J. Math. Soc. Japan
Vol. 37, No. 1, 1985

Automorphism groups of multilinear mappings

By Yoshimi EGAWA and Hiroshi SUZUKI

(Received Feb. 14, 1984)

1. Introduction.

The relation between the nonsingularity of a multilinear mapping and the
finiteness of its automorphism group was recently studied by the second author
[2] In particular, it was shown ([2, Theorem AJ]) that the nonsingularity
implies the finiteness under some restriction on the characteristic of the under=
lying field. In this paper we shall prove the same result without this restriction.

If V is a vector space over a field, a multilinear mapping

from the direct product of » copies of V into V itself is called simply a multi-
linear mapping of degree » on V. The subgroup Aut(#) of the general linear
group GL (V) is defined by

Aut(0)={peGL(V) | 0(x,, %3, X35, ==, x,)?=0(x8, x%, x%, -+, x%)
for all x,, x5 xs, -+, x,€V}.

We say that & is nonsingular, if 0(x, x, x, ---, x)#0 for all 0=x&V.
Our main result is:

THEOREM A. Let 0 be a nonsingular multilinear mapping of degree r=2 on
a vector space V of dimension n over an algebraically closed field F of character-
istic p>0. Then Aut(8) is a finite group.

Theorem A can be derived from the following Theorem B.

THEOREM B. Let F, p, V, n, 8, r be as in Theorem A. Then for every
unipotent subgroup Q of Aut(6),
= [n/p?]
Ql=p*=*
where [ ] denotes the greatest integer not exceeding the number inside.
That Theorem B implies Theorem A follows from the following two prop-
ositions which appear as Propositions 1 and 6 in [2]. (In these two propositions,

the characteristic is arbitrary. In Proposition D, the field need not be algebra-
ically closed.)
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PrOPOSITION C. Let 6 be a nonsingular multilinear mapping of degree r=2
on a vector space of dimension n over an algebraically closed field. Then for
every element o<=Aut(d), o™ is unipotent for some m at most (r*—1)"

PROPOSITION D. Let V be a vector space of dimension n over a field, and G
be a subgroup of GL(V). Suppose that the exponent of G is finite (i.e., there
exists some number m such that e™=1 for all 6 =G), and that the order of any
unipotent normal subgroup of G is finite. Then G is a finite group.

As for the proof of Theorem B, we want to proceed by induction on n. In
order to do that, we need to weaken the hypothesis concerning the nonsingularity
of 6. More specifically, we prove the following theorem by induction on n.

THEOREM E. Let 0 be a multilinear mapping of degree r=2 on a vector
space 'V of dimension n over an algebraically closed field F of characteristic p,
and let Q be a unipotent subgroup of Aut(6). Suppose that for each 1#t€Q,
the restriction of 6 to Cy(r)N\[V, ] is non-singular, (i.e., 0(x, x, x, ---, x)#0
for all 0#=xCp(t)NLV, t]). Then

= [n/pt]
|Ql=p™=* .
(Here, Cy(z)={x€V | x*=x}, [V, cl={x"—x | x€V}, by definition.)

The following proposition is a key result to the induction.

ProposiTION F. Let F, p, V, n, 0, v, Q be as in Theorem E. Let o be an
element of order p of the center of Q, and let p be the linear mapping defined by

xP=x"—x, xeV.
Let
my=dim V*?7,
Then
|Co(VePH| S p™,
where

CoVPP Y= {ceQ | x*=x for all xV°*}
by definition.
The organization of this paper is as follows. In Section 2, we collect several
general results concerning multilinear mappings. In Section 3, we fix our nota-

tion. Sections 4 and 5 are devoted to the proof of We complete
the proof of Theorem E in Section 6.

REMARK 1. A multilinear mapping for which the equality holds in Theorem
B can easily be constructed as follows. Let {e;},<;<» be a base of V, and define
8 by
€ji>» if ji=j=js==Jr,

‘9(811’ Cip Cig ej”):{ .
0, otherwise.
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Then Aut(f) contains a subgroup isomorphic to the symmetric group of degree
n, whose Sylow p-subgroups attain the upper bound.

