = ||B_{\varepsilon}u||^{2-p} |B_{\varepsilon}u||^{p-2} B_{\varepsilon}u$, $\varepsilon > 0$.

If b < 1 then A+B with $D(A+B)=D(A) \cap D(B)$ is also m-accretive. If b=1 then A+B is essentially m-accretive on D(A+B).

PROOF. It suffices to show that (1.1) holds for all $u \in D(A)$ (see [11], Theorem 4.2). Let $u \in D(A)$. Then there is a sequence $\{u_n\}$ in D such that

N. Okazawa

 $u_n \to u$ and $Au_n \to Au \ (n \to \infty)$. $B_{\varepsilon}u_n \to B_{\varepsilon}u \ (n \to \infty)$ is a consequence of the boundedness of B_{ε} . Therefore, $F(B_{\varepsilon}u_n) \to F(B_{\varepsilon}u) \ (n \to \infty)$ follows from the continuity of the "duality map" F (see Kato [5], Lemma 1.2). Q.E.D.

REMARK 1.5. It is easy to see that $F(B_{\varepsilon}u_n)$ tends to $F(B_{\varepsilon}u)$ weakly. Let $\{F(B_{\varepsilon}u_{n_k})\}$ be any weakly convergent subsequence of $\{F(B_{\varepsilon}u_n)\}$. Then $\|f\| \leq \liminf_{k\to\infty} \|F(B_{\varepsilon}u_{n_k})\| = \|B_{\varepsilon}u\|$ where $f = \underset{k\to\infty}{\min} F(B_{\varepsilon}u_{n_k})$. On the other hand, we have $(B_{\varepsilon}u_n, F(B_{\varepsilon}u_n)) = \|B_{\varepsilon}u_n\|^2$ and hence $(B_{\varepsilon}u, f) = \|B_{\varepsilon}u\|^2$. So, we obtain $f = F(B_{\varepsilon}u)$.

§2. The *m*-accretivity of $-\Delta + V(x)$.

Let V(x) > 0 be a function in $L^p_{loc}(\mathbb{R}^m \setminus \{0\})$ and set

$$V_{\varepsilon}(x) = V(x) [1 + \varepsilon V(x)]^{-1}, \quad \varepsilon > 0.$$

We denote by $B=B_p$ the maximal multiplication operator by V(x):

$$Bu(x) = B_p u(x) = V(x)u(x)$$

for $u \in D(B) = \{u, V(x)u \in L^p\}$. Then B_p is *m*-accretive in L^p and the Yosida approximation of B_p is given by

$$B_{\varepsilon}u(x) = B_{p,\varepsilon}u(x) = V_{\varepsilon}(x)u(x)$$
.

Let $A = A_p$ be the minus Laplacian in L^p :

$$Au(x) = A_p u(x) = -\Delta u(x)$$
 for $u \in D(A) = W^{2, p}(\mathbb{R}^m)$,

where $W^{2, p}(\mathbb{R}^{m})$ is the usual Sobolev space. Then A_{p} is also *m*-accretive in L^{p} (cf. Tanabe [17], Chapter 3, § 3.1).

We consider the *m*-accretivity of $A+B=A_p+B_p=-\Delta+V(x)$ with D(A+B)= $W^{2, p}(\mathbb{R}^m) \cap D(B)$ in $L^p=L^p(\mathbb{R}^m)$.

THEOREM 2.1. Let A and B be as above. Assume that $V_{\epsilon}(x)$ is a function of class $C^{1}(\mathbb{R}^{m})$ and there are nonnegative constants c, a and b $(b \leq 4(p-1)^{-1})$ such that on \mathbb{R}^{m}

(2.1)
$$|\operatorname{grad} V_{\varepsilon}(x)|^{2} \leq c V_{\varepsilon}(x) + a [V_{\varepsilon}(x)]^{2} + b [V_{\varepsilon}(x)]^{3}, \quad \varepsilon > 0.$$

In the case of 1 assume further that <math>c=0.

If $b < 4(p-1)^{-1}$ then $A+B=-\Delta+V(x)$ is m-accretive in L^p . If $b=4(p-1)^{-1}$ then A+B is essentially m-accretive on D(A+B).

