Capacities and Bergman kernels for Riemann surfaces and Fuchsian groups

Dedicated to Professor Yûsaku Komatu on his 70th birthday

By Christian POMMERENKE and Nobuyuki SUITA

(Received Oct. 31, 1983)

1. Riemann surfaces.

Let Ω be a Riemann surface with $\Omega \notin O_G$. Let $k_0(w, \omega)dwd\overline{\omega}$ denote the Bergman kernel of the Hilbert space of square integrable abelian differentials a(w)dw on Ω . It has the reproducing property

(1.1)
$$a(\omega) = \frac{1}{\pi} \iint_{\Omega} a(w) \, \overline{k_0(w, \, \omega)} \, du \, dv.$$

We use the notation of Ahlfors and Sario [1, p. 302] which differs from that of Sario and Oikawa [7, p. 104] by a factor π .

Let $c_{\beta}(\omega)|d\omega|$ denote the capacity metric of the ideal boundary of Ω [7, p. 55]. If $g(w, \omega)$ denotes the Green's function of Ω with pole at ω then

(1.2)
$$g(w, \omega) = -\log|w - \omega| - \log c_{\beta}(\omega) + o(1) \quad \text{as} \quad w \to \omega.$$

The second author [8] conjectured that

$$(1.3) k_0(\omega, \omega) \ge c_{\beta}(\omega)^2 \text{for } \omega \in \Omega$$

and proved this for the special case that Ω is a doubly connected plane domain. We shall prove a weaker inequality. Let $\lambda(\omega)|d\omega|$ denote the Poincaré metric of Ω which has constant curvature -4.

THEOREM 1. If $\Omega \notin O_G$ then, for $\omega \in \Omega$,

(1.4)
$$k_0(\omega, \omega) \ge c_{\beta}(\omega)^2 / \left(8\log \frac{\lambda(\omega)}{c_{\beta}(\omega)} + 6\log 2\right).$$

We shall reformulate this theorem for Fuchsian groups and then prove it in that form.

If Ω is a Riemann surface such that $c_{\beta}(\omega)/\lambda(\omega)$ is bounded below then (1.4) implies $k_0(\omega, \omega) \ge \text{const.} c_{\beta}(\omega)^2$. This assumption holds, in particular, if Ω is a plane domain with uniformly perfect boundary [5]. Examples are given by the complement of the Cantor set or the limit set of finitely generated Fuchsian groups.

It was proved in [8] (where $\Omega \notin O_G$ should have been assumed) that

(1.5)
$$k_0(\omega, \omega) = \frac{\partial^2}{\partial \omega \partial \overline{\omega}} \log c_{\beta}(\omega) \qquad (\omega \in \Omega).$$

Hence the conjecture (1.3) can be rewritten as

$$-\frac{4}{c_{\beta}(\boldsymbol{\omega})^{2}}\frac{\partial^{2}}{\partial\boldsymbol{\omega}\partial\overline{\boldsymbol{\omega}}}\log c_{\beta}(\boldsymbol{\omega}) \leq -4;$$

this would mean that the Riemannian metric $c_{\beta}(\omega)|d\omega|$ has curvature ≤ -4 We derive now (1.5) directly from Schiffer's identity [7, p. 105]

(1.6)
$$k_0(w, \omega) = -2 \frac{\partial^2}{\partial \omega \partial \overline{\omega}} g(w, \omega)$$

without using Fuchsian groups as in [8].

It is sufficient to prove (1.5) at the origin of a parametric disk. By (1.2), the symmetric function

(1.7)
$$h(w, \omega) = \begin{cases} g(w, \omega) + \log|w - \omega| & \text{for } w \neq \omega, \\ -\log c_{\beta}(\omega) & \text{for } w = \omega \end{cases}$$

is harmonic in each variable. The quadratic terms in the development around (0, 0) are of the form

$$(1.8) a(w^2+\omega^2)+\bar{a}(\bar{w}^2+\bar{\omega}^2)+bw\omega+\bar{b}\bar{w}\bar{\omega}+c(w\bar{\omega}+\bar{w}\omega).$$

Since $\partial^2 h/\partial w \partial \overline{\omega} = \partial^2 g/\partial w \partial \overline{\omega}$ by (1.7), we see from (1.6) and (1.8) that $k_0(0, 0) = -2c$. On the other hand, if we put $w = \omega$ in (1.8), we obtain that $-\partial^2 \log c_{\beta}(\omega)/\partial \omega \partial \overline{\omega}$ has also the value -2c for $\omega = 0$.

2. Fuchsian groups.

There is a Fuchsian group Γ without elliptic elements such that D/Γ is conformally equivalent to Ω . We can choose Γ such that $0 \in D$ corresponds to $\omega \in \Omega$. Since $\Omega \notin O_G$ the group Γ is of convergence type.

