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1. Introduction.

The relation between the nonsingularity of a multilinear mapping and the
finiteness of its automorphism group was recently studied by the second author
[2]. In particuIar, it was shown ([2, Theorem $A]$ ) that the nonsingularity
implies the finiteness under some restriction on the characteristic of the under-
lying field. In this paper we shall prove the same result without this restriction.

If $V$ is a vector space over a feld, a multilinear mapping

$r$

$\theta:V\cross\cdots\cdots\cross Varrow V$

from the direct product of $r$ copies of $V$ into $V$ itself is called simply a multi-
linear mapping of degree $r$ on $V$ . The subgroup Aut $(\theta)$ of the general linear
group GL (V) is defined by

Aut $(\theta)=\{\varphi\in GL(V)|\theta(x_{1}, x_{2}, x_{3}, \cdots , x_{r})^{\varphi}=\theta(x\S, x^{\varphi_{2}}, x^{\varphi_{3}}, \cdots , x_{r}^{\varphi})$

for all $x_{1},$ $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}\in V$ }.

We say that $\theta$ is nonsingular, if $\theta(x, x, x, \cdots , x)\neq 0$ for all $0\neq x\in V$ .
Our main result is:

THEOREM A. Let $\theta$ be a nonszngular multilinear mapping of degree $r\geqq 2$ on
a vector space $V$ of dimenston $n$ over an algebraically closed field $F$ of character-
istic $p>0$ . Then Aut $(\theta)$ is a finite group.

Theorem A can be derived from the following Theorem B.

THEOREM B. Let $F,$ $p,$ $V,$ $n,$
$\theta,$ $r$ be as in Theorem A. Then for every

unipotent subgroup $Q$ of Aut $(\theta)$ ,

$|Q|\leqq p^{\iota^{\sum_{\geqq 1}[n/p^{i}]}}$ ,

where $[]$ denotes the greatest integer not exceeding the number inside.
That Theorem $B$ implies Theorem A follows from the following two prop-

ositions which appear as Propositions 1 and 6 in [2]. (In these two propositions,
the characteristic is arbitrary. In Proposition $D$ , the field need not be algebra-
ically closed.)
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PROPOSITION C. Let $\theta$ be a nonsrngular multilinear mapping of degree $r\geqq 2$

on a vector space of dimension $n$ over an algebraically closed field. Then for
every eleynent $\sigma\in Aut(\theta),$ $\sigma^{m}$ is unipOtent for some $m$ at most $(r^{n}-1)^{n}$ .

PROPOSITION D. Let $V$ be a vector space of dimenston $n$ over a field, and $G$

be a subgroup of GL (V). Suppose that the exponent of $G$ is finite ($i.e.$ , there
exests some number $m$ such that $\sigma^{m}=1$ for all $\sigma\in G$), and that the order of any
unipotent normal subgroup of $G$ is finite. Then $G$ is a finite group.

As for the proof of Theorem $B$ , we want to proceed by induction on $n$ . In
order to do that, we need to weaken the hypothesis concerning the nonsingularity
of $\theta$ . More specifically, we prove the following theorem by induction on $n$ .

THEOREM E. Let $\theta$ be a multilinear mappzng of degree $r\geqq 2$ on a vector
space $V$ of dimenston $n$ over an algebraically closed field $F$ of charactenstic $p$ ,
and let $Q$ be a unip0tent subgroup of Aut $(\theta)$ . Suppose that for each $1\neq\tau\in Q$ ,
the restriction of $\theta$ to $C_{V}(\tau)\cap[V, \tau]$ is non-szngular, $(i.e.,$ $\theta(x, x, x, \cdots , x)\neq 0$

for all $0\neq x\in C_{V}(\tau)\cap[V, \tau])$ . Then

$|Q|\leqq p^{i\geqq 1}\Sigma[n/p^{i}]$

(Here, $C_{V}(\tau)=\{x\in V|x^{\tau}=x\},$ $[V,$ $\tau]=\{x^{\tau}-x|x\in V\}$ , by definition.)

The following proposition is a key result to the induction.

PROPOSITION F. Let $F,$ $p,$ $V,$ $n,$ $\theta,$
$r,$ $Q$ be as in Theorem E. Let $\sigma$ be an

element of order $P$ of the center of $Q$ , and let $\rho$ be the linear mapping defined by

$x^{\rho}=x^{\sigma}-x$ , $x\in V$ .
Let

$m_{2}=\dim V^{\rho^{parrow 1}}$ .
Then

$|C_{Q}(V^{\rho^{p-1}})|\leqq p^{m_{2}}$ ,

where
$C_{Q}(V^{\rho^{p-1}})=$ {$\tau\in Q|x^{\tau}=x$ for all $x\in V^{\rho^{p-1}}$ }

by definition.
The organization of this paper is as follows. In Section 2, we collect several

general results concerning multilinear mappings. In Section 3, we fix our nota-
tion. Sections 4 and 5 are devoted to the proof of Proposition F. We complete
the proof of Theorem $E$ in Section 6.

REMARK 1. A multilinear mapping for which the equality holds in Theorem
$B$ can easily be constructed as follows. Let $\{e_{j}\}_{1\leqq j\xi n}$ be a base of $V$ , and dePne
$\theta$ by

$\theta(e_{j_{1}}, e_{j_{2}}, e_{j_{3}}, \cdots e_{j_{r}})=\{\begin{array}{ll}e_{j_{1}}, if j_{1}=j_{2}=j_{3}=\cdots=j_{r},0, otherwise.\end{array}$
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Then Aut $(\theta)$ contains a subgroup isomorphic to the symmetric group of degree
$n$ , whose Sylow $P$-subgroups attain the upper bound.

REMARK 2. If the characteristic of the underlying field is $0$ , then $Q=1$

under the hypotheses and the notation of Theorem E. This can be verified by
the argument we shall use to prove Theorem $E$ for the case $n<p$ . (See the
remark following Lemma 3.6.) Thus Theorem A is true also when the charac-
teristic is $0$ . Those two cases, ( $i.e.$ , the case $n<p$ and the case in which the
characteristic is $0$), were already settled in [2, Proposition 4], and we could
have quoted some results from [2] to shorten our proof. But considering that
our proof is elementary, we decided to arrange this article so that it could be
read without any outside references, except for the proof of Propositions $C$ and
$D$ , for which the reader is referred to [2], and possibly Krull-Remak-Schmidt’s
theorem (Lemma 2.3), which is well-known but may not be regarded as part of
elementary linear algebra.

REMARK 3. In [2, Proposition 5], it was also shown that if $\theta$ is a “ non-
singular “ multilinear form of degree $r+1$ with $r\geqq 2$ on a vector space of
dimension $n$ over an algebraically closed field of characteristic $P$ and if either
$p=0$ or $n<p$ , then Aut $(\theta)$ contains no unipotent element except 1. On the
other hand, it was proved by H. Matsumura-P. Monsky [1, Theorem 1] that the
automorphism group of a nonsingular symmetric multilinear form of degree
greater than or equal to 3 on a finite-dimensional vector space over an algebra-
ically closed field is finite. In view of those results, we suspect that the
“ multilinear-form version ” of Theorem $B$ also holds. But we have no clue to
this problem.

2. Multilinear mapping.

Let $X$ be a vector space of finite dimension over an algebraically closed
field $F$. If $\varphi$ is an element of GL (X), we denote $x^{\varphi}-x$ by $[x, \varphi]$ . If $Y$ is a
subspace of $X$, we denote by $[Y, \varphi]$ the subspace spanned by $\{[x, \varphi]\}$ where $x$

ranges over $Y$ . If $H$ is a subgroup of GL (X), we denote by $[Y, H]$ the sub-
space spanned by $\{[Y, \varphi]\}$ where $\varphi$ ranges over $H$.

Let $\theta$ be a multilinear mapping of degree $r$ on $X$. We denote by $\theta_{t}$ ,
$1\leqq t\leqq r$ , the multilinear mapping defined by

$\theta_{t}(x_{1}, X_{2}, x_{3}, \cdots x_{r})=\theta(x_{2}, x_{3}, \cdots, x_{t}, x_{1}, x_{t+1}, \cdots x_{r})$ .
For subspaces $Y,$ $Z$ of $X$, we define the subspace $\Theta(Y, Z)$ by

$\Theta(Y, Z)=\langle\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots , x_{r})|1\leqq t\leqq r , x_{1}\in Y, x_{2}, x_{3}, \cdots , x_{r}\in Z\rangle$ .
If $\Theta(Y, Z)\subseteqq Y$ , then we take $\Theta^{0}(Y, Z)=Y$ by convention and define $\Theta^{j}(Y, Z)$ ,
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inductively, by
$\Theta^{j}(Y, Z)=\Theta(\Theta^{j-1}(Y, Z),$ $Z$).

We have
$\Theta^{0}(Y, Z)\supseteqq\Theta^{1}(Y, Z)\supseteqq\Theta^{2}(Y, Z)\supseteqq\Theta^{3}(Y, Z)\supseteqq\ldots$

We let

$\Theta^{\infty}(Y, Z)=\bigcap_{j=0}^{\infty}\Theta^{j}(Y, Z)$ .