PROOF. In order to apply Lemma 1.4, we shall show that for all $u \in C_0^{\infty}(\mathbb{R}^m)$,

(2.2)
$$4\operatorname{Re}(Au, F(B_{\varepsilon}u)) \ge -(p-1)(c ||u||^2 + a ||B_{\varepsilon}u|| ||u|| + b ||B_{\varepsilon}u||^2).$$

Since $|B_{\varepsilon}u(x)|^{p-2}B_{\varepsilon}u(x)=[V_{\varepsilon}(x)]^{p-1}|u(x)|^{p-2}u(x)$, we have

Schrödinger operators

$$(Au, |B_{\varepsilon}u|^{p-2}B_{\varepsilon}u) = -\int_{\mathbf{R}^m} a(x)|u(x)|^{p-2}\overline{u(x)}\Delta u(x)dx,$$

where we set $a(x) = [V_{\varepsilon}(x)]^{p-1}$. Let $p \ge 2$. Then it follows from the same calculation as in § 5.1 of [10] that

$$\operatorname{Re}(Au, |B_{\varepsilon}u|^{p-2}B_{\varepsilon}u) \geq \frac{1}{p} \sum_{j=1}^{m} \int_{\mathbb{R}^{m}} \frac{\partial a}{\partial x_{j}} \frac{\partial}{\partial x_{j}} |u(x)|^{p} dx$$
$$+ (p-1) \int_{\mathbb{R}^{m}} a(x) |u(x)|^{p-4} \sum_{j=1}^{m} \left[\operatorname{Re} \frac{\partial u}{\partial x_{j}} \overline{u(x)} \right]^{2} dx.$$

The first term on the right-hand side is larger than

$$-(p-1)\int_{\mathbb{R}^m} a(x) |u(x)|^{p-4} \sum_{j=1}^m \left[\operatorname{Re} \frac{\partial u}{\partial x_j} \overline{u(x)} \right]^2 dx$$
$$-4^{-1}(p-1)^{-1} \int_{\mathbb{R}^m} [a(x)]^{-1} |\operatorname{grad} a(x)|^2 |u(x)|^p dx \,.$$

Therefore, we obtain

$$\operatorname{Re}(Au, F(B_{\varepsilon}u)) \geq -\frac{\|B_{\varepsilon}u\|^{2-p}}{4(p-1)} \int_{\mathbb{R}^m} |\operatorname{grad} a(x)|^2 \frac{|u(x)|^p}{a(x)} dx.$$

This inequality holds even if $1 . In fact, we can show that for any <math>\delta > 0$.

$$-\operatorname{Re} \int_{\mathbf{R}^{m}} a(x) [|u(x)|^{2} + \delta]^{(p-2)/2} \overline{u(x)} \Delta u(x) dx$$
$$\geq -4^{-1} (p-1)^{-1} \int_{\mathcal{U}} [a(x)]^{-1} |\operatorname{grad} a(x)|^{2} [|u(x)|^{2} + \delta]^{p/2} dx$$

where U is a sufficiently large ball containing the support of u. By a simple calculation we see from (2.1) that

$$(p-1)^{-2}[a(x)]^{-1}|\operatorname{grad} a(x)|^{2} \leq c[V_{\varepsilon}(x)]^{p-2} + a[V_{\varepsilon}(x)]^{p-1} + b[V_{\varepsilon}(x)]^{p}.$$

Using the Hölder inequality we obtain (2.2) for all $u \in C_0^{\infty}(\mathbb{R}^m)$. Noting that $C_0^{\infty}(\mathbb{R}^m)$ is a core of A, the conclusion follows from Lemma 1.4. Q.E.D.

Let W(x) > 0 be another function in $L^p_{loc}(\mathbb{R}^m \setminus \{0\})$. We denote by C the maximal multiplication operator by W(x). As for the *m*-accretivity of A+B+C with

$$D(A+B+C)=W^{2, p}(\mathbf{R}^m)\cap D(B)\cap D(C)$$
,

we have

COROLLARY 2.2. Let A, B and C be as above. Assume that both $V_{\varepsilon}(x)$ and $W_{\varepsilon}(x)$ are functions of class $C^{1}(\mathbb{R}^{m})$ satisfying (2.1) with $b < 4(p-1)^{-1}$. Then $A+B+C=-\Delta+V(x)+W(x)$ is m-accretive in L^{p} .

In fact, we have (2.2) with A and B replaced by A+B and C, respectively. Next, let V(x)>0 be a continuous function on $\mathbb{R}^m \setminus \{0\}$; namely, $V(x) \in$ $L_{\text{loc}}^{p}(\mathbf{R}^{m} \setminus \{0\})$ for every p (1<p< ∞). Set

$$(2.3) b_0(p) = \min \{4(p-1), 4(p-1)^{-1}\} (1$$

Then we have

COROLLARY 2.3. Let A_p and B_p be as in Theorem 2.1. If $b < b_0(p)$ in (2.1) then

(2.4)
$$A_p + B_p = (A_q + B_q)^* \quad (p^{-1} + q^{-1} = 1).$$

PROOF. Noting that $p-1=(q-1)^{-1}$, we see from Theorem 2.1 (with c=0 except the case of p=2) that A_p+B_p and A_q+B_q are *m*-accretive in L^p and L^q , respectively. For $u \in W^{2, p}(\mathbb{R}^m)$ and $v \in W^{2, q}(\mathbb{R}^m)$ we have

$$((A_p + B_{p,\varepsilon})u, v) = (u, (A_q + B_{q,\varepsilon})v).$$

Going to the limit $\varepsilon \rightarrow +0$, we obtain

$$((A_p + B_p)u, v) = (u, (A_q + B_q)v)$$

for all $u \in D(A_p + B_p)$ and $v \in D(A_q + B_q)$. The rest part is the same as in the proof of Corollary 1.2. Q.E.D.

