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1. Riemann surfaces.

Let 2 be a Riemann surface with ¢ 0s. Let ky(w, w)dwd@a denote the
Bergman kernel of the Hilbert space of square integrable abelian differentials
a(w)dw on 2. It has the reproducing property

@ a(w):%SSQa(w)ko(w, w)dudy.

We use the notation of Ahlfors and Sario [1, p. 302] which differs from that of
Sario and Oikawa [7, p. 104] by a factor =.

Let cg(w)|dw| denote the capacity metric of the ideal boundary of 2 [7,
p. 55]. If g(w, w) denotes the Green’s function of £ with pole at @ then

1.2) gw, w)=—log|w—w|—logcs(w)+o(l) as w—w.
The second author conjectured that
1.3) ko, w)=cs(w)? for wef

and proved this for the special case that £ is a doubly connected plane domain.
We shall prove a weaker inequality. Let A(w)|dw| denote the Poincaré
metric of £2 which has constant curvature —4.

THEOREM 1. If Q&0 then, for ws £,

Aw)
cplw)

(1.4) ko, 0)Zes@) / (8log +6log2).

We shall reformulate this theorem for Fuchsian groups and then prove it
in that form.

If £ is a Riemann surface such that c¢z(w)/2(w) is bounded below then (1.4)
implies ko(w, w)=const. cg(w)®. This assumption holds, in particular, if £ is a
plane domain with uniformly perfect boundary [5]. Examples are given by the
complement of the Cantor set or the limit set of finitely generated Fuchsian
groups.
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It was proved in (where 2¢:0g; should have been assumed) that

2

(1.5) kolw, w):§ja—alogcﬂ(w) (wef).

Hence the conjecture can be rewritten as

4 0*

_W"a;“aﬁlogw(w)g_%

this would mean that the Riemannian metric ¢s(w)|dw| has curvature =—4
We derive now directly from Schiffer’s identity [7, p. 105]

2

0
(1.6) ko(w, w)-——Zm-g(w, o)
without using Fuchsian groups as in [8].

It is sufficient to prove at the origin of a parametric disk. By
the symmetric function

glw, w)-+log|lw—w]| for w+#w,
1.7 h(w, w):{

—log cs(w) for w=w

is harmonic in each variable. The quadratic terms in the development around
(0, 0) are of the form

(1.8) a(w?+?)+ @@ +a%) +Fbweo-FbTd+ c(wad+Tw) .

Since 0°h/owom=0*g/0wow by we see from and that %40, 0)
=—2¢. On the other hand, if we put w=ew in [1.8), we obtain that
—0%log c5(w)/0wd® has also the value —2¢ for w=0.

2. Fuchsian groups.

There is a Fuchsian group I” without elliptic elements such that D/I" is
conformally equivalent to £2. We can choose I” such that 0= D corresponds to
ws . Since 2¢&0; the group I is of convergence type.

The space of square integrable abelian differentials corresponds to the Bers
space A3(I") of I'automorphic forms of weight 1 with

@D 1= 11 2dndy <o

where F' denotes a fundamental domain of I” with area 0F=(0. The Bergman
kernel function of A¥I") specialized to the origin is

(2.2) q(z2)=q(z, O)ZTEEIJ’(@ (zeD);
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see [2] [3, p. 602]. It has the reproducing property

1
23) 1O=<f, p=—\| rea@dxdy  for feaul).
We also consider the Blaschke product

rel".r;z (0) T() <ZED)

where ¢ denotes the identity. By Myrberg’s theorem [9, p. 5221, g(w, w) cor-
responds to —log|b(z)]. The conjecture can now be expressed as

(2.5) q(0)=b'(0)?
which, by and is equivalent to
(2.6) S70)z= II 702,
rel rel’, r+:
This is perhaps the simplest form of the conjecture [1.3).
is contained in the following result where we allow elliptic
elements.

THEOREM 2. If I'is a Fuchsian group of convergence type, then

@1 1 ©)=b0¢ / (810g~b,%0—~

) +61og2)

or, equivalently,

2.8) 57Oz I 10r/(B3 e

rer TE[’,T;—‘:

ol +6logz).

Applying (2.8) to a conjugate group, we obtain, for {= D,

A= 18P Q) - | 1O—L 1-E1(0)
@9 Z i mor =HEI- g A WACHE Bt

as the conformally invariant form of (2.8).

i+610g2>

3. Proof of Theorem 2.

The following lemma is a more precise form of a well-known result; see
e.g. [6, p. 637].

LEMMA. If I'is of convergence type, then

CRY 2 (1—1r(@)|*)=4log -7 -+6log 2.

(0)
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PROOF. Let F={zeD: |z|<|r(z)] for z&I, y+#¢} be the Ford fundamental
domain of I" and let {|z]| <p} be the largest disk in F around 0. If fel'\{}
is chosen such that |B(0)| is minimal then |B(0)| <2p and thus, by

(3.2) (O)=1p0) <2p.
It was proved in [4, p. 301] that

3.3) b2 =rbOmin(p, [2])  for z<F.
It follows that, if zeF, |z|=p,

2 (I=-1r@[H=2 E log -

(3.4) IT( )] =218 5T

Ib( )
4
<2log b,(0)7_410g ;,/(S)

because of (3.2). If |z|=p then we see from (3.3) that
> A— [H@IDS142 5 log - =1+2log | .2 |
rer i l7(2)] b(z)

4
§1+210gw;

and this bound is smaller than that in (3.4). Hence follows because the
left-hand side is /-invariant.

PROOF OF THEOREM 2. Using an idea of Rao [6], we consider the Poincaré
theta series

(3.5) Flz)= 0[1’(2)} =3 b(;((:))) )  for zeD.

Since b is bounded, we have feA¥l") [2] [3, p. 596]. The reason for this

choice is that f(0)=b’(0), by [2.4). Hence we obtain from and by
Schwarz’s inequality that

(3.6) b'O¥=17O) = fII*lgl*=] f%g(0) ;
the identity ¢(0)=]q[? follows from and [2.1).
We write

b(z)

f(z)=§)0akzk, 2 (ze D).

1t follows from by the scalar product formula [3, p. 596] that

(Zkbk
ok+1°

1 fIP=<f(2), O[z"*b(2)]>= E



Capacities and Bergman kernels 641

Hence Schwarz’s inequality shows that

1A S ALl 5, e 5 10
=SB+ T iSo(k+1)?
because |z 'b(z)| =1. It follows that
- lax]®
IS .t
I/ :‘zgo(k—i—l)(k—l—Z)
2

{1, r@ra—1z1dxdy

T

as we see from Parseval’s formula. Since D is the disjoint union of the sets
7(F) (rel’) except for a set of zero area, we obtain that

4ﬁ£ 2(1__ 2
=2 5], @112y

= {l @ 2 a-r@mde,

where we have used that f(y(2))r’'(z)==f(2).

We apply now the lemma. It follows from [3.1) and that

1
b'(0)

1 £1°= (8log— = +6log2) I £

Dividing through by | 7> we obtain [2.7) because ¢(0)=b’(0)/|f||I? by (3.6).
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