REMARK 2. If the characteristic of the underlying field is 0, then Q=1
under the hypotheses and the notation of This can be verified by
the argument we shall use to prove Theorem E for the case n<p. (See the
remark following Lemma 3.6) Thus Theorem A is true also when the charac-
teristic is 0. Those two cases, (i.e., the case n<p and the case in which the
characteristic is 0), were already settled in [2, Proposition 4], and we could
have quoted some results from to shorten our proof. But considering that
our proof is elementary, we decided to arrange this article so that it could be
read without any outside references, except for the proof of Propositions C and
D, for which the reader is referred to [2], and possibly Krull-Remak-Schmidt’s
theorem (Lemma 2.3), which is well-known but may not be regarded as part of
elementary linear algebra.
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REMARK 3. In [2, Proposition 5], it was also shown that if ¢ is a “non-
singular ” multilinear form of degree »+1 with »=2 on a vector space of
dimension n over an algebraically closed field of characteristic p and if either
p=0 or n<p, then Aut(f) contains no unipotent element except 1. On the
other hand, it was proved by H. Matsumura - P. Monsky [1, Theorem 1] that the
automorphism group of a nonsingular symmetric multilinear form of degree
greater than or equal to 3 on a finite-dimensional vector space over an algebra-
ically closed field is finite. In view of those results, we suspect that the
“ multilinear-form version” of Theorem B also holds. But we have no clue to
this problem.

2. Multilinear mapping.

Let X be a vector space of finite dimension over an algebraically closed
field F. If ¢ is an element of GL(X), we denote x?—x by [x, ¢]. If Y is a
subspace of X, we denote by [V, ¢] the subspace spanned by {[x, ¢]} where x
ranges over Y. If H is a subgroup of GL(X), we denote by [Y, H] the sub-
space spanned by {[Y, ¢]} where ¢ ranges over H.

Let 6 be a multilinear mapping of degree » on X. We denote by 4,
1=t=r, the multilinear mapping defined by

0.(x1, X2, X3, =+, X)=0(Xo, Xg, =+, X4y X1, Xgg1, 05 Xn) .
For subspaces Y, Z of X, we define the subspace @, Z) by
@(Y; Z):<0t<x1; er x3; Y xT) [ ]-étér) XIEY’ xZ; x37 T, erZ>.

If O, Z)2Y, then we take O°(Y, Z)=Y by convention and define O(Y, 2),
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inductively, by :
OIY, Z)=00'-\Y, 2), Z).
We have

Y, Z2)20YY, Z)20%Y, Z)26¥Y, Z)2 .
We let

O=(Y, Z)= f'j QIY, 7).

We remark that Y need not be contained in Z in the above definition.

If subspaces ¥, Z of X are such that YESZ and @(Z, Z)SZ and O, Z)
CY, then we say that ¥ is an ideal of Z. If Y is an ideal of Z, then a linear
mapping ¢ from Y into Z is called normal with respect to Z if it satisfies the
condition

0.(x%, xs, X3, ***, x‘r):(ﬁt(xl, Xzy Xgy 0y Xp)°

for all x,€Y and x,, x5, -+, x,Z and for all 1=t<r.

LEMMA 2.1. Suppose 0 is nonsingular. Let Y be an ideal of X, and let ¢
be a linear mapping from Y into Y which is normal with respect to X. Let ay,
as, as, -+, asEF be the distinct eigenvalues of ¢, and let

U(k):{xeyl x?’:akx}, 1§k§s.

Then Y=@5_ . U®. Furthermore, each U® is an ideal of X.