REMARK 2.4. The maximum of $b_0(p)$ is attained at p=2 (the selfadjoint case).

THEOREM 2.5. Let A and B be as in Theorem 2.1. Assume instead of (2.1) that $V(x) \ge 0$ is of class $C^1(\mathbb{R}^m)$ and

(2.5)
$$|\operatorname{grad} V(x)|^2 \leq a [V(x) + c_1]^2 + b [V(x) + c_2]^3$$
 on \mathbb{R}^m ,

where c_1 , c_2 , a and b $(b \leq 4(p-1)^{-1})$ are nonnegative constants. Then the conclusion of Theorem 2.1 holds. If in particular $b < 4(p-1)^{-1}$ then $C_0^{\infty}(\mathbf{R}^m)$ is a core of A+B.

PROOF. It suffices to show that A+(B+1) (or its closure) is *m*-accretive. So, we may assume that $V(x) \ge 1$. In fact, V(x) in (2.5) can be replaced by V(x)+1. Noting this, we obtain (2.1) with c=0:

$$|\operatorname{grad} V_{\varepsilon}(x)|^{2} = |\operatorname{grad} V(x)|^{2} [1 + \varepsilon V(x)]^{-4}$$

$$\leq b [V_{\varepsilon}(x)]^{3} + [a(c_{1}+1)^{2} + b(c_{2}+1)^{3}] [V_{\varepsilon}(x)]^{2}.$$

It remains to show that $[(A+B)|C_0^{\infty}(\mathbb{R}^m)]^{\sim}=A+B$. But, since $V(x)\geq 0$ is a function in $L_{loc}^{p}(\mathbb{R}^m)$, this follows from Theorem 1.1. Q.E.D.

EXAMPLE 2.6. (i) Let $V(x) = \exp(|x|^k)$, $k \ge 1$. Then for any $\delta > 0$ we have

$$|\operatorname{grad} V(x)|^2 = k^2 |x|^{2(k-1)} [V(x)]^2$$

 $\leq k\delta^{-(k-1)} [V(x)]^2 + 2k(k-1)\delta [V(x)]^3.$

(ii) Let $W(x) = |x|^{-l}$ (l > 2). Then $W_{\varepsilon}(x) = (|x|^{l} + \varepsilon)^{-1}$ and for any $\delta > 0$ we have

$$|\operatorname{grad} W_{\varepsilon}(x)|^{2} \leq l^{2} |x|^{l-2} [W_{\varepsilon}(x)]^{3}$$

$$\leq l(l-2)\delta^{-2/(l-2)} [W_{\varepsilon}(x)]^{2} + 2l\delta [W_{\varepsilon}(x)]^{3}.$$

Thus, we see from Corollary 2.2 that $-\Delta + c_1 \exp(|x|^k) + c_2 |x|^{-l}$ is *m*-accretive in L^p $(k \ge 1, l > 2)$, where $c_1, c_2 \ge 0$ are constants.

EXAMPLE 2.7. Let $V(x) = \beta |x|^{-2}$, where $\beta \ge p-1$ is a constant. Then $|\operatorname{grad} V_{\varepsilon}(x)|^2 \le 4\beta^{-1} [V_{\varepsilon}(x)]^3$ (cf. [11], Example 6.6). So, we have

$$\operatorname{Re}(Au, F(B_{\varepsilon}u)) \geq -(p-1)\beta^{-1} \|B_{\varepsilon}u\|^{2} \quad \text{for} \quad u \in W^{2, p}(\mathbb{R}^{m}).$$

Therefore, $A+B=-\Delta+\beta |x|^{-2}$ $(\beta>p-1)$ is *m*-accretive in L^p and $-\Delta+(p-1)|x|^{-2}$ is essentially *m*-accretive on D(A+B).

REMARK 2.8. Let A and B be as in Theorem 2.1 or 2.5. Then it follows from (2.2) that for all $u \in D(A)$,

$$||B_{\varepsilon}u|| \leq (1-b_1)^{-1} ||(A+B_{\varepsilon})u|| + K ||u||$$
,

where $K = a_1(1-b_1)^{-1} + [c_1(1-b_1)^{-1}]^{1/2}$ and we have set $b_1 = (p-1)b/4 < 1$ and so on (see [11], Lemma 1.1). Going to the limit $\epsilon \to +0$, we have

$$||Bu|| \leq (1-b_1)^{-1} ||(A+B)u|| + K ||u||, \quad u \in D(A+B),$$

and hence

(2.6)
$$||Au|| \leq [(1-b_1)^{-1}+1]||(A+B)u||+K||u||, \quad u \in D(A+B).$$

These inequalities represent the separation property of A+B (see e.g. Evans-Zettl [2], Everitt-Giertz [3]).