We remark that $Y$ need not be contained in $Z$ in the above dePnition.
If subspaces $Y,$ $Z$ of $X$ are such that $Y\subseteqq Z$ and $\Theta(Z, Z)\subseteqq Z$ and $\Theta(Y,$ $Z\rangle$

$\subseteqq Y$ , then we say that $Y$ is an ideal of $Z$ . If $Y$ is an ideal of $Z$ , then a linear
mapping $\varphi$ from $Y$ into $Z$ is called normal with respect to $Z$ if it satisfies the
condition

$\theta_{t}(x^{\varphi_{1}}, x_{2}, x_{3}, \cdots x_{r})=(\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots x_{\gamma}))^{\varphi}$

for all $x_{1}\in Y$ and $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}\in Z$ and for all $1\leqq t\leqq r$ .

LEMMA 2.1. Suppose $\theta$ is nonsingular. Let $Y$ be an ideal of $X$, and let $\varphi$

be a linear mapffing from $Y$ into $Y$ which is normal with respect to X. Let $\alpha_{1}$ ,
$\alpha_{2},$ $\alpha_{3},$

$\cdots$ , $\alpha_{s}\in F$ be the distinct ecgenvalues of $\varphi$ , and let

$U^{(k)}=\{x\in Y|x^{\varphi}=\alpha_{k}x\}$ , $1\leqq k\leqq s$ .

Then $Y=\oplus_{k=1}^{s}U^{(k)}$ . Furthermore, each $U^{(k)}$ is an ideal of $X$.
PROOF. By way of contradiction, suppose $Y\neq\oplus_{k=1}^{s}U^{(k)}$ . Then there exist

nonzero elements $x,$ $y$ of $Y$ and an element $\alpha$ of $F$ such that $x^{\varphi}=\alpha x$ and $y^{\varphi}=$

$\alpha y+x$ . Then

$\alpha\theta(x, y, x, x, \cdots , x)=\theta(x, y, x, x, \cdots , x)^{\varphi}=\theta$ ( $x,$ $y^{\varphi},$ $x,$ $x,$ $\cdots$ , x)

$=\alpha\theta(x, y, x, x, \cdots , x)+\theta(x, x, x, x, \cdots , x)$ .
Namely, $\theta(x, x, x, \cdots , x)=0$ , which contradicts the nonsingularity of $\theta$ . Thus
$Y=\oplus_{k=1}^{s}U^{(k)}$ . Now let $x\in U^{(k)}$ . Then

$\theta_{t}(x, X_{2}, x_{3}, \cdots x_{r})^{\varphi}=\theta_{t}(x^{\varphi}, X_{2}, X_{3}, \cdots x_{r})$

$=\alpha_{k}\theta_{t}(x, X_{2}, x_{3}, \cdots x_{r})$ .
This means $\theta_{t}(x, x_{2}, x_{3}, \cdots , x_{r})\in U^{(k)}$ . Since $x,$ $x_{j},$

$t$ were arbitrary, this shows
$\Theta(U^{(k)}, X)\subseteqq U^{(k)}$ .

In order to state our next lemma, we need the following notation. For a
subspace $Y$ which satisfies $\Theta(Y, Y)\subseteqq Y$ , we let $\Theta^{0}(Y)=Y$, and define $O^{j}(Y)$ ,
inductively, by

$\Theta^{j}(Y)=\Theta(\Theta^{j-1}(Y), \Theta^{j-1}(Y))$ .
We have

$\Theta^{0}(Y)\supseteqq\Theta^{1}(Y)\supseteqq\Theta^{2}(Y)\supseteqq\Theta^{3}(Y)\supseteqq\ldots$
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We let

$\Theta^{\infty}(Y)=\bigcap_{j=1}^{\infty}\Theta^{j}(Y)$ .

Clearly $\Theta^{\infty}(Y)\subseteqq\Theta^{\infty}(Y, Y)$ , and the inclusion is in general proper. Those two
notations, $\Theta^{\infty}(Y)$ and $\Theta^{\infty}(Y, Y)$ , may appear confusing. But the notation $\Theta^{\infty}(Y)$

is used only when we apply the following lemma, and that will exclude any
risk of confusion in practice.

LEMMA 2.2. Let $Y$ be an ideal of $X$, and let $\varphi$ be a linear mapping from $Y$

into $X$ which is normal with respect to X. Suppose that $(\Theta^{\infty}(Y))^{\varphi}=0$ and that the
$rest\uparrow\gamma ctim$ of $\theta$ to $Y^{\varphi}$ is nonsingular. Then $Y^{\varphi}=0$ .

PROOF. Suppose there exists $x\in Y$ such that $x^{\varphi}\neq 0$ . Let $x_{0}=x$ , and let

$x_{j+1}=\theta(x_{j}, x_{j}, x_{j}, \cdots , x_{j})$ , $j=0,1,2,$ $\cdots$

There exists some $j_{0}$ such that $x^{\varphi_{j}}=0$ for all $j>j_{0}$ and such that $x_{j_{0}}^{\varphi}\neq 0$ . Thus

$\theta(x^{\varphi_{j_{0}}}, x_{j_{0}}^{\varphi}, x^{\varphi_{f_{0}}}, \cdots x^{\varphi_{j_{0}}})=(x_{j_{0}+1})^{\varphi^{r}}=0$ .
This contradicts the nonsingularity of the restriction of $\theta$ to $Y^{\varphi}$ .

An ideal $Y$ of $X$ is called indecomposable, if it cannot be expressed as the
direct sum of two nontrivial ideals of $X$.

LEMMA 2.3 (Krull-Remak-Schmidt). Let $X=\oplus_{j=1}^{c}X^{(j)}$ and $X=\oplus_{j=1}^{d}Y^{(j)}$ be
direct sum decomposrtions in whch each $X^{(j)}$ and each $Y^{(j)}$ are indecomposable
ideals. Then $c=d$ and there exzsts $\varphi\in GL(X)$ which is normal with respect to $X$

such that, for some permutation $\pi$ of $\{$ 1, 2, 3, $\cdots$ , $d\},$ $(X^{(j)})^{\varphi}=Y^{(j^{\pi})}$ for each $j$ .
PROOF. We view $X$ as an additive group with an operation set, where the

operation set consists of the natural action of $F$ and the action of type

$\theta_{t}(\cdot, x_{2}, x_{3}, \cdots x_{r})$ .

Here $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}$ range over $X$, and $t$ ranges over the interval $1\leqq t\leqq r$ . From

this viewpoint, the lemma is nothing but Krull-Remak-Schmidt’s theorem.

LEMMA 2.4. Let $\oplus_{j=1}^{d}X^{(j)}$ and $\oplus_{j=1}^{d}Y^{(j)}$ be as in Lemma 2.3. Then
$\Theta(X^{(j)}, X)=\Theta(Y^{(j^{\pi})}, X)$ for each $j$ , where $\pi$ is as in Lemma 2.3.

PROOF. First note that $\Theta(X^{(j)}, X)=\Theta(X^{(j)}, X^{(j)})$ . Then, with ($\beta$ as in
Lemma 2.3,

$\Theta(Y^{(j^{\pi})}, X)=\Theta(X^{(j)}, X)^{\varphi}=\Theta(X^{(j)}, X^{(j)})^{\varphi}$

$=\Theta((X^{(j)})^{\varphi}, X^{(j)})\subseteqq\Theta(X, X^{(j)})\subseteqq\Theta(X^{(j)}, X)$ .
Since this inclusion holds for each $j$ , and since

$\bigoplus_{j=1}^{d}\Theta(X^{(j)}, X)=\Theta(X, X)=\bigoplus_{j=1}^{d}\Theta(Y^{(j)}, X)$ ,
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the desired conclusion holds.

LEMMA 2.5. Let $X=\oplus_{j=1}^{d}X^{(j)}$ be as in Lemma 2.3, and let $X=\oplus_{k=1}^{s}U^{(k)}$ be
a direct sum decmpositjon in which each $U^{(k)}$ is an ideal. Then there exzsts a
partitjon of $\{$ 1, 2, 3, $\cdots$ , $d\}$ into $s$ disjmnt nonempty subsets $I_{k},$ $1\leqq k\leqq s$ , such that
$\Theta(U^{(k)}, X)=\oplus_{j\in I_{k}}\Theta(X^{(j)}, X)$ for each $k$ .

PROOF. Since $\oplus_{k=1}^{s}U^{(k)}$ can further be decomposed into a direct sum of
indecomposable ideals, the lemma follows immediately from Lemma 2.4.

3. Notation.

In the remainder of this paper, let $F,$ $p,$ $V,$ $n,$ $\theta,$ $Q,$ $\sigma$ be as in Proposition F.
We use the notation and the terminology defined in Section 2. Furthermore we
introduce the following notation.

Let $\rho$ be the linear mapping defined by

$x^{\rho}=[x, \sigma]$ , $x\in V$ .
Let

$Z_{h}=Ker(\rho^{h})$ , $0\leqq h\leqq P$ . (3.1)

In particular,
$Z_{0}=0$ , $Z_{p}=V$ .

The following two lemmas are easily verified by induction on $h$ .
LEMMA 3.1. If $w\in V$ and $X_{2},$ $x_{3},$

$\cdots$ , $x_{r}\in Z_{1}$ , then

$\theta_{t}(w, X_{2}x_{3}, \cdots, x_{\tau})^{\rho^{h}}=\theta_{t}(w^{\rho^{h}}, x_{2}, x_{3}, \cdots, x_{r})$ , $h\geqq 0$, $1\leqq t\leqq r$ .