PRrROOF. By way of contradiction, suppose Y+@i.,U®. Then there exist
nonzero elements x, y of Y and an element a of F such that x?=ax and y¢=
ay+x. Then

aé’(x, Y, X, X, 0, X):_—-ﬁ(x, Y, X, X, o0, x)?:ﬂ(x’ ySa, X, X, x)
:aa(x; Y, Xy Xy 00y, x)+0(x, X, X, X, vty X).
Namely, 6(x, x, x, ---, x)=0, which contradicts the nonsingularity of 4. Thus

Y=F_,U®. Now let xeU, Then
0i(x, x5, X3, =, X)?=0,(x9, Xy, X3, **+, Xy)
:ak0t<x; x2) -x3} ) x'l‘)’

This means 6,(x, x5, x5, -+, x,)€U®. Since x, x;, t were arbitrary, this shows
OU®, X)cU®,

In order to state our next lemma, we need the following notation. For a
subspace Y which satisfies @Y, Y)SV, we let O@%Y)=Y, and define O(Y),
inductively, by

O/(Y)=0(0"\(Y), 6/-1(Y)).
We have
) 20'YV)20°Y)20*)=2 ---.
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We let
O=(Y)= ﬁl 0I(Y).
=
Clearly @=(Y)SO®=(Y,Y), and the inclusion is in general proper. Those two
notations, @=(Y) and ©=(Y, Y), may appear confusing. But the notation ©=(Y)
is used only when we apply the following lemma, and that will exclude any

risk of confusion in practice.

LEMMA 2.2. Let Y be an ideal of X, and let ¢ be a linear mapping from Y
into X which is normal with respect to X. Suppose that (O=(Y))?=0 and that the
restriction of 0 to Y? is nonsingular. Then Y¢=0.

PROOF. Suppose there exists xY such that x¢-+0. Let x,=x, and let

Xjr1=0(x; X5 X4, ==+, X5), 7=0,1, 2, ---.
There exists some j, such that x%=0 for all ;>j, and such that x4 #0. Thus
6(x(§0, ngioy x?m R x(/}u):(xj0+l>¥’r:0'

This contradicts the nonsingularity of the restriction of 6 to Y¢.
An ideal Y of X is called indecomposable, if it cannot be expressed as the
direct sum of two nontrivial ideals of X.

LEMMA 2.3 (Krull-Remak-Schmidt). Let X=P5, XY and X=D, Y be
dirvect sum decompositions in which each X and each Y are indecomposable
ideals. Then c=d and there exists ¢ =GL(X) which is normal with respect to X
such that, for some permutation = of {1, 2,3, ---, d}, (XP)=YY™ for each j.

Proor. We view X as an additive group with an operation set, where the
operation set consists of the natural action of F and the action of type

0.(-, X, Xs, ==+, Xy1) .
Here x,, x;, *-+, x, range over X, and ¢ ranges over the interval 1=:=r. From
this viewpoint, the lemma is nothing but Krull-Remak-Schmidt’s theorem.

LEMMA 2.4. Let P XY? and BL,YP be as in Lemma 2.3. Then
O(X?, X)=0(Y 9", X) for each j, where & is as in Lemma 2.3.

Proor. First note that @(X?, X)=0(X?, X?). Then, with ¢ as in
CININA

O U™, X)=0(XP, X)r=0(X?P, XP)¢
:@((X(j))ga’ X(]))g@(X, X(J'))g@(X(J'), X).

Since this inclusion holds for each 7, and since

b OXP, X)=0(X, X)= b oy, X),
j=1 J=1
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the desired conclusion holds.

LEMMA 2.5. Let X=P%L, X be as in Lemma 2.3, and let X=Pi_,U® be
a divect sum decomposition in which each U® is an ideal. Then there exists a
partition of {1, 2, 3, -+, d} into s disjoint nonempty subsets I,, 1<k=s, such that
U, X)=Djer,0X?, X) for each k.

PRrROOF. Since Pi_,U® can further be decomposed into a direct sum of
indecomposable ideals, the lemma follows immediately from

3. Notation.

In the remainder of this paper, let F, p, V, n, 8, @, ¢ be as in Proposition F.
We use the notation and the terminology defined in Section 2. Furthermore we
introduce the following notation.