§3. The invariant sets for the resolvents.

Let N be the set of all positive integers. In this section we shall use the multi-index notation:

$$lpha=(lpha_1, \, lpha_2, \, \cdots, \, lpha_m) \quad ext{ with } |lpha|=\sum_{j=1}^m lpha_j, \quad lpha_j\in N\cup\{0\};$$

 $D^{\alpha}u$ denotes a mixed partial derivative of u:

$$D^{\alpha}u = D_1^{\alpha_1}D_2^{\alpha_2}\cdots D_m^{\alpha_m}u, \qquad D_j^{\alpha_j}u = \partial^{\alpha_j}u/\partial x_j^{\alpha_j} \ (1 \leq j \leq m).$$

Let $W^{k, p}(\mathbb{R}^{m})$ be the usual Sobolev space. Let A_{p} and B_{p} be as in Theorem 2.1:

$$A_p + B_p = -\Delta + V(x) \quad \text{with} \quad D(A_p + B_p) = W^{2, p}(\mathbf{R}^m) \cap D(B_p)$$

Then, under some additional assumption, it is expected that $W^{k, p}(\mathbf{R}^{m})$ is mapped

into $W^{k+2, p}(\mathbf{R}^{m})$ by $(A_{p}+B_{p}+\xi)^{-1}, \xi > 0$. More precisely, we have

PROPOSITION 3.1. Let $k \in N$ and $V(x) \ge 0$ be a function of class $C^{k}(\mathbb{R}^{m})$. Assume that there exist constants $c_{1}, c_{2} \ge 0$ such that for all α with $|\alpha| \le k$,

 $(3.1) |D^{\alpha}V(x)| \leq c_1 + c_2 V(x) on \mathbf{R}^m.$

Set $u = (A_p + B_p + \hat{\xi})^{-1}v$ for $v \in W^{k, p}(\mathbb{R}^m)$ and $\xi > 0$. Then we have

(3.2)
$$u \in W^{k+2, p}(\mathbf{R}^m), \qquad D^{\alpha}u \in D(B_p) \ (|\alpha| \leq k).$$

PROOF. It follows from (3.1) with $|\alpha|=1$ that (2.5) with b=0 is satisfied. So, we see from Theorem 2.5 and Corollary 2.3 that A_p+B_p is *m*-accretive in L^p for all p (1 and (2.4) holds.

Now we show that the assertion is true for k=1. To this end, it suffices to show that $\partial u/\partial x_j \in D(A_p+B_p)$ $(1 \le j \le m)$ if $v \in W^{1, p}(\mathbb{R}^m)$. Since $u \in D(B_p)$, it follows from (3.1) with $|\alpha|=1$ that $(\partial V/\partial x_j)u \in L^p$. Consequently, we have

$$\left(\frac{\partial u}{\partial x_j}, -\Delta\phi + V(x)\phi + \xi\phi\right) = \left(\frac{\partial v}{\partial x_j} - \frac{\partial V}{\partial x_j}u, \phi\right), \quad \phi \in C_0^{\infty}(\mathbf{R}^m)$$

Noting that $C_0^{\infty}(\mathbb{R}^m)$ is a core of A_q+B_q $(p^{-1}+q^{-1}=1)$, we see that for all $\phi \in D(A_q+B_q)$,

$$\left(\frac{\partial u}{\partial x_j}, (A_q+B_q+\xi)\phi\right) = \left(\frac{\partial v}{\partial x_j} - \frac{\partial V}{\partial x_j}u, \phi\right).$$

This implies that $\partial u/\partial x_j \in D(A_p + B_p)$ (see (2.4)).

Next, suppose that the assertion is true for all α with $|\alpha| \leq k-1$. It then follows that

$$u \in W^{k+1, p}(\mathbf{R}^{m})$$
, $D^{\beta}u \in D(B_{p}) \ (|\beta| \le k-1)$

because $v \in W^{k-1, p}(\mathbb{R}^m)$. Let $|\alpha| = k$. Then we have

$$(D^{\alpha}u, V(x)\phi) = (-1)^{|\alpha|}(V(x)u, D^{\alpha}\phi) - (w, \phi), \qquad \phi \in C^{\infty}_{0}(\mathbb{R}^{m}),$$

where $w(x) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\alpha - \beta} V(x) \cdot D^{\beta} u(x)$. By virtue of (3.1) we see that $D^{\alpha - \beta} V(x) \cdot D^{\beta} u \in L^{p}$ and hence so is w, too. So, we obtain

$$(D^{\alpha}u, -\Delta\phi + V(x)\phi + \xi\phi) = (D^{\alpha}v - w, \phi), \qquad \phi \in C^{\infty}_{0}(\mathbb{R}^{m}).$$

In the same way as in the case of k=1 we can conclude that $D^{\alpha}u \in D(A_p+B_p)$ for $|\alpha|=k$. Q.E.D.