LEMMA 3.2. If $y\in V,$ $z\in Z_{2}$ , and $x_{3},$ $x_{4},$
$\cdots$ , $x_{r}\in Z_{1}$ , then

$\theta_{t}(y, z, x_{3}, \cdots x_{r})^{\rho^{h}}=\theta_{t}(y^{\rho^{h}}, z, x_{3}, \cdots x_{r})+h(\theta_{t}(y^{\rho^{h-1}}, z^{\rho}, x_{3}, \cdots x_{r})$

$+\theta_{t}(y^{\rho^{h}}, z^{\rho}, x_{3}, \cdots x_{r}))$ , $h\geqq 1$ , $1\leqq t\leqq r$ .
Now let

$W=V^{\rho}\cap Z_{1}$ .
The following facts will be used throughout the paper.

LEMMA 3.3.

(i) $\Theta(Z_{h}, W)\subseteqq Z_{h}$ , $0\leqq h\leqq p$ .
(ii) $\Theta(V^{\rho^{i}}, W)\subseteqq V^{\rho^{i}}$ , $0\leqq i\leqq P$ .

We shall prove a few more results concerning $\Theta(\cdot, W)$ .
LEMMA 3.4.

$\Theta(Z_{1}\cap V^{\rho^{i}}, W)\subseteqq Z_{1}\cap V^{\rho^{i+1}}$ , $0\leqq i\leqq p-2$ .
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PROOF. Let $x_{1}\in Z_{1}\cap V^{\rho^{i}},$
$x_{2},$ $x_{3},$

$\cdots$ , $x_{r}\in W$ . Let $y,$ $z$ be such that $y^{\rho^{i}}=x_{1}$ ,
$z^{\rho}=x_{2}$ . Since $y^{\rho^{i+1}}=0$ ,

$\theta_{t}(y, z, x_{3}, \cdots x_{r})^{\rho^{i+1}}=(i+1)\theta_{t}(x_{1}, X_{2}, x_{3}, \cdots x_{r})$

by Lemma 3.2. Since $i+1\neq 0$ in $F$, this means $\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots , x_{r})\in Z_{1}\cap V^{\rho^{i+1}}$

by Lemma 3.3 (i). Since $x_{1},$ $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}$ were arbitrary, this proves the lemma.

LEMMA 3.5.
$\Theta(Z_{l}\cap V^{\rho^{i}}, W)\subseteqq(Z_{l}\cap V^{\rho^{i+1}})+(Z_{l-1}\cap V^{\rho^{i}})$ , $0\leqq i\leqq p-2$ , $1\leqq l\leqq p-i-1$ .

PROOF. By Lemma 3.1,

$\Theta(Z_{l}\cap V^{\rho^{i}}, W)^{\rho^{l-1}}=\Theta((Z_{l}\cap V^{\rho^{i}})^{\rho^{l- 1}}, W)$

$=\Theta(Z_{1}\cap V^{\rho^{i+l-1}}, W)$ .
Hence, by Lemma 3.4,

$\Theta(Z_{l}\cap V^{\rho^{i}}, W)^{\rho^{l-1}}\subseteqq Z_{1}\cap V^{\rho^{i+l}}$ .

Since the full inverse image of $Z_{1}\cap V^{\rho^{i+l}}$ by $\rho^{l-1}$ is $(Z_{l}\cap V^{\rho^{i+1}})+Z_{l-1}$ , we get

$\Theta(Z_{l}\cap V^{\rho^{i}}, W)\subseteqq(Z_{l}\cap V^{\rho^{i+1}})+Z_{l-1}$ .

Since $\Theta(Z_{l}\cap V^{\rho^{i}}, W)\subseteqq Z_{l}\cap V^{\rho^{i}}$ by Lemma 3.3, this implies the desired conclusion.

LEMMA 3.6.
$\Theta^{\infty}(Z_{h}, W)\subseteqq V^{\rho^{p-h}}$ , $1\leqq h\leqq P$ .

PROOF. Applying Lemma 3.5 with $i=0,1,2,$ $\cdots$ , $p-l-1$ , successively, we
get

$\Theta^{\infty}(Z_{l}, W)\subseteqq V^{\rho^{p-l}}+Z_{l-1}$ , $1\leqq l\leqq p$ . (3.2)

Applying (3.2) with $l=h,$ $h-1,$ $\cdots$ , 1, successively, we get the desired conclusion.

REMARK. If we let $h=1$ in the above lemma, we get $\Theta^{\infty}(Z_{1}, W)\Leftarrow\subset V^{\rho^{p-1}}$ .
From this and from the nonsingularity of the restriction of $\theta$ to $W$ , it follows
that $V^{\rho^{p-1}}\neq 0$, which implies that $n\geqq P$ . This means that if $n<p$ , then $Q=1$ .
Thus Proposition $F$ and Theorems $E,$ $B$ , A are proved for $n<p$ . Therefore we
henceforth assume $n\geqq p$ .

Now let
$Y_{h}=\Theta^{\infty}(V^{\rho^{h}}, W)$ , $0\leqq h\leqq p$ . (3.3)

We have
$Y_{h}^{\rho}=Y_{h+1}\subseteqq Y_{h}$ , $0\leqq h\leqq p-1$ . (3.4)

Also we have
$Y_{h}=\Theta^{\infty}(Z_{p-h}, W)$ , $0\leqq h\leqq p$ , (3.5)

by Lemma 3.6.
Let
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$W_{1,i}=Z_{1}\cap Y_{p-i}$ , $1\leqq i\leqq P$ . (3.6)

Now we want to choose $W_{h.i},$ $1\leqq h\leqq p,$ $1\leqq i\leqq p+1-h$ , so that the following
three conditions (3.7), (3.8), (3.9) are satisfied:

$W_{h,i}\supseteqq W_{h.i-1}$ ; (3.7)

$(W_{h,i})^{\rho}=W_{h-1.i}$ ; (3.8)

$W_{h.i}$ is a complement to $Y_{p-i+1-h}\cap Z_{h-1}$ in $Y_{p-i+1-h}\cap Z_{h}$ . (3.9)

In order to do this, we assume that the subspaces $W_{h.i}$ for $h$ with $1\leqq h\leqq l-1$

are already chosen. For each $i$ with $1\leqq i\leqq p+1-l$, we have

$Y_{p-i+1-l}\cap Z_{l}\subseteqq(W_{l-1,i})^{\rho^{-1}}+(Y_{p-i+1-l}\cap Z_{l-1})$ , (3.10)

for (3.9) holds for $h=l-1$ and

$(Y_{p-i+1-l})^{\rho}=Y_{p-i+2-l}$ .
\langle In this paragraph, we use the symbol $\rho^{-1}$ to denote the full inverse image,
whereas we shall find it convenient to use $\rho^{-1}$ in a different manner later. See
the paragraph immediately before Lemma 3.8.) Now we choose $W_{l,i},$ $i=1,2,$ $\cdots$

$p+1-l$, successively, as a complement to

$(W_{l-1.i})^{\rho^{-1}}\cap Y_{p-i+1-l}\cap Z_{l-1}$

in
$(W_{l-1.i})^{\rho^{-1}}\cap Y_{p-i+1-l}$

containing $W_{l.i-1}$ . Then, by (3.10), (3.9) holds for $h=l$ . Since

$((W_{l-1.i})^{\rho^{-1}}\cap Y_{p-i+1-l})^{\rho}=W_{l-1.i}$

and
$((W_{l-1.i})^{\rho^{-1}}\cap Y_{p-i+1-l}\cap Z_{l-1})^{\rho}=0$ ,

we have $(W_{l.i})^{\rho}=W_{l-1.i}$ . Thus all of (3.7), (3.8), (3.9) hold for $h=l$ .
Of course, there is more than one way to choose $W_{h.i}$ so that (3.7), (3.8),

and (3.9) hold. We shall define a “ convenient “ choice in Lemma 4.11.

LEMMA 3.7. $W_{1,i}$ is an ideal of $W,$ $1\leqq i\leqq p$ .
PROOF. Since $\Theta(Y_{p-i}, W)=Y_{p-i}$ by the definition (3.3) and since $\Theta(Z_{1}, W)$

$\subseteqq Z_{1}$ , the lemma follows from the definition (3.6) of $W_{1.t}$ .
We choose a complement $V_{h}$ to $Z_{h-1}$ in $Z_{h}$ so that $V_{h}\supseteqq W_{h,p-h+1}$ and $V_{h}^{\rho}\subseteqq$

$V_{h-1},1\leqq h\leqq P$ . We take $V_{0}=0$ .
By $\rho^{1-h},$ $2\leqq h\leqq p$ , we shall mean the inverse mapping of the bijection $\rho^{h-1}$

from $V_{h}$ onto $V_{h}^{\rho^{h-1}}$ , unless otherwise stated. Using this notation, we can
restate Lemmas 3.1 and 3.2 in the following form.
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LEMMA 3.8. Let $1\leqq i\leqq P-1,1\leqq t\leqq r$ . Let $x_{1}\in Z_{1}\cap V^{\rho^{i}},$
$x_{2},$ $x_{3},$

$\cdots$ , $x_{r}\in Z_{1}$ .
For each $m$ with $1\leqq m\leqq i+1$ , write

$\theta_{t}(x_{1}^{\rho^{1-m}}, x_{2}, x_{8}, \cdots x_{r})=\sum_{l=1}^{m}a_{m,l}$ $a_{m.l}\in V_{l}$ .
Then

(i) $a_{m.l}=(a_{m-l+1,1})^{\rho^{1-l}}$ .
Furthermwe, suppose $x_{2}\in W$ , and, $fw$ each $1\leqq m\leqq i+1$ , write

$\theta_{t}(xf^{1-m}, x\#^{-1}, x_{3}, \cdots x_{r})=\sum_{l=1}^{m+1}b_{m.l}$ $b_{m,l}\in V_{l}$ .