Let p be the linear mapping defined by

x°=[x, o], xeV.
Let
Zr=Ker(p"), 0=h=p. 3.1)
In particular,
Z,=0, Z,=V.

The following two lemmas are easily verified by induction on .

LEMMA 3.1. If weV and x,, x5, -+, X, 2, then
0t(w1 x27 x3) Tty xT)phzet(wph; x21 x3r Tty xT), hgo) létér-
LEMMA 3.2. If yeV,z€Z,, and x;, x4, -+, X, €2, then

0::(37, 2, Xgy, ', xT)phzﬁt(yph, Zy, Xgy "7y xr>+h(6t(yph—17 Zp) Xgy "y xT)

+0.(y°", 2%, x5y o, X)), h=l, 1<t=r.

Now let
W=venz,.
The following facts will be used throughout the paper.
LEMMA 3.3.
(i) OZn, WS Zs, 0=h=p.
(i) O, WSVe',  0=i<p.

We shall prove a few more results concerning @(-, W).

LEMMA 3.4. .
OZ,NVP, WYSZ,NVP™,  0=i<p—2.
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PROOF. Let x;€Z,N\V*®", x5, x5, -, x,€W. Let y, z be such that yﬁi:xl,
zP=x, Since yr*'=0,

0:(3’, 2y, X3y 'ty xr)p“-l:(z-_*—l)ﬁt(xb Xoy X3y "t xr)

by Cemma 3.2 Since ;410 in F, this means 6,(xi, xs, Xs, -+, X)) EZ, NV
by (i). Since xi, x, x5, -, x, Were arbitrary, this proves the lemma.

LEMMA 3.5.
OZ NV, WYS(Z NV H(Z,.nVeY, 05i<p—2, 1ZI<p—i—1.
ProoF. By [Lemma 31,

OZ, NV, W) =0((Z,NV e, W)

=0(Z,NVeH W)y,
Hence, by

OZ NV, Wyeie Z,NV e,
Since the full inverse image of Z,N\V***! by p!~! is (Z,N\VP*™*™N)+Z,.,, we get
OZ NV, WS(Z NV +Z,,.
Since O(Z,N\V*:, W)SZ,NV** by this implies the desired conclusion.
LEMMA 3.6.
O=(Zy, W)SVeP™",  1=h<p.

PrOOF. Applying with 7=0, 1, 2, ---, p—I—1, successively, we
get
6~(Z, WSV '+-Z,.,, 1=I=p. 3.2)

Applying with {[=h, h—1, .-+, 1, successively, we get the desired conclusion.

REMARK. If we let A=1 in the above lemma, we get O@=(Z, W)SVe?™,
From this and from the nonsingularity of the restriction of 8 to W, it follows
that V#? !0, which implies that n>p. This means that if n<p, then Q=L.
Thus Proposition F and Theorems E, B, A are proved for n<p. Therefore we
henceforth assume n=p.

Now let
Y,=0>Ve* W), 0Zh<p. (3.3)
We have
Yo=Y, EV4, 0=h=p—1. 3.4)
Also we have
Y=0"(Z,-n, W), 0=h=p, (3.5)

by Lemma 3.6
Let
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Wl,i:Z1mYp-iy 1=si=p. (3.6)

Now we want to choose W, ;, 1=h=<p, 1=<i<p+1—h, so that the following

three conditions [3.7), [3.8), [3.9) are satisfied :

Wha,i2Wha,i-1; 3.7
Wh,)?=Whna_1,4; (3.8)
Wh.: is a complement to Y poi11-2MN\Zhoy in Y p_ji1-aMNZy . (3.9)

In order to do this, we assume that the subspaces W, ; for A with 1=h=/[—1
are already chosen. For each 7 with 1=/<p-+1—/, we have

Yp—i+1—lleg(Wl—1,i)p‘1+(Yp—i+1—lle—l) , (3.10)
for [3.9) holds for A=[—1 and
(Yp—i+1—z)p:Yp—i+2—l .