It follows from (3.2) that for $u = (A_p + B_p + \xi)^{-1}v$,

(3.3)
$$D^{\alpha}[V(x)u] = \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\alpha-\beta}V(x) \cdot D^{\beta}u \qquad (|\alpha| \leq k).$$

Let $b_0(p)$ be the function which was used in Corollary 2.3. Writing

 $x^{\alpha} = x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{m}^{\alpha_{m}}$ for a multi-index α , we have

PROPOSITION 3.2. Let $V(x) \ge 0$ be a function of class $C^1(\mathbb{R}^m)$ satisfying (2.5) with $b < b_0(p)$. Assume that there is a constant M > 0 such that

(3.4)
$$V(x) \ge M|x|$$
 for sufficiently large x.

If $v \in L^p$ and $x^{\alpha}v(x) \in L^p$ then we have

$$x^{\alpha}(A_{p}+B_{p}+\xi)^{-1}v(x) \in D(A_{p}+B_{p}) \quad for \quad \xi > 0.$$

PROOF. By assumption we see from Theorem 2.5 and Corollary 2.3 that $A_p+B_p=(A_q+B_q)^*$ is *m*-accretive for all *p* and *q*, $p^{-1}+q^{-1}=1$ (1 .

Set $u = (A_p + B_p + \xi)^{-1}v$. Then we have formally

(3.5)
$$(x^{\alpha}u, \Delta\phi) = (\Delta u, x^{\alpha}\phi) - (u, \phi\Delta x^{\alpha}) \\ -2\sum_{j=1}^{m} \left(u, \frac{\partial x^{\alpha}}{\partial x_{j}} \frac{\partial \phi}{\partial x_{j}} \right), \qquad \phi \in C_{0}^{\infty}(\mathbf{R}^{m}).$$

Now let $|\alpha|=1$, i.e., $x^{\alpha}=x_i$ for some *i*. Then we see from (3.4) that $u \in D(B_p)$ implies $x_i u(x) \in L^p$ $(1 \le i \le m)$ and hence (3.5) makes sense for $|\alpha|=1$. So, we obtain

$$(x_i u, -\Delta \phi + V(x)\phi + \xi \phi) = (x_i v, \phi) - 2\left(\frac{\partial u}{\partial x_i}, \phi\right).$$

In the same way as in the proof of Proposition 3.1 we can conclude that $x_i u(x) \in D(A_p+B_p)$ $(1 \le i \le m)$.

Next, suppose that the assertion is true for all α with $|\alpha| \leq k-1$. Since $v \in L^p$ and $x^{\alpha}v(x) \in L^p$ ($|\alpha| = k$), it follows that $x^{\beta}v(x) \in L^p$ and hence $x^{\beta}u(x) \in D(A_p+B_p)$ for all β with $|\beta| \leq k-1$. Consequently, $(\partial x^{\alpha}/\partial x_j)u(x)$ and $u(x)\Delta x^{\alpha}$ belong to $W^{2, p}(\mathbb{R}^m)$ for $|\alpha| = k$. Furthermore, by virtue of (3.4) we see that $x^{\beta}u(x) \in D(B_p)$ ($|\beta| \leq k-1$) implies $x^{\alpha}u(x) \in L^p$ ($|\alpha| = k$). Therefore, (3.5) makes sense for $|\alpha| = k$ and we obtain $x^{\alpha}u(x) \in D(A_p+B_p)$. Q. E. D.

EXAMPLE 3.3. Let m=1 and $V(x)=\cosh x$ on R. Then $|V^{(n)}(x)| \leq V(x)$ $(n \in \mathbb{N})$ and $V(x) \geq \sqrt{2} |x|$ on R.

REMARK 3.4. Let $V(x) = |x|^2$. Then $|\operatorname{grad} V(x)|^2 \leq 4[V(x)+1]^2$. Set $u = (A_p + B_p + \xi)^{-1}v$ for $v \in D(B_p)$ and $\xi > 0$. Then Proposition 3.2 implies that $B_p u \in D(A_p + B_p)$.

Propositions 3.1 and 3.2 are unified as follows.

PROPOSITION 3.5. Let $k \in \mathbb{N}$ and $V(x) \ge 0$ be a function of class $C^{k}(\mathbb{R}^{m})$ satisfying (3.1) and (3.4). Assume that

$$x^{\alpha}D^{\beta}v(x) \in L^{p}$$
 for all α, β with $|\alpha+\beta| \leq k$.