The space of square integrable abelian differentials corresponds to the Bers space $A_1^2(\Gamma)$ of Γ -automorphic forms of weight 1 with

(2.1)
$$||f||^2 = \frac{1}{\pi} \iint_{\mathbf{F}} |f(z)|^2 dx dy < \infty$$

where F denotes a fundamental domain of Γ with area $\partial F=0$. The Bergman kernel function of $A_1^2(\Gamma)$ specialized to the origin is

(2.2)
$$q(z) \equiv q(z, 0) = \sum_{r \in \Gamma} \gamma'(z) \qquad (z \in \mathbf{D});$$

see [2] [3, p. 602]. It has the reproducing property

(2.3)
$$q(0) = \langle f, q \rangle \equiv \frac{1}{\pi} \iint_{F} f(z) \overline{q(z)} dx dy \quad \text{for} \quad f \in A_{1}^{2}(\Gamma).$$

We also consider the Blaschke product

(2.4)
$$b(z) = \prod_{\gamma \in \Gamma, \gamma \neq i} \frac{|\gamma(0)|}{\gamma(0)} \gamma(z) \qquad (z \in \mathbf{D})$$

where ℓ denotes the identity. By Myrberg's theorem [9, p. 522], $g(w, \omega)$ corresponds to $-\log|b(z)|$. The conjecture (1.3) can now be expressed as

$$(2.5) q(0) \le b'(0)^2$$

which, by (2.2) and (2.4), is equivalent to

(2.6)
$$\sum_{\gamma \in \Gamma} \gamma'(0) \ge \prod_{\gamma \in \Gamma, \gamma \ne \iota} |\gamma(0)|^2.$$

This is perhaps the simplest form of the conjecture (1.3).

Theorem 1 is contained in the following result where we allow elliptic elements.

Theorem 2. If Γ is a Fuchsian group of convergence type, then

$$(2.7) q(0) \ge b'(0)^2 / \left(8\log \frac{1}{b'(0)} + 6\log 2\right)$$

or, equivalently,

$$(2.8) \qquad \qquad \sum_{\gamma \in \Gamma} \gamma'(0) \ge \prod_{\gamma \in \Gamma, \gamma \neq \iota} |\gamma(0)|^2 / \left(8 \sum_{\gamma \neq \iota} \log \frac{1}{|\gamma(0)|} + 6 \log 2\right).$$

Applying (2.8) to a conjugate group, we obtain, for $\zeta \in D$,

$$(2.9) \qquad \sum_{\gamma \in \Gamma} \frac{(1-|\zeta|^2)^2 \gamma'(\zeta)}{(1-\bar{\zeta}\gamma(\zeta))^2} \ge \prod_{\gamma \ne \iota} \left| \frac{\gamma(\zeta)-\zeta}{1-\bar{\zeta}\gamma(\zeta)} \right|^2 \bigg/ \left(8 \sum_{\gamma \ne \iota} \log \left| \frac{1-\bar{\zeta}\gamma(\zeta)}{\gamma(\zeta)-\zeta} \right| + 6\log 2\right)$$

as the conformally invariant form of (2.8).

3. Proof of Theorem 2.

The following lemma is a more precise form of a well-known result; see e.g. [6, p. 637].

LEMMA. If Γ is of convergence type, then

(3.1)
$$\sum_{\in \Gamma} (1 - |\gamma(z)|^2) \leq 4 \log \frac{1}{b'(0)} + 6 \log 2.$$

PROOF. Let $F = \{z \in \mathbf{D} : |z| < |\gamma(z)| \text{ for } z \in \Gamma, \ \gamma \neq \iota\}$ be the Ford fundamental domain of Γ and let $\{|z| < \rho\}$ be the largest disk in F around 0. If $\beta \in \Gamma \setminus \{\iota\}$ is chosen such that $|\beta(0)|$ is minimal then $|\beta(0)| < 2\rho$ and thus, by (2.4),

(3.2)
$$b'(0) \leq |\beta(0)| < 2\rho$$
.

It was proved in [4, p. 301] that

$$|b(z)| \ge \frac{1}{4}b'(0)\min(\rho, |z|) \quad \text{for } z \in F.$$

It follows that, if $z \in F$, $|z| \ge \rho$,

(3.4)
$$\sum_{\gamma \in \Gamma} (1 - |\gamma(z)|^2) \leq 2 \sum_{\gamma \in \Gamma} \log \frac{1}{|\gamma(z)|} = 2 \log \frac{1}{|b(z)|}$$

$$\leq 2 \log \frac{4}{\rho b'(0)} \leq 4 \log \frac{\sqrt{8}}{b'(0)}$$

because of (3.2). If $|z| \le \rho$ then we see from (3.3) that

$$\sum_{\gamma \in \Gamma} (1 - |\gamma(z)|^2) \leq 1 + 2 \sum_{\gamma \neq i} \log \frac{1}{|\gamma(z)|} = 1 + 2 \log \left| \frac{z}{b(z)} \right|$$

$$\leq 1 + 2 \log \frac{4}{b'(0)},$$

and this bound is smaller than that in (3.4). Hence (3.1) follows because the left-hand side is Γ -invariant.