(In this paragraph, we use the symbol p~' to denote the full inverse image,
whereas we shall find it convenient to use p~' in a different manner later. See
the paragraph immediately before Lemma 3.8 ) Now we choose W, ;, i=1, 2, ---,
p—+1—1I, successively, as a complement to

Wies, 0 NY poiprmiNZ ey
in
Wies, ) 'NY peierey

containing Wy, ;-;. Then, by [3.10), holds for A=[. Since

((Wz—l,i)p—lf\yp—iﬂ—z)p:Wl—L i
and
(Wien,)? T 'NY poie1oiNZ )P =0,

we have (W, ;)°=W,-;... Thus all of [3.7), [3.8), [3.9)] hold for A=
Of course, there is more than one way to choose W, ; so that [3.7), [3.8),
and [3.9) hold. We shall define a “convenient ” choice in Lemma 4.11l.

LEMMA 3.7. W, ; is an ideal of W, 1<i<p.

PrOOF. Since O ,-;, W)=Y ,-; by the definition and since O(Z,, W)
SZ,, the lemma follows from the definition [3.6) of W, ..

We choose a complement V, to Z,-;, in Z, so that V,2W, ,-»+1 and V4S
Va-1, ISh=p. We take V=0.

By p'"*, 2=h=p, we shall mean the inverse mapping of the bijection p**
from V; onto V4!, unless otherwise stated. Using this notation, we can
restate Lemmas .1 and in the following form.
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LEMMA 3.8. Let 1<i<p—1, 1=t<r. Let x,€Z\N\V*', X3, Xy, =, %.EZ,.
For each m with 1=m=:i+1, write
0:(x8"™, xg, Xsy 0, x,,):lg m.1, Gm.EV,.
Then
(i) A1 =(Am-r41,1) "

Furthermore, suppose x.,=W, and, for each 1=m=i+1, write

m+1
l=m -1
0t(x'f » X'g s Xy *0 xr): lzlbm'l » bm,leVl .

(When i=p—1, we take by p+1=0.) Then
(i) b1 =(=1Cm-t32,1+ Amor41,07 " Hboras, )77

(We take @y, 1=bo,1=ai+s,1=0.)

4. Description of an element of Cy(Z,).

Let 7 be an arbitrary element of order p of Co(Z,). In this section, we shall
give a somewhat explicit description of r (Lemmas 4.13).

LEMMA 4.1. Z, t]EZ,,, 1=,
PROOF. Since or=rto, pr=tp. Consequently,
[Z,, 717 =[Z5"", 21=[Z,, ©]=0,
as t€Cy(Z,). Therefore [Z,, ©T]1SZ,-, by [B.I)
LEMMA 4.2, Y, 71€Y 541, 0=h=sp—1.

PROOF. Since 71€Cy(Z,)SCo(W), the lemma follows from [3.5) and Lemmal
4.1.

LEMMA 4.3. (Wo i t]EW,:, 1=iZ<p—1.
PROOF. By for h=p—i—1 and by for (=2,
[V poiciNZy, 21SY poiNZ,
Since W, ;€Y ,-:-:NZ, and W, ;=Y ,_:NZ, by for h=2 and by [3.6), re-
spectively, this proves the lemma.

LEMMA 4.4. There exist direct sum decompositions

Wh,izé 2 h=1,2, 1=i<p—1,

k=1

such that
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(i) U =U®,
and such that
(ii) [x, t]=ay, prx? for all x€U¥,,

where ay i, Ay, Q3+, A1 s are distinct elements of the field F which do not
depend on i. Furthermore,

(iii) UP, 20U,
(iv) eOU®, WHSUE,,
(v) UR=60>U®, W)+0.