Setting $u = (A_p + B_p + \xi)^{-1}v$, we have

 $x^{\alpha}D^{\beta}u(x) \in D(A_p + B_p)$ for all α, β with $|\alpha + \beta| \leq k$.

PROOF. (3.1) implies that A_p+B_p is *m*-accretive in L^p for all p (1 .If <math>k=1 then the assertion is reduced to the preceding Propositions.

Suppose that the assertion is true for k-1:

(3.6)
$$x^{\alpha}D^{\gamma}u(x) \in D(A_p + B_p)$$
 for all α, γ with $|\alpha + \gamma| \leq k - 1$.

Since $v \in W^{k, p}(\mathbb{R}^{m})$ and $x^{\alpha}v(x) \in L^{p}$ $(|\alpha| = k)$, it follows from Propositions 3.1 and 3.2 that $D^{\beta}u \in D(A_{p}+B_{p})$ $(|\beta| \leq k)$ and $x^{\alpha}u(x) \in D(A_{p}+B_{p})$ $(|\alpha|=k)$, respectively. Furthermore, in view of (3.3) we have

(3.7)
$$[-\Delta + V(x) + \xi] D^{\beta} u(x) = D^{\beta} v(x) - \sum_{\gamma < \beta} {\beta \choose \gamma} D^{\beta - \gamma} V(x) \cdot D^{\gamma} u(x) .$$

Here, we see from (3.1) and (3.6) that

$$D^{\beta-\gamma}V(x)\cdot [x^{\alpha}D^{\gamma}u(x)] \in L^p$$
 $(|\alpha+\gamma| \leq k-1).$

Denoting by w(x) the right-hand side of (3.7), we have $w \in L^p$ and $x^{\alpha}w(x) \in L^p$. Applying Proposition 3.2 to the equation $[-\Delta + V(x) + \xi]D^{\beta}u = w$, we obtain

$$x^{\alpha}D^{\beta}u(x) \in D(A_p+B_p)$$
 $(|\alpha+\beta| \le k, |\alpha| \ge 1, |\beta| \ge 1).$
Q.E.D.

Let $S(\mathbf{R}^m)$ be the Schwartz space of all rapidly decreasing functions on \mathbf{R}^m :

$$S(\mathbf{R}^m) = \{f \in C^{\infty}(\mathbf{R}^m) ; \sup[\langle x \rangle^k | D^{\alpha} f(x) |] < \infty \text{ for all } k, \alpha \},$$

where $\langle x \rangle = (1 + |x|^2)^{1/2}, k \in \mathbb{N} \cup \{0\}.$

Setting $D((A_p+B_p)^{\infty}) = \bigcap_{n=1}^{\infty} D((A_p+B_p)^n)$, we have

THEOREM 3.6. Let $V(x) \ge 0$ be a function of class $C^{\infty}(\mathbb{R}^m)$ satisfying (3.4). Assume that (3.1) is satisfied for all α (so that $A_p + B_p = -\Delta + V(x)$ is m-accretive in L^p). Let $n \in \mathbb{N}$. Then $u \in D((A_p + B_p)^n)$ implies that

(3.8)
$$x^{\alpha}D^{\beta}u(x) \in L^{p}$$
 for all α, β with $|\alpha+\beta| \leq n$.

In particular, $D((A_p+B_p)^{\infty}) \subset S(\mathbb{R}^m)$.

The proof will be given after

COROLLARY 3.7. Let V(x) be a function as in Theorem 3.6. Then $D((A_p+B_p)^{\infty}) = S(\mathbf{R}^m)$ if and only if $V(x)f(x) \in S(\mathbf{R}^m)$ for every $f \in S(\mathbf{R}^m)$. In this case

$$(A_p + B_p + \zeta)^{-1} S(\mathbf{R}^m) = S(\mathbf{R}^m), \quad \text{Re}\zeta > 0.$$

PROOF OF THEOREM 3.6. (3.8) for n=1 is obvious. Suppose that (3.8) is true. Let $u \in D((A_p+B_p)^{n+1})$. Then, since $(A_p+B_p+1)u=v \in D((A_p+B_p)^n)$, we have (3.8) with u replaced by v. Therefore, it follows from Proposition 3.5 that

 $x^{\alpha}D^{\beta}u(x) \in D(A_p + B_p)$ for all α , β with $|\alpha + \beta| \leq n$.

Thus, we can obtain (3.8) with *n* replaced by n+1.

Next, let $u \in D((A_p + B_p)^{\infty})$. Then we see that (3.8) is true for all $n \in N$ and hence

 $x^{\alpha}D^{\beta}u(x) \in W^{k, p}(\mathbb{R}^{m})$ for all α, β , and $k \in \mathbb{N}$.