(When $i=P-1$ , we take $b_{p,p+1}=0.$ ) Then

(ii) $b_{m.l}=(l-1)(a_{m-l+2.1}+a_{m-l+1.1})^{\rho^{1-l}}+(b_{m-l+1.1})^{\rho^{1-l}}$ .

\langle We take $a_{0,1}=b_{0.1}=a_{i+2,1}=0.$ )

4. Description of an element of $C_{Q}(Z_{1})$ .
Let $\tau$ be an arbitrary element of order $p$ of $C_{Q}(Z_{1})$ . In this section, we shall

give a somewhat explicit description of $\tau$ (Lemmas 4.12, 4.13).

LEMMA 4.1. $[Z_{l}, \tau]\subseteqq Z_{l-1}$ , $1\leqq l\leqq P$ .

PROOF. Since $\sigma\tau=\tau\sigma,$ $\rho\tau=\tau\rho$ . Consequently,

$[Z_{l}, \tau]^{\rho^{l-1}}=[Z_{l}^{\rho^{l-1}}, \tau]=[Z_{1}, \tau]=0$ ,

as $\tau\in C_{Q}(Z_{1})$ . Therefore $[Z_{l}, \tau]\subseteqq Z_{l-1}$ by (3.1).

LEMMA 4.2. $[Y_{h}, \tau]\subseteqq Y_{h+1}$ , $0\leqq h\leqq p-1$ .

PROOF. Since $\tau\in C_{Q}(Z_{1})\subseteqq C_{Q}(W)$ , the lemma follows from (3.5) and Lemma
4.1.

LEMMA 4.3. $[W_{2.i}, \tau]\subseteqq W_{1,i}$ , $1\leqq i\leqq p-1$ .

PROOF. By Lemma 4.2 for $h=p-i-1$ and by Lemma 4.1 for $l=2$ ,

$[Y_{p-i-1}\cap Z_{2}, \tau]\subseteqq Y_{p-i}\cap Z_{1}$ .
Since $W_{2.i}\subseteqq Y_{p-i-1}\cap Z_{2}$ and $W_{1,i}=Y_{p- i}\cap Z_{1}$ by (3.9) for $h=2$ and by (3.6), re-
spectively, this proves the lemma.

LEMMA 4.4. There exisf direct sum decmpositions

$W_{h,i}= \bigoplus_{k=1}^{s}U;_{\iota^{k)}i}$ , $h=1,2$, $1\leqq i\leqq p-1$ ,

such that



144 Y. EGAWA and H. SUZUKI

(i) $(U_{2.i}^{(k)})^{\rho}=U_{1,i}^{(k)}$ ,

and such that

(ii) $[x, \tau]=\alpha_{1.k}x^{\rho}$ for all $x\in U_{2.i}^{(k)}$ ,

where $\alpha_{1.1},$ $\alpha_{1.2},$ $\alpha_{1.3},$
$\cdots$ , $\alpha_{1,*}$ are distinct elements of the field $F$ which do not

depend on $i$ . Furthermore,

(iii) $U\_{\iota^{k)}i}\supseteqq Ui_{i-1}^{k)}$ ,

(iv) $\Theta(U_{1.i}^{(k)}, W)\subseteqq U_{1.i}^{(k)}$ ,

(v) $U_{1.1}^{(k)}=\Theta^{\infty}(U_{1.i}^{(k)}, W)\neq 0$ .

PROOF. For each $i,$ $1\leqq i\leqq P-1$ , let $\varphi_{i}$ be the linear mapping on $W_{1,i}$ defined
by

$x^{\varphi_{i}}=[x^{\rho^{-1}}, \tau]$ , $x\in W_{1,i}$ .
Lemma 4.3 shows $(W_{1,i})^{\varphi_{i}}\subseteqq W_{1,i}$ . Let $x_{1}\in W_{1.i},$ $x_{2},$ $x_{3},$

$\cdots$ , $x_{r}\in W$, and let $a_{m.l}$

be as in Lemma 3.8. Then

$\theta_{t}([x_{1}^{\rho^{-1}}, \tau], X_{2}, x_{3}, \cdots x_{r})=[\theta_{t}(x_{1}^{\rho^{-1}}, x_{2}, x_{3}, \cdots x_{r}), \tau]$

$=[(a_{1,1})^{\rho^{-1}}+a_{2,1}, \tau]=[(a_{1.1})^{\rho^{-1}}, \tau]=\theta_{t}(x_{1}, x_{2}, x_{3}, \cdot.., x_{r})^{\varphi_{i}}$ .

Since $x_{1},$ $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}$ were arbitrary, this means that $\varphi_{i}$ is normaI with respect

to $W$. Now we apply Lemma 2.1 with $X=W$, $Y=W_{1.i}$ and $\varphi=\varphi_{i}$ . Let $\alpha_{1.k}$ ,
$1\leqq k\leqq s$ , be the eigenvalues of $\varphi_{p-1}$ . If we let $\oplus_{k=1}^{s}U_{1.i}^{(k)}$ be the decomposition
described in Lemma 2.1 (At this stage $U_{1.i}^{(k)}$ may be trivial for some $k$ , which we
shall see is not the case by $(v).)$ , and if we let $U_{2.i}^{(k)}=(U_{1.i}^{(k)})^{\rho^{-1}}$ , then (i), (ii) and
(iv) hold. The property (ii) immediately implies (iii). By Lemma 3.6 for $h=1$ ,
$\Theta^{\infty}(W_{1,i}, W)=W_{1.1}$ . Hence

$\bigoplus_{k=1}^{s}\Theta^{\infty}(U_{1,i}^{(k)}, W)=\Theta^{\infty}(W_{1,i}, W)=W_{1,1}$

by (iv). Hence $\Theta^{\infty}(U_{1.i}^{(k)}, W)=U_{1.1}^{(k)}$ . Finally, since the restriction of $\theta$ to $U_{1.i}^{(k)}$

$(\subseteqq W)$ is nonsingular, $\Theta^{\infty}(U_{1.i}^{(k)}, W)\neq 0$ .

LEMMA 4.5. For each $k$ ,

$\Theta(W_{1.1}, W_{1.1})\cap U_{1.1}^{(k)}=\Theta(U_{1.1}^{(k)}, W_{1,1})\neq 0$ .
PROOF. This is because of the nonsingularity of the restriction of $\theta$ to

$W_{1,1}\subseteqq W$.
For each $1\leqq k\leqq s$ , we define $\alpha_{h,k}$ , inductively, by

$\alpha_{h,k}=\frac{\alpha_{h-1,k}(\alpha_{1,k}-(h-1))}{h}$ , $2\leqq h\leqq p-1$ . (4.1)
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By convention, we take
$\alpha_{0,k}=1$ (4.2)

for all $k$ .
For each $1\leqq l\leqq P-1$ and for each $1\leqq k\leqq s$ , let $\varphi_{l.k}$ be the linear mapping

defined by
$x^{\varphi_{l.k}}=x^{\tau}-x-\alpha_{1.k}x^{\rho}-\alpha_{2,k}x^{\rho^{2}}-\cdots-\alpha_{l.k}x^{\rho^{l}}$ , $x\in V$ .

The following lemma is an immediate corollary to Lemma 4.4.

LEMMA 4.6. If an element $w$ of $W_{2.p-1}$ satisfies the condition

$w^{\varphi_{1.k}}\in U_{1,p-1}^{(k)}$

for some $k$ , then $w\in U_{2.p-1}^{(k)}$ and so $w^{\varphi_{1.k}}=0$ .
We next prove several technical results concerning $\varphi_{l.k}$ .
LEMMA 4.7. $\rho\varphi_{l.k}=\varphi_{l.k}\rho$ .
PROOF. This follows from the fact $\rho\tau=\tau\rho$ .
LEMMA 4.8. If $w\in Z_{l+1}$ , then

$w^{\varphi_{l.k}}=w^{\varphi_{l+1.k}}=w^{\varphi_{l+2.k}}=\cdots=w^{\varphi_{p-1.k}}$ .
PROOF. This is because $(Z_{l+1})^{\rho^{l+1}}=0$ .
LEMMA 4.9. Let $2\leqq v\leqq p-1,1\leqq k\leqq s,$ $1\leqq t\leqq r$ . Let $w\in V,$ $x_{2},$ $x_{3},$

$\cdots$ , $x_{r}\in Z_{1}$ .
Then

$\theta_{t}(w, x_{2}, x_{3}, \cdots x_{r})^{\varphi_{v.k}}=\theta_{t}(w^{\varphi_{v.k}}, x_{2}, x_{3}, \cdots x_{r})$ .

PROOF. This follows from Lemma 3.1.
LEMMA 4.10. Let $2\leqq v\leqq p,$ $1\leqq k\leqq s,$ $1\leqq i\leqq r$ . Let $y\in Z_{v},$ $z\in U_{2.p-1}^{(k)},$ $x_{3},$ $x_{4}$ ,

... , $x_{r}\in Z_{1}$ . Then the following hold:
(i) If $2\leqq v\leqq p-1$ , then

$\theta_{t}(y, z, x_{3}, \cdots x_{r})^{\varphi_{v,k}}$

$=\theta_{t}(y^{\varphi_{v-1.k}}, z, x_{3}, \cdots x_{r})+\alpha_{1.k}\theta_{t}(y^{\varphi_{v-1.k}}, z^{\rho}, x_{3}, \cdots x_{r})$ .