Proor. For each 7, 1=/<p—1, let ¢; be the linear mapping on W, ; defined
by '
x¥i=[x°"", 7], xeW, ;.

shows (W, :)?*SW, . Let x;€Wy 4, x5, x5, -+, x,€W, and let an,,
be as in Then

0;(["(5_)-1, T]; Xo, X3y, *°", xr)ztﬁt(xf—lr Xg, X3y ** xT)’ 7'-]
2[(01,1)p~1+02,1, T]:[(al,x)p-ly ]=0:(x1, X3, X3, =+, xr)%-

Since x;, x5, X3, --+, X, Were arbitrary, this means that ¢, is normal with respect
to W. Now we apply with X=W, Y=W,, and ¢o=¢; Let ay s,
1=k=s, be the eigenvalues of ¢, ,. If we let @i-,U{* be the decomposition
described in (At this stage U{® may be trivial for some £, which we
shall see is not the case by (v).), and if we let UE=U®)*"*, then (i), (ii) and
(iv) hold. The property (ii) immediately implies (iii). By for h=1,
O=W, ;, W)=W, .. Hence

D oW, W)=6=W ., W)=W..,
by (iv). Hence O~(U{, W)=U{*. Finally, since the restriction of 6 to U
(SW) is nonsingular, @=(U{", W)#0.
LEMMA 4.5. For each k,
@<W1,1, W1,1>me?)1:@(U1({e)1, W1,1)?‘~L0-

Proor. This is because of the nonsingularity of the restriction of & to
W1,1gW.
For each 1=k=<s, we define a;, ;, inductively, by

__ Qpy, wlay r—(h—1))
Ap, = A )

2<h<p—1. 4.1)
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By convention, we take
ag =1 4.2)
for all k.
For each 1=/=p—1 and for each 1=k=<s, let ¢, be the linear mapping
defined by
XU =T Xy X —Qy p X — o —ay, , 2P, xeV.

The following lemma is an immediate corollary to

LEMMA 4.6. If an element w of W, p-1 satisfies the condition
wht b UF,-,

for some k, then weU$¥,_, and so w*¢=0.

We next prove several technical results concerning ¢y, ..

LEMMA 4.7. PPLE=Q1, 0 -

Proor. This follows from the fact pr=tp.

LEMMA 4.8. If weZ,,,, then

wll k=L k=fl+2, b= ... = p¥p-1, %,

PrOOF. This is because (Z;.,)°"'=0.

LEMMA 4.9. Let 2=2v=p—1, 1=k=s, 1=t=Zr. Let weV, x5, X3, -+, X, €25
Then

0,(w, xs, Xg, ==+, x) 0 k=0, (W0, Xy, x5, >+, Xy).

ProOF. This follows from [Lemma 3 1.

LEMMA 4.10. Let 22v=p, 1=k<s, 1=5t<r. Lat yeZ, z€UP,_1, x4, x4
-, x,€Z,. Then the following hold:
(i) If 2=v=p—1, then

0.y, z, x5, =, xr)%,k

-_:gc(y‘ﬁv—l,k, Z, Xgy 0, xr)'-i—al,kt?c(y%'l"‘, Z° X3, v, Xq).
(ii) For v=p, we have

0:(y, 2, xq, -+, X)) 21

=0,y P Lk, 2, x5, , Xp)Far k0 (yFP 1R, 2P, Koy e, Xy)

F((p—Dp-1, i — a1 1Qp-1, )0, (Y77, 20, x5y -+, X1

ProoF. First suppose 2=<v=p—1. We have

0.y, z, xs, =, X))ok

=0,(y%, (z+ay, 12°), X3, =+, x)—0(y, 2, x5, =+, X;)
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v
h
'_hz_)lah,kﬁt(yp y By Xgy *'° xr)
2 oh-1 _p
—nZ_)lah,khﬁt(y' , 2%, Xg, 0t Xq)

— 3 an 1h0,(y°", 2°, x4 -+, x;)  (by Lemmas BI and B4 (ii))
h=1
:0t(3’r, 2, X3y ***, x‘l’)_gt(y7 2, X3y **°, xT)
V-1 IS
—Elah.kﬁz(y” ) 2, Xyttt Xy)
+ay, 1007, 2°, x5, -+, xy)