Therefore, it follows from the Sobolev imbedding theorem (see e.g. Adams [1]) that $u \in C^{\infty}(\mathbb{R}^m)$ and

$$\sup\{|x^{\alpha}D^{\beta}u(x)|; x \in \mathbb{R}^{m}\} < \infty \quad \text{for all} \quad \alpha, \beta.$$

Thus, we obtain the desired inclusion.

REMARK 3.8. Corollary 3.7 does not apply to $V(x) = \cosh x$ (see Example 3.3). In fact, $2(e^x + e^{-x})^{-1} \in S(\mathbf{R})$.

§4. The compactness of the resolvents.

Let $V(x) \ge 0$ be a function of class $C^{1}(\mathbb{R}^{m})$ satisfying (2.5) with $b < 4(p-1)^{-1}$:

$$\operatorname{grad} V(x)|^{2} \leq b[V(x)+c]^{3}$$
 on \mathbb{R}^{m} .

Then $A+B=-\Delta+V(x)$ with $D(A+B)=W^{2, p}(\mathbb{R}^m)\cap D(B)$ is *m*-accretive in $L^p=L^p(\mathbb{R}^m)$ (see Theorem 2.5). Consequently, $A+B+\zeta$ is invertible for every ζ with $\operatorname{Re}\zeta>0$ and $(A+B+\zeta)^{-1}$ is a bounded linear operator on L^p

THEOREM 4.1. Let $A+B=-\Delta+V(x)$ be the linear m-accretive operator obtained in Theorem 2.5. Assume further that

$$V(x) \to \infty$$
 $(|x| \to \infty)$.

Then the resolvent $(A+B+\zeta)^{-1}$ is compact for $\operatorname{Re} \zeta > 0$ and hence A+B has discrete spectrum consisting entirely of eigenvalues with finite multiplicities.

PROOF. It suffices by the resolvent equation to show that $(A+B+1)^{-1}$ is compact. Set

$$U = \{v \in L^p; \|v\| \leq 1\}.$$

We shall show that $(A+B+1)^{-1}U$ is relatively compact in L^p . Let $v \in U$ and set $u = (A+B+1)^{-1}v$. Then $u \in W^{2, p}(\mathbb{R}^m)$ and $||u|| \leq ||v|| \leq 1$. Moreover, it follows from an estimate for the Laplacian that

$$\|u\|_{1,p} \leq c_0 (\|Au\| + \|u\|)$$
,

where $||u||_{1,p}$ is the norm of $W^{1,p}(\mathbb{R}^m)$ (see Schechter [14], Theorem 3.1 of Chapter 3, Lemma 2.1 of Chapter 11). So, we see from (2.6) that

$$||u||_{1,p} \leq c_1 ||(A+B)u|| + (c_2 + c_0) ||u|| \leq c_0 + 2c_1 + c_2.$$

Q. E. D.

Thus, $(A+B+1)^{-1}U$ is bounded in $W^{1, p}(\mathbb{R}^m)$. It follows from the Rellich compactness theorem (see Adams [1]) that for any R>0, $(A+B+1)^{-1}U$ is relatively compact in $L^p(\Omega_R)$, where

$$Q_R = \{x \in \mathbb{R}^m ; |x| \leq R\}.$$

Now let $\{v_n\}$ be an arbitrary sequence in U and set $u_n = (A+B+1)^{-1}v_n$. Then by a diagonal method, we can find a subsequence of $\{u_n\}$ which converges in $L^p(\Omega_R)$ for any R > 0. We denote this subsequence again by $\{u_n\}$. By the way, we note that

$$\int_{\mathbb{R}^m} V(x) |u_n(x)|^p dx \leq \operatorname{Re}((A+B)u_n, |u_n|^{p-2}u_n)$$

$$\leq ||(A+B)u_n|| ||u_n||^{p-1} \leq 2.$$

By assumption, for any $\varepsilon > 0$ there is $R = R(\varepsilon) > 0$ such that

 $V(x) \geq 2(2^p+1)\varepsilon^{-1}$ for $|x| \geq R$.

So, we have

$$\int_{|x|\geq R} |u_n(x)|^p dx \leq (2^p+1)^{-1} \frac{\varepsilon}{2} \int_{|x|\geq R} V(x) |u_n(x)|^p dx$$

<(2^p+1)⁻¹\varepsilon.

Since $\{u_n\}$ is a Cauchy sequence in $L^p(\Omega_R)$, there is a positive integer $n_0 = n_0(\varepsilon)$ such that for $n, m \ge n_0$,

$$\int_{|x|\leq R} |u_n(x) - u_m(x)|^p dx < (2^p + 1)^{-1} \varepsilon.$$

Therefore, we obtain for $n, m \ge n_0$,

$$\begin{aligned} \|u_{n}-u_{m}\|^{p} &= \left(\int_{|x|\leq R} + \int_{|x|\geq R}\right) |u_{n}(x)-u_{m}(x)|^{p} dx \\ &< (2^{p}+1)^{-1}\varepsilon + 2^{p-1} \int_{|x|\geq R} (|u_{n}(x)|^{p} + |u_{m}(x)|^{p}) dx \\ &< [(2^{p}+1)^{-1} + 2^{p}(2^{p}+1)^{-1}]\varepsilon = \varepsilon ,\end{aligned}$$

i.e., $\{u_n\}$ is a Cauchy sequence in L^p .