PROOF OF THEOREM 2. Using an idea of Rao [6], we consider the Poincaré theta series

(3.5)
$$f(z) = \theta \left[\frac{b(z)}{z} \right] \equiv \sum_{z \in \Gamma} \frac{b(\gamma(z))}{\gamma(z)} \gamma'(z) \quad \text{for } z \in \mathbf{D}.$$

Since b is bounded, we have $f \in A_1^2(\Gamma)$ [2] [3, p. 596]. The reason for this choice is that f(0)=b'(0), by (2.4). Hence we obtain from (2.3) and (2.1) by Schwarz's inequality that

$$(3.6) b'(0)^2 = |f(0)|^2 \le ||f||^2 ||g||^2 = ||f||^2 g(0);$$

the identity $q(0) = ||q||^2$ follows from (2.3) and (2.1).

We write

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\frac{b(z)}{z} = \sum_{k=0}^{\infty} b_k z^k$ $(z \in \mathbf{D})$.

It follows from (3.5) by the scalar product formula [3, p. 596] that

$$||f||^2 = \langle f(z), \theta[z^{-1}b(z)] \rangle = \sum_{k=0}^{\infty} \frac{a_k \bar{b}_k}{k+1}.$$

Hence Schwarz's inequality shows that

$$||f||^4 \le \sum_{k=0}^{\infty} \frac{|a_k|^2}{(k+1)^2} \sum_{k=0}^{\infty} |b_k|^2 \le \sum_{k=0}^{\infty} \frac{|a_k|^2}{(k+1)^2}$$

because $|z^{-1}b(z)| \le 1$. It follows that

$$||f||^{4} \leq 2 \sum_{k=0}^{\infty} \frac{|a_{k}|^{2}}{(k+1)(k+2)}$$

$$= \frac{2}{\pi} \iint_{\mathbf{R}} |f(z)|^{2} (1-|z|^{2}) dx dy$$

as we see from Parseval's formula. Since D is the disjoint union of the sets $\gamma(F)$ ($\gamma \in \Gamma$) except for a set of zero area, we obtain that

$$\begin{split} \|f\|^4 &= \frac{2}{\pi} \sum_{\gamma \in \Gamma} \iint_F |f(z)|^2 (1 - |z|^2) dx dy \\ &= \frac{2}{\pi} \iint_F |f(z)|^2 \sum_{\gamma \in \Gamma} (1 - |\gamma(z)|^2) dx dy \;, \end{split}$$

where we have used that $f(\gamma(z))\gamma'(z) = f(z)$.

We apply now the lemma. It follows from (3.1) and (2.1) that

$$||f||^4 \le (8\log \frac{1}{b'(0)} + 6\log 2)||f||^2$$
.

Dividing through by $||f||^2$ we obtain (2.7) because $q(0) \ge b'(0)/||f||^2$ by (3.6).

References

- [1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, 1960.
- [2] T. A. Metzger and K. V. Rajeswara Rao, Approximation of Fuchsian groups and automorphic forms of dimension -2, Indiana Univ. Math. J., 21 (1972), 937-949.
- [3] Ch. Pommerenke, On the theta-operator for automorphic forms of weight 1, Indiana Univ. Math. J., 25 (1976), 595-607.
- [4] Ch. Pommerenke, On Fuchsian groups of divergence type, Michigan Math. J., 28 (1981), 297-310.
- [5] Ch. Pommerenke, On uniformly perfect sets and Fuchsian groups, Analysis, to appear.
- [6] K. V. Rajeswara Rao, Fuchsian groups of convergence type and Poincaré series of dimension -2, J. Math. Mech. (Indiana), 18 (1969), 629-644.
- [7] L. Sario and K. Oikawa, Capacity functions, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
- [8] N. Suita, Capacities and Kernels on Riemann surfaces, Arch. Rational Mech. Anal., 46 (1972), 212-217.
- [9] M. Tsuji, Potential theory in modern function theory, Maruzen Co., Tokyo, 1959.

Christian Pommerenke

Fachbereich Mathematik MA 8-2 Technische Universität Berlin 1 Berlin 12, Straße des 17. Juni 135 BRD Nobuyuki Suita

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo 152, Japan