(ii) For $v=p$ , we have

$\theta_{t}(y, z, x_{3}, \cdots x_{r})^{\varphi_{p-1,k}}$

$=\theta_{t}(y^{\varphi_{p-1.k}}, z, x_{3}, \cdots x_{r})+\alpha_{1,k}\theta_{t}(y^{\varphi_{p-1.k}}, z^{\rho}, x_{3}, \cdots x_{r})$

$+((p-1)\alpha_{p-1,k}-\alpha_{1.k}\alpha_{p-1.k})\theta_{t}(y^{\rho^{p-1}}, z^{\rho}, x_{3}, \cdots x_{r})$ .

PROOF. First suppose $2\leqq v\leqq p-1$ . We have

$\theta_{t}(y, z, x_{3}, \cdots x_{r})^{\varphi_{v.k}}$

$=\theta_{t}(y^{\tau}, (z+\alpha_{1.k}z^{\rho}),$ $x_{3},$
$\cdots$

$x_{r}$) $-\theta_{t}(y, z, x_{3}, \cdots x_{r})$
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$- \sum_{h=1}^{v}\alpha_{h,k}\theta_{t}(y^{\rho^{h}}z, x_{3}, \cdots x_{r})$

$- \sum_{h\Rightarrow 1}^{v}\alpha_{h,k}h\theta_{t}(y^{\rho^{h- 1}}, z^{\rho}x_{3}, \cdots x_{r})$

$- \sum_{h=1}^{v}\alpha_{h.k}h\theta_{t}(y^{\rho^{h}}z^{\rho}, x_{3}, \cdots , x_{\tau})$ (by Lemmas 3.1 and 4.4 (ii))

$=\theta_{t}(y^{\tau}, z, x_{3}, \cdots x_{r})-\theta_{t}(y, z, x_{3}, \cdots x_{r})$

$- \sum_{h=1}^{v-1}\alpha_{h.k}\theta_{t}(y^{\rho^{h}}z, x_{3}, \cdots x_{r})$

$+\alpha_{1.k}\theta_{t}(y^{\tau}, z^{\rho}, x_{3}, \cdots x_{r})$

$- \sum_{h=0}^{v-1}\alpha_{h+1,k}(h+1)\theta_{t}(y^{\rho^{h}}, z^{\rho}x_{3}, \cdots x_{r})$

-
$v-1 \sum\alpha_{h.k}h\theta_{t}$ $(y^{\rho^{h}}, z^{\rho}, x_{3}, \cdots , x_{r})$ (for $y^{\rho^{v}}=0$)
$h=0$

$=\theta_{t}(y^{\varphi_{v-1.k}}, z, x_{3}, \cdots x_{r})+\alpha_{1,k}\theta_{t}(y^{\tau}, z^{\rho}, x_{3}, \cdots x_{r})$

$- \sum_{h=0}^{v-1}((h+1)\alpha_{h+1.k}+h\alpha_{h,k})\theta_{t}(y^{\rho^{h}}z^{\rho}, x_{3}, \cdots x_{r})$ .
Since $(h+1)\alpha_{h+1.k}+h\alpha_{h.k}=\alpha_{1.k}\alpha_{h.k}$ for $0\leqq h\leqq p-2$ by (4.1) and (4.2), this proves
(i). For $v=p$ , the above calculation is valid if we interpret $\varphi_{p.k}$ as $\varphi_{p-1.k}$ ,
except that in the last sum the coefficient for

$\theta_{t}(x^{\rho^{p-1}}, y^{\rho}, x_{3}, \cdots x_{r})$

is $(p-1)\alpha_{p-1.k}$ . Thus (ii) is proved.
Now let

$Ul_{i}^{k)}=(U_{1.i}^{(k)})^{\rho^{1-h}}$ , $1\leqq k\leqq s$ , $2\leqq h\leqq P$ , $1\leqq i\leqq p-h+1$ . (4.3)

If $h=2$ , this coincides with the description of $U_{2.i}^{(k)}$ in Lemma 4.4. Since

$W_{1.i}= \bigoplus_{k\Rightarrow 1}^{s}U_{1.t}^{(k)}$ ,

we have
$W_{h.i}= \bigoplus_{k=1}^{s}U_{h.i}^{(k)}$ . (4.4)

Of course, $U\}_{\iota.t}^{k)}$ depends on $\rho^{1-h}$ , which depends on the choice of $W_{h.i}$ . In fact,
a suitable choice of $W_{h.i}$ enables $U_{h.i}^{(k)}$ to have the following nice property.

LEMMA 4.11. The subspaces $W_{h.i}$ can be chosen so that if we define $Ul_{\iota,i}^{k)}$ by
\langle 4.3), then the incluston
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$(U_{h.i}^{(k)})^{\varphi_{1.k}} \subseteqq\bigoplus_{l=1}^{h-2}U_{l,h+i-1-l}^{(k)}$

holds for all $h,$ $i$ with $2\leqq h\leqq p+1-i$ and for all $k$ .
PROOF. We prove by induction on $v$ that $W_{h.i}$ can be chosen so that

$(U_{v.m}^{(k)})^{\varphi_{1.k}} \subseteqq\bigoplus_{l=1}^{v-2}U_{l.v+m-1-l}^{(k)}$ (4.5)

for all $m\leqq p+1-v$ and for all $k$ . This certainly holds for $v=2$ by Lemma 4.4
(ii). Now suppose that (4.5) holds for $v\leqq t-1$ . For each $k$ , let

$n_{i.k}=\dim U_{1,i}^{(k)}$ , $1\leqq i\leqq p-1$ ,

and let
$\{e_{j}^{(k)}\}_{1\leqq j\xi n_{p+1-t,k}}$

be a base of $U_{t.p+1-t}^{(k)}$ such that

$\{e_{j^{k)}}\}_{1\leqq js}nm,$
$k$

is a base of $U_{t,m}^{(k)}$ for $1\leqq m\leqq p+1-t$ . Let

$x\in\{e_{j}^{(k)}\}_{n_{m-1.k}+1\leqq j\leq n_{m,k}}$ .

By (4.3), $x^{\rho}\in U_{t-1,m}^{(k)}$ . Hence, by the inductive hypothesis and Lemma 4.7,

$(x^{\varphi_{1,k}})^{\rho}=(x^{\rho})^{\varphi_{1.k}} \in\bigoplus_{\Rightarrow l1}^{t-3}U1_{t+m-2-l}^{k)}$ .

Therefore we may write $x^{\varphi_{1.k}}=w+z$ , where

$w \in\bigoplus_{l=1}^{t-2}U\}_{t+m- 1-l}^{k)}$ and $z\in Z_{1}$ .

Since $x\in U_{t.m}^{(k)}\subseteqq W_{t,m}\subseteqq Y_{p+1-t-m}$ by (4.4) and (3.9),

$x^{\varphi_{1,k}}=[x, \tau]-\alpha_{1,k}x^{\rho}\in Y_{p+2- t-m}$

by (3.4) and Lemma 4.2. Also

$w \in\bigoplus_{l=1}^{t-2}W_{l,l+m-1-l}\subseteqq Y_{p+2-l-m}$

by (4.4) and (3.9). Consequently

$z\in Z_{1}\cap Y_{p+2-t-m}=W_{1.t+m-2}$ .

Therefore we may write
$z=w’+z’$ ,

where
$w’\in U_{1.t+m-2}^{(k)}$ and $z’ \in\bigoplus_{u\neq k}U_{1}^{(u}1_{+m-2}$ .

Hence, replacing $w$ by $w+w’$ and $z$ by $z’$ , we may assume
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$z \in\bigoplus_{u\neq k}U_{1.t+m-2}^{(u)}$ .

Since $2+(t+m-2)\leqq p+1,$ $W_{2.t+m-2}$ is well-defined. Also note that $\varphi_{1.k}$ is a
bijection from $\oplus_{u\neq k}U_{2.t+m-2}^{(u)}$ onto $\oplus_{u\neq k}U_{1.t+m-2}^{(u)}$ , for $\alpha_{1,u}\neq\alpha_{1.k},$ $u\neq k$ . Hence
there exists $y\in U_{2.t+m-2}^{(u)}$ such that

$z=y^{\varphi_{1.k}}$ .
If we let $x’=x-y$ , then

$x’\in Y_{p+1-t-m}$ (4.6)

and
$(x’)^{\varphi_{1.k}}=w$ . (4.7)

Since $m,$
$k$ were arbitrary and $x$ was also arbitrary, we may replace all $e_{j}^{(k)}$ by

$(e_{j}^{(k)})’$ following the above procedure. Let

$(U_{t.i}^{(k)})’=\langle(e_{j}^{(k)})’\rangle_{1\leq j\xi n_{i,k}}$

and
$W_{t.i}’= \bigoplus_{k=1}^{s}(U_{t.i}^{(k)})’$ .