Q. E. D.

In the case of p=2 the assertion of Theorem 4.1 holds under the simplest assumption on V(x) (see Reed-Simon [13], Theorem XIII.67).

In view of Theorem 3.6 we obtain

COROLLARY 4.2. Let $V(x) \ge 0$ be a function of class $C^{\infty}(\mathbb{R}^m)$ satisfying (3.4):

$$V(x) \ge M|x|$$
 for sufficiently large x.

Assume that (3.1) is satisfied for all α :

 $|D^{\alpha}V(x)| \leq c_1 + c_2 V(x)$ on \mathbb{R}^m .

Then the eigenfunctions of $A_p+B_p=-\Delta+V(x)$ belong to $S(\mathbb{R}^m)$ and hence the spectrum of A_p+B_p is independent of p.

The following example is well known.

EXAMPLE 4.3. Let m=1 and $V(x)=x^2$ on **R**. Then

$$(A_p + B_p)u(x) = -u''(x) + x^2u(x)$$
.

The eigenvalues of $A_p + B_p$ and the associated eigenfunctions are given by

$$\lambda_n = 2n+1$$
, $\psi_n(x) = e^{-x^2/2} H_n(x)$ (n=0, 1, 2, ...),

where $H_n(x)$ is the Hermite polynomial.

References

- [1] R. A. Adams, Sobolev spaces, Pure and Applied Math., 65, Academic Press, New York, 1975.
- [2] W. D. Evans and A. Zettl, Dirichlet and separation results for Schrödinger-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 151-162.
- [3] W. N. Everitt and M. Giertz, Inequalities and separation for Schrödinger type operators in $L_2(\mathbb{R}^n)$, Proc. Roy. Soc. Edinburgh Sect. A, 79 (1977), 257-265.
- [4] W. G. Faris, Selfadjoint operators, Lecture Notes in Math., 433, Springer-Verlag, 1975.
- [5] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.
- [6] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148.
- [7] T. Kato, Remarks on the selfadjointness and related problems for differential operators, Spectral theory of differential operators, Math. Studies, 55, North-Holland, Amsterdam and New York, 1981, 253-266.
- [8] S. T. Kuroda, Spectral theory II, Iwanami-Shoten, Tokyo, 1979 (in Japanese).
- [9] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679-698.
- [10] N. Okazawa, Singular perturbations of *m*-accretive operators, J. Math. Soc. Japan, 32 (1980), 19-44.
- [11] N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan, 34 (1982), 677-701.
- [12] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. II, Fourier analysis, selfadjointness, Academic Press, New York, 1975.
- [13] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV, Analysis of operators, Academic Press, New York, 1978.
- [14] M. Schechter, Spectra of partial differential operators, Applied Math. and Mechanics, 14, North-Holland, Amsterdam, 1971.
- [15] Yu. A. Semenov, Schrödinger operators with L^p_{loc}-potentials, Comm. Math. Phys., 53 (1977), 277-284.
- [16] H. Sohr, Störungstheoretische Regularitätsuntersuchungen, Math. Z., 179 (1982), 179-192.
- [17] H. Tanabe, Equation of evolution, Monographs and Studies in Math., 6, Pitman,

London, 1979.

[18] K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, 123, Springer-Verlag, Berlin and New York, 1965; 5th ed., 1978.

Noboru OKAZAWA

Department of Mathematics Faculty of Science Science University of Tokyo Wakamiya-cho 26, Shinjuku-ku Tokyo 162, Japan

Added in proof. After this paper was accepted for publication, the writer noticed that an estimate in Example 2.7 is partially improved as follows. Let $A=-\Delta$ and $B=\beta |x|^{-2}$ ($\beta>0$). Then for all $u \in W^{2, p}(\mathbb{R}^m)$ we have

 $\operatorname{Re}(Au, F(B_{\varepsilon}u)) \ge -2(p-1)(2p-m)p^{-1}\beta^{-1} ||B_{\varepsilon}u||^{2}.$

This makes sense when p < 2m/3. If in particular p < m/2 then we see that $\beta^{-1}B = |x|^{-2}$ is relatively bounded with respect to $A = -\Delta$: for $u \in D(A) \subset D(B)$,

 $\beta^{-1} \|Bu\| \leq 2^{-1} p(p-1)^{-1} (m-2p)^{-1} \|Au\|$

(cf. [11], Theorem 6.8).