Then, by (4.6), the $W_{t,i}’$ satisfy (3.9) for $h=t$ . Hence if we let

$(U_{t-1,i}^{(k)})’=(U_{t.i}^{(k)})^{\prime\rho}$ , $1\leqq i\leqq p+1-t$ ,

and
$(U_{t-1.p+2-t}^{(k)})’=(U_{t-1,p+1-t}^{(k)})’\oplus X_{k}$ ,

where $X_{k}$ is a complement to $U_{t-1.p+1-C}^{(k)}$ in $U_{t-1.p+2-t}^{(k)}$ , and let

$W_{t-1.i}’= \bigoplus_{k=1}^{s}(U_{t-1.i}^{(k)})’$ , $1\leqq i\leqq p+2-t$ ,

and if we simply let

$(Uh_{i}^{k)})’=Uh_{i}^{k)}$ and $W_{h,i}’=W_{h,i}$ , $1\leqq m\leqq P+1-h$ ,

for $h\leqq t-2$ , then the $W_{h.i}’$ satisfy (3.7), (3.8), (3.9) for $h\leqq t$, and the $(U_{h.i}^{(k)})’$

satisfy (4.5) for $v=t$ by (4.7). Of course (4.3) is also satisfied for $h\leqq t$. Also
note that this “ replacement “ does not hurt the property that (4.5) holds for
$v\leqq t-1$ . Now the only thing we have to do is to choose $W_{h,i}’$ for $h\geqq t+1$ fol-
lowing the method described in Section 3.

In the remainder of this section, we assume that the $W_{h.i}$ are chosen so
that the conclusion of Lemma 4.11 holds.

LEMMA 4.12. (i) Let $2\leqq h\leqq P$ . Then $(Uh_{p-h+1}^{k)})^{\varphi_{h-1,k}}=0$ for all $k$ .
(ii) Let $1\leqq h\leqq p-1$ . Then

$\Theta(U;_{\iota^{k)}p- h}, W)\subseteqq\bigoplus_{l=1}^{h}U\}_{p-l}^{k)}$

for all $k$ .
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(iii) Let $2\leqq h\leqq p$ . Then if $x\in Z_{h}$ satisfies the condition $x^{\varphi_{h-1,k}}\in U_{1.p-1}^{(k)}$ for
some $k$, then $x^{\varphi_{h-1.k}}=0$ .

PROOF. We proceed by induction on $h$ . Statement (ii) for $h=1$ follows
from Lemma 4.4 (iv), and (i) for $h=2$ follows from Lemma 4.4 (ii). Now
assume that (i) is proved for $2\leqq h\leqq v$ , and that (ii) and (iii) are proved for
$1\leqq h\leqq v-1$ .

First we prove (iii) for $h=v$ . Let

$A=\{x\in Z_{v}|x^{\varphi_{v-1.k}}\in U_{1,p-1}^{(k)}\}$ .
By Lemma 4.9 and Lemma 4.4 (iv),

$\Theta(A, W)\subseteqq A$ . (4.8)

Let $y$ be an element of $A\cap Z_{v-1}$ . By Lemma 4.8, $y^{\varphi_{v-2,k}}=0$ . By (iii) for $h=$

$v-1,$ $y^{\varphi_{v-2.k}}=0$ and so $y^{\varphi_{v-1.k}}=0$ . Although the induction breaks down when
$v=2$, yet we can still prove $y^{\varphi_{v-1.k}}=0$ as $(Z_{1})^{\varphi_{1.k}}=0$ . Thus $(A\cap Z_{v-1})^{\varphi_{v-1.k}}=0$,
which means that we may regard $\varphi_{v-1.k}$ as a mapping from $A/(A\cap Z_{v-1})$ into
$U_{1.p-1}^{\{k)}$ . We regard $\rho^{v-1}$ as a bijection from $A/(A\cap Z_{v-1})$ onto $A^{\rho^{v-1}}$ and denote
its inverse by $\rho^{*}$ . We know that $A^{\rho^{v-1}}$ is an ideal of $W$ by (4.8) and by Lemma
4.9. Now let $x_{1}\in A^{\rho^{v-1}},$

$x_{2},$ $x_{3},$
$\cdots$ , $x_{r}\in W$ . Note that

$\theta_{t}(x^{\rho_{1}*}, X_{2}, x_{3}, \cdots x_{r})$

is well-defined as an element of $A/(A\cap Z_{v-1})$ , for $x_{1}^{\rho*}\subseteqq x_{1}^{\rho^{1-v}}+Z_{v-1}$ and
$\Theta(A\cap Z_{v-1}, W)\subseteqq A\cap Z_{v-1}$ by (4.8). Also

$\theta_{t}(x_{1}^{\rho*}, x_{2}, x_{3}, \cdots x_{r})^{\rho^{v-1}}=\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots x_{r})$

by Lemma 3.1, and so
$\theta_{t}(x^{\rho_{1}*}, X_{2}, x_{3}, \cdots x_{r})=\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots x_{r})^{\rho^{*}}$ .

Hence
$\theta_{t}(x^{\rho_{1}*\varphi_{v-1.k}}, X_{2}, x_{3}, \cdots x_{r})$

$=\theta_{t}(x_{1}^{\rho*}, x_{2}, x_{3}, \cdots , x_{r})^{\varphi_{v-1,k}}$ (by Lemma 4.9)

$=\theta_{t}(x_{1}, X_{2}, x_{3}, \cdots x_{r})^{\rho^{*}\varphi_{v-1.k}}$ .
Since $x_{1},$ $x_{2},$ $x_{3},$

$\cdots$ , $x_{r}$ were arbitrary, this means that $\rho^{*}\varphi_{v-1.k}$ is normal with
respect to $W$ . On the other hand, we have $(U_{1.1}^{(k)})^{\rho*\varphi_{v-1,k}}=0$, for $(U_{v.1}^{(k)})^{\varphi_{v-1,k}}=0$

by (i) for $h=v$ and

$(U_{v.1}^{(k)}+(A\cap Z_{v-1}))/(A\cap Z_{v-1})=(U_{1.1}^{(k)})^{\rho*}$.
Moreover, since $\alpha_{1.u}\neq\alpha_{1.k}$ for $u\neq k$ , we have $A^{\rho^{v-1}}\cap W_{1,1}=U_{1.1}^{(k)}$ . Since $\Theta^{\infty}(Z_{1}, W)$

$=W_{1.1}$ , this means $\Theta^{\infty}(A^{\rho^{v-1}}, W)=U_{1.1}^{(k)}$ . Now since $\Theta^{\infty}(A^{\rho^{v-1}})\subseteqq\Theta^{\infty}(A^{\rho^{v-1}}, W)$ and
since the restriction of $\theta$ to $(A^{\rho^{v- 1}})^{\rho^{*}\varphi v-1.k}(\subseteqq U_{1,p}^{(k)}\subseteqq W_{1.p}\subseteqq W)$ is nonsingular, we
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may apply Lemma 2.2 with $X=W$ and $Y=A^{\rho^{v-1}}$ and $\varphi=\rho^{*}\varphi_{v-1,k}$ to get
$A^{\varphi_{v-1,k}}=0$ .

Next we prove (ii) for $h=v$ . Let $x\in U_{v.p-v}^{(k)}$ and $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}\in W$ . We

want to show

$\theta_{t}(x, x_{2}, x_{3}, \cdots x_{r})\in\bigoplus_{l=1}^{v}U_{l,p-l}^{(k)}$ .

Let $x_{1}=x^{\rho^{v-1}}$ , and let $a_{m,l}$ be as in Lemma 3.8. Since $x^{\rho}\in U_{v-1.p-v}^{(k)}=(U_{v+1,p-v}^{(k)})^{\rho^{2}}$

$\subseteqq Y_{0}^{\rho^{2}}=Y_{2}$ by (3.4),

$\theta_{t}(x^{\rho}, x_{2}, x_{3}, \cdots x_{r})\in\Theta(Y_{2}, W)=Y_{2}$

by (3.3). On the other hand,

$\theta_{t}(x^{\rho}, x_{2}, x_{3}, \cdots x_{r})\subseteqq\bigoplus_{l=1}^{v-1}Uj_{p-l}^{k)}$

by (ii) for $h=v-1$ . Hence

$\theta_{t}(x^{\rho}, x_{2}, x_{3}, \cdots x_{r})\in Y_{2}\cap\bigoplus_{l=1}^{v-1}U_{l.p-l}^{(k)}=\bigoplus_{l=1}^{v-1}U_{l.p-1-l}^{(k)}$ .
Since

$\theta_{t}(x^{\rho}, x_{2}, x_{3}, \cdots x_{r})=\sum_{l=1}^{v-1}(a_{v-l.1})^{\rho^{1- l}}$

by Lemma 3.8 (i) for $m=v-1$ , this implies that

$a_{m.1}\in U_{1.p-1-v+m}^{(k)}$ (4.9)

for $1\leqq m\leqq v-1$ . Hence

$\sum_{l=2}^{v}(a_{v-l+1.1})^{\rho^{1- l}}\in\bigoplus_{l=2}^{v}U_{l,p-l}^{(k)}$ .
Since

$\theta_{t}(x, x_{2}, x_{3}, \cdots x_{r})=\sum_{l=1}^{v}(a_{v-l+1,1})^{\rho^{1- l}}$ ,

this means that we have only to show that $a_{v,1}\in U_{1,p- 1}^{(k)}$ . Since $x\in U_{v,p-v}^{(k)}$ ,

$x_{1}^{\rho^{-v}}\in U_{v+1,p- v}^{(k)}\subseteqq Y_{0}$ . ( $4.10\rangle$

We shall compute
$\theta_{t}(x^{\rho_{1}^{-v}}, x_{2}, x_{3}, \cdots x_{r})^{\varphi_{v.k}}$

in two manners. Since $(x_{1}^{\rho^{-v}})^{\rho}=x\in U_{v.p-v}^{(k)},$ $(x_{1}^{\rho^{-v}})^{\rho\varphi_{v-1,k}}=0$ by (i) for $h=v$ , and
so $(x_{1}^{\rho^{-v}})^{\varphi_{v.k}\rho}=(x_{1}^{\rho^{-v}})^{\rho\varphi_{v.k}}=(x_{1}^{\rho^{-v}})^{\rho\varphi_{v-1.k}}=0$ by Lemmas 4.7 and 4.8. Hence

$(x_{1}^{\rho^{-v}})^{\varphi_{v.k}}\in Z_{1}$ . ( $4.11\rangle$

On the other hand, since

$(x_{1}^{\rho^{-v}})^{\rho^{v+1- l}}\in U_{l.p-v}^{(k)}\subseteqq U_{l.p-l}^{(k)}$ , $1\leqq l\leqq v-1$ ,

we have
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$(x_{1}^{\rho^{-v}})^{\varphi_{v.k}} \in\bigoplus_{l=1}^{v-1}U_{l.p-l}^{(k)}$ (4.12)

by Lemma 4.11. By (4.11) and (4.12),

$(x_{1}^{\rho^{-v}})^{\varphi_{v.k}} \in Z_{1}\cap(\bigoplus_{l=1}^{v-1}U_{l.p-l}^{(k)})=U_{1,p-1}^{(k)}$ .
Hence

$\theta_{t}(x_{1}^{\rho^{-v}}, x_{2}, x_{3}, \cdots x_{r})^{\varphi_{v.k}}=\theta_{t}((x_{1}^{\rho^{-v}})^{\varphi_{v.k}}, x_{2}, x_{3}, \cdots x_{r})\in U_{1.p-1}^{(k)}$ ($4.13\rangle$

by Lemma 4.9 and Lemma 4.4 (iv). On the other hand,

$\theta_{t}(x_{1}^{\rho^{-v}}, x_{2}, x_{3}, \cdots x_{r})=\sum_{l=1}^{v+1}(a_{v-l+2,1})^{\rho^{1-l}}$ (4.14)

by Lemma 3.8 (i). Since $a_{v-l+2.1}\in U_{1,p-l+1}^{(k)}$ for $3\leqq l\leqq v$ by (4.9),

$( \sum_{l=3}^{v}(a_{v-l+2,1})^{\rho^{1- l}})^{\varphi_{v.k}}=0$

by (i) for $3\leqq h\leqq v$ . Also $(a_{v+1,1})^{\varphi_{v,k}}=0$ , for $a_{v+1.1}\in Z_{1}$ . Therefore

$\theta_{t}(x_{1}^{\rho^{-v}}, x_{2}, x_{3}, \cdots x_{\tau})^{\varphi_{v.k}}=(a_{v.1})^{\rho^{-1}\varphi_{v.k}}+(a_{1.1})^{\rho^{-v}\varphi_{v,k}}$. (4.15)

Since $a_{1,1}\in U_{1.p-v}^{(k)},$ $(a_{1.1})^{\rho^{-v}\varphi_{v.k}}\in U_{1.p-1}^{(k)}$ by (i) for $h=v$ and by Lemma 4.11.
Hence, comparing (4.13) and (4.15), we get

$(a_{v.1})^{\rho^{-1}\varphi_{v.k}}=\theta_{t}(x_{1}^{\rho^{-v}\varphi_{v.k}}, x_{2}, x_{3}, \cdots , x_{r})-(a_{1,1})^{\rho^{-v}\varphi_{v.k}}\in U_{1,p-1}^{(k)}$ . (4.16)

By Lemma 4.8, $(a_{v,1})^{\rho^{-1}\varphi_{1.k}}\in U_{1.p-1}^{(k)}$ . On the other hand, (4.10) implies

$\theta_{t}(x^{\rho_{1}^{-v}}, x_{2}, x_{3}, \cdots x_{r})\in\Theta(Y_{0}, W)=Y_{0}$ ,

and so
$(a_{v.1})^{\rho^{-1}}\in Y_{0}\cap V_{2}=W_{2,p-1}$

by (4.14). Thus $(a_{v.1})^{\rho^{-1}}$ satisfies the hypotheses of Lemma 4.6. Hence $(a_{v.1})^{\rho^{-1}}$

$\in U_{2,p-1}^{(k)}$ , and so $a_{v.1}\in U_{1.p-1}^{(k)}$ . Note that this implies $(a_{v.1})^{\rho^{-1}\varphi_{v.k}}=0$ , and so we
have

$\theta_{t}(x_{1}^{\rho^{-v}\varphi_{v.k}}, x_{2}, x_{3}, \cdots x_{\tau})=\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots x_{r})^{\rho^{-v}\varphi_{v.k}}$ (4.17)

by (4.16).

It remains only to prove (i) for $h=v+1$ . Note that (4.17) shows that the
mapping $\rho^{-v}\varphi_{v.k}$ from $U_{1.p-v}^{(k)}$ into $U_{1.p-1}^{(k)}$ is normal with respect to $W$ . Now we
shall show

$\Theta(U_{1.1}^{(k)}, U_{1.1}^{(k)})^{\rho^{-v}\varphi_{v.k}}=0$ ,

from which we can obtain the desired conclusion by applying Lemma 2.2 with
$X=W$ and $Y=U_{1.p-v}^{(k)}$ , for

$\Theta^{\infty}(U_{1.p-v}^{(k)})=\Theta^{\infty}(\Theta^{\infty}(U_{1,p-v}^{(k)}, W))=\Theta^{\infty}(U_{1.1}^{(k)})$ .
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Let $x_{1},$ $x_{2},$ $x_{3},$
$\cdots$ $x_{r}\in U_{1.1}^{(k)}$ . Let $a_{m,l},$ $b_{m.l}$ be as in Lemma 3.8, $and_{\wedge}^{Y}1et$

$x= \sum_{l=1}^{v}(b_{v-l+1.1})^{\rho^{1-l}}\in Z_{v}$ .

Since $x_{1}^{\rho^{1-v}\varphi_{v-1.k}}=0$ by (i) for $h=v$,

$\theta_{t}(x_{1}^{\rho^{1-v}}, x_{2}^{\rho^{-1}}, x_{3}, : x_{r})^{\varphi_{v.k}}=0$

by Lemma 4.10 (i). Namely,

$v+1 \sum(l-1)(a_{v-l+2,1}+a_{v-l+1.1})^{\rho^{1-l}\varphi_{v.k}}+x^{\varphi_{v.k}}=0$ (4.18)
$l=2$

by Lemma 3.8 (ii). By (ii) for $h=v,$ $a_{m,1}\in U_{1.p-1-v+m}^{(k)}$ for $1\leqq m\leqq v$ . Hence

$(a_{1.1})^{\rho^{-v}\varphi_{v.k}}\in U_{1.p-1}^{(k)}$ (4.19)

by (i) for $h=v$ and by Lemma 4.11, and

$\sum_{l=2}^{v}(l-1)(a_{v-l+2.1}+a_{v-l+1,1})^{\rho^{1-l}\varphi_{v.k}}=0$

by (i) for $2\leqq h\leqq v$ . Thus (4.18) can be written in the form

$(va_{1.1})^{\rho^{-v}\varphi_{v.k}}+x^{\varphi_{v.k}}=0$ . (4.20)

Therefore $x^{\varphi_{v,k}}\in U_{1.p- 1}^{(k)}$ by (4.19). Since $x\in Z_{v}$, this means that $x$ satisfies the
hypotheses of (iii) for $h=v$. Hence $x^{\varphi_{v.k}}=0$, and so

$(a_{1.1})^{\rho^{-\emptyset}\varphi_{v.k}}=0$

by (4.20). Namely,
$\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots x_{r})^{\rho^{-v}\varphi_{v.k}}=0$ .

Since $x_{1},$ $x_{2},$ $x_{3},$
$\cdots$ , $x_{r}$ were arbitrary, $\Theta(U_{1.1}^{(k)}, U_{1.1}^{(k)})^{\rho^{-v}\varphi_{v.k}}=0$ as desired.

LEMMA 4.13. For each $k$ ,

$\alpha_{1.k}\in\{0,1,2, \cdots p-1\}$ .
PROOF. Let $0\neq w\in U_{1.1}^{(k)}$ . By Lemma 4.10 (ii) and Lemma 4.12 (i) for $h=p$ ,

$\theta(w^{\rho^{1-p}}, w^{\rho^{-1}}, w, \cdots w)^{\varphi_{p-1.k}}$

$=((p-1)\alpha_{p-1.k}-\alpha_{1.k}\alpha_{p-1.k})\theta(w, w, w, \cdots w)\in U_{1.1}^{(k)}$ .
This means that $x=\theta$ ( $w^{\rho^{1-p}},$ $w^{\rho^{-1}},$

$w,$ $\cdots$ , w) satisPes the hypotheses of Lemma
4.12 (iii) for $h=p$ . Hence $x^{\varphi}p-1.k=0$ . Since $\theta(w, w, w, \cdots , w)\neq 0$ by the non-
singularity of the restriction of $\theta$ to $W$, this implies

$(p-1)\alpha_{p-1.k}-\alpha_{1.k}\alpha_{p-1.k}=0$ . (4.21)

Substituting (4.1) for $h=p-1,$ $p-2,$ $\cdots$ , 3, 2, successively, in (4.21), we get
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$(\alpha_{1.k}-(p-1))(\alpha_{1.k}-(p-2))\cdots(\alpha_{1.k}-1)\alpha_{1.k}=0$ ,

and hence $\alpha_{1.k}$ is one of $0,1,2,$ $\cdots$ , $p-1$ as desired.

5. Proof of Proposition F.

We finish the proof of Proposition $F$ in this section.

LEMMA 5.1. If $\tau\in C_{Q}(Z_{1})$ acts trivially on

$\Theta(W_{1,1}, W_{1.1})\oplus\Theta(W_{1.1}, W_{1.1})^{\rho^{-1}}$ ,

then $\tau$ acts trivially on $Y_{0}$ .
PROOF. Let $s,$ $\alpha_{1.k}$ be as in Lemma 4.4. Then $s=1$ and $\alpha_{1.1}=0$ by Lemma

4.5. Thus the desired conclusion follows from Lemma 4.12 (i).

LEMMA 5.2. If $\tau\in C_{Q}(Z_{1})$ acts trivially on $Y_{0}$ , then $\tau=1$ .
PROOF. We prove by induction on $h$ that $\tau$ acts trivially on $Z_{h}$ . If $h=1$ ,

there is nothing to be proved. Now we assume that $\tau$ acts trivially on $Z_{h-1}$ ,
and let $\varphi$ be the mapping defined by

$x^{\varphi}=[x^{\rho^{1- h}}, \tau]$ , $x\in V_{h}^{\rho^{h-1}}$ .
By the inductive hypothesis, $(V_{h}^{\rho^{h-1}})^{\varphi}\subseteqq Z_{1}$ . Let $x_{1}\in V_{h}^{\rho^{h-1}},$

$x_{2},$ $x_{3},$
$\cdots$ , $x_{r}\in Z_{1}$ ,

and let $a_{m.l}$ be as in Lemma 3.8. We have

$\theta_{t}([x_{1}^{\rho^{1-h}}, \tau], x_{2}, x_{3}, \cdots x_{r})=[\theta_{t}(x_{1}^{\rho^{1- h}}, x_{2}, x_{3}, \cdots x_{r}), \tau]$

$=[ \sum_{l=1}^{h}(a_{h-l+1.1})^{\rho^{1-l}}, \tau]=[(a_{1.1})^{\rho^{1- h}}, \tau]$

$=\theta_{t}(x_{1}, x_{2}, x_{3}, \cdots x_{r})^{\varphi}$

by the inductive hypothesis. This means that $\varphi$ is normal with respect to $Z_{1}$ .
Also $(W_{1.p-h+1})^{\varphi}=0$ by the hypothesis of the lemma. Since $(V_{h}^{\rho^{h-1}})^{\varphi}\subseteqq Z_{1}\cap[V, \tau]$

$\subseteqq C_{V}(\tau)\cap[V, \tau]$ , we may now apply Lemma 2.2 with $X=Z_{1}$ and $Y=V_{h}^{\rho^{h-1}}$ to
get $(V_{h}^{\rho^{h-1}})^{\varphi}=0$ . This means $[V_{h}, \tau]=0$, and so $[Z_{h}, \tau]=0$ as desired.

PROOF OF PROPOSITION F. Let $W_{1.1}=\oplus_{j=1}^{d}X^{(j)}$ be a fixed direct sum decom-
position of $W_{1,1}$ in which each $X^{(j)}$ is an indecomposable ideal of $W_{1.1}$ . By the
nonsingularity of the restriction of $\theta$ to $W_{1,1},$ $\Theta(X^{(j)}, W_{1.1})\neq 0$ for each $j$ . Hence,
by Lemmas 4.4 and 4.13 and by Lemma 2.5,

$|C_{Q}(Z_{1})/C_{C_{Q^{(Z_{1})}}}(\Theta(W_{1,1}, W_{1.1})\oplus\Theta(W_{1.1}, W_{1.1})^{\rho^{-1}})|$

$\leqq p^{d}\leqq p^{\dim W_{1.1}}\leqq p^{m_{2}}$ .
Since

$C_{C_{Q}(Z_{1})}(\Theta(W_{1.1}, W_{1.1})\oplus\Theta(W_{1.1}, W_{1.1})^{\rho^{-1}})=1$

by Lemmas 5.1 and 5.2, this yields the desired conclusion.
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6. Proof of Theorem E.

In this section, we finish the proof of Theorem $E$ by induction on $n$ .
Let $\overline{Q}=Q/C_{Q}(Z_{1})$ . Also let $W_{h}=Z_{1}\cap V^{\rho^{h}}$ . Thus $W_{1}=W$, and $W_{0}=Z_{1}$ . Let

$m_{1}=\dim(W_{0}/W_{1})$ .
LEMMA 6.1.

$|C_{\overline{Q}}(W_{p-1})|\leqq p^{i^{\sum_{\geqq 1}[m_{1}1p^{i}]}}$

PROOF. First we show
$[W_{1}, C_{\overline{Q}}(W_{p-1})]=0$ . (6.1)

In order to do this, we prove by downward induction on $h$ that

$[W_{h}, C_{\overline{Q}}(W_{p- 1})]=0$ , $1\leqq h\leqq p-1$ .

Assume $[W_{h+1}, C_{\overline{Q}}(W_{p-1})]=0$ , and, by way of contradiction, suppose
$[W_{h}, C_{\overline{Q}}(W_{p-1})]\neq 0$ . Then there exist $x,$ $y\in W_{h}$ and $\tau\in C_{\overline{Q}}(W_{p-1})$ such that $x^{\tau}=$

$x+y,$ $y^{\tau}=y\neq 0$ . Then

$\theta(x, y)y,$ $\cdots$ $y)^{\tau}=\theta(x, y, y, \cdots y)+\theta(y, y, y, \cdots y)$ .

But since $\theta(x, y, y, \cdots , y)\in W_{h+1}$ by Lemma 3.4, this contradicts the nonsingu-
larity of the restriction of $\theta$ to $W_{1}$ . Thus (6.1) is proved. Next let $\pi_{0^{=W_{0}/W_{1}}}$ .
Let $\tau$ be an arbitrary element of $C_{\overline{Q}}(W_{p-1})$ . Let $x$ be an element of $W_{0}$ such
that $\tilde{x}\in C_{1}f_{0}^{r}(\tau)$ . Then $x^{\tau}=x+y,$ $y\in W_{\iota}$ . Arguing as above, we get $y=0$ , and
so $x\in C_{W_{0}}(\tau)$ . Since $x$ was arbitrary, this means

$C_{\tilde{W}_{0}}(\tau)=\overline{C_{W_{0}}(\tau)}$ . (6.2)

Since $\tau$ was arbitrary, this, in particular, implies that $C_{\overline{Q}}(W_{p-1})$ acts faithfully
on $\tilde{W}_{0}$ . On the other hand, we can easily verify $\Theta(W_{1}, W_{0})\subseteqq W_{1}$ by Lemma 3.1
for $h=1$ . Hence $\theta$ naturally induces a multilinear mapping on $\tilde{W}_{0}$ , which we
shall denote by $\tilde{\theta}$ . Then we may regard $C_{\overline{Q}}(W_{p-1})$ as a unipotent subgroup of
Aut $(\tilde{\theta})$ . Now we show that for every $\tau\in C_{\overline{Q}}(W_{p-1})$ and for every $y$ such that
$0\neq\tilde{y}\in C_{\tilde{W}_{0}}(\tau)\cap[\tilde{W}_{0}, \tau]$ , we have

$\tilde{\theta}(\tilde{y},\tilde{y},\tilde{y}, \cdots \tilde{y})\neq 0$ ,

from which we get the desired conclusion by the inductive hypothesis. Let $\tau_{r}$

$y$ be as above, and suppose, by way of contradiction, that $\tilde{\theta}(\tilde{y},\tilde{y},\tilde{y}, \cdots , \tilde{y})=0$ ,
namely, $\theta(y, y, y, \cdots , y)\in W_{1}$ . Since $\tilde{y}\in[\tilde{W}_{0}, \tau]$ , we may assume that there
exists $x\in W_{0}$ such that $x^{\tau}=x+y$ . Then

$\theta(x, y, y, \cdots y)^{\tau}=\theta(x, y, y, \cdots y)+\theta(y, y, y, \cdots y)$ , (6.3)

for $y\in C_{W_{0}}(\tau)$ by (6.2). Since $\theta(y, y, y, \cdots , y)\in W_{1},$ $(6.3)$ shows $\theta(x, y, y, \cdots, y)\sim$
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$\in C_{\tilde{W}_{0}}(\tau)$ . By (6.2), this implies $\theta(x, y, y, \cdots , y)\in C_{W_{0}}(\tau)$ , which means $\theta(y,$ $y$ ,
$y,$ $\cdots$ , $y$ ) $=0$ by (6.3). Since $y\in C_{W_{0}}(\tau)\cap[W_{0}, \tau]$ , this contradicts the hypothesis
of Theorem E.

PROOF OF THEOREM E. By the inductive hypothesis,

$|\overline{Q}/C_{\overline{Q}}(W_{p-1})|\leqq p^{i\geqq 1}\Sigma[m_{2}/p^{i}]$

Combining this and Lemma 6.1, we get

$|\overline{Q}|\leqq p^{i^{\sum_{\geqq 1}([m_{2}/p^{i}]+[m_{1}/p^{i}])}}$

Combining this and Proposition $F$ , we get

$|Q|\leqq p^{m_{2}+\sum_{\geq 1}[m_{2}1p^{i}]+\Sigma[m_{1}/p^{i}]}i$$i\geqq 1$

$\leqq p^{i\geqq 1}\leqq p^{i\geqq 1}\Sigma([pm_{2}/p^{t}]+[m_{1}/p^{i}])\Sigma\subset n/p^{i}1$

as desired.
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