-1
__hgoah—{-l,k(h—’—l)ot(yph’ ZP, xs’ ST xr)

-1
_DE ah"khat(yph’ zp’ Xgy =07 xr) (for yvaO)
h=0
:at(yq,u-l'k’ Z, X3, "ty x7‘>+a1,k05(yr’ Zp, x3, e, XT)

— S (- Danu s than 8", 20, x5, -, %),

Since (h+1)@ns1, e +han, e=ay, zan, , for 0Sh=<p—2 by [4.1) and [4.2), this proves
(i). For v=p, the above calculation is valid if we interpret ¢, . as @p-1 s,
except that in the last sum the coefficient for

-1
0t(xpp > ypy X3, xr)

is (p—1)ap-1,x. Thus (ii) is proved.
Now let

UP,=UE)e",  1=k<s, 25h<p, 1<i<p—h+1 (4.3)
If h=2, this coincides with the description of U in Since

we have

Wh, = UI(Lk,)i . (4. 4)
Of course, U§”, depends on p'~", which depends on the choice of W, ;. In fact,
a suitable choice of W, ; enables Uf?; to have the following nice property.

LEMMA 4.11. The subspaces Wy, i can be chosen so that if we define UP; by
{4.3), then the inclusion
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h-2
(UsP)f1Leg 16_91 UfPhsi-1-1

holds for all h, 1 with 2=h=p+1—i and for all k.
Proor. We prove by induction on v that W, ; can be chosen so that

O3S BUBnere 4
=1

for all m<p+1—v and for all . This certainly holds for v=2 by Lemma 44
(ii). Now suppose that holds for v<t—1. For each &, let

and let

(k)
{e] }1§j§'ﬂp+1_t’k
be a base of U{,,;-; such that

{ei%} isisng,
Tm,
is a base of U, for 1=m=p+41—t. Let
k
XE{ePhn |, rrssany, -

By x?eU®, . Hence, by the inductive hypothesis and
@ ¢ B
(x7L k)P =(xP) ke @Ul,t+m—2-l .
Therefore we may write x?1.r=w-+z, where
t-2
wElEBUl(f“%er_l-z and ZEZl.
=1

Since JCEUt(f?mgI/Vt,ngp.H_g_m by and

xPre=[x, t]—a;, s x°EY pio-t-m
by and Also
we gwl,t+7n—1—lgyp+2-t~m
by and [3.9). Consequently
z€Z MY pio-t-m=Wy, t4m-2 -

Therefore we may write
z=w'+27,
where
welU®,in-. and z’e@kUl‘f‘,’m_z.

Hence, replacing w by w—+w’ and z by z’, we may assume
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z2€ QUMim-2.
u¥k

Since 2+4(+m—2)=p+1, W 14m-» is well-defined. Also note that ¢, is a
bijection from PurrU%im-2 Onto PBuurUi¥im-s, for ay . #ay,, u#k. Hence
there exists yeU{% -2 such that

z=y%Lk,
If we let x’=x—y, then
€Y pri-t-m (4.6)
and
(x’)¢1,k:w . 4.7

Since m, k were arbitrary and x was also arbitrary, we may replace all ¢{* by
(e§P)’ following the above procedure. Let

(UBY =ef") 1zszn;
and

Whi=® UL
r=1
Then, by [4.6), the W; ; satisfy for h=t. Hence if we let
UE,)=UH)?, Isisp+1-1,

and
(Ut(li)l,zﬂ-z—t),:(Ut”i)l, p+1—t),€BXk ’

where X, is a complement to U ,41-¢ in U pes-r, and let

= @WURLY,  1SiSpra—t,
and if we simply let
UPy=Up; and Wh =W, l=m=p+1—nh,

for h<t—2, then the W; ,; satisfy [3.7), [3.8), [3.9)] for A=<t and the (U,
satisfy for v=t by [47). Of course is also satisfied for h<t. Also
note that this “replacement” does not hurt the property that holds for
v=t—1. Now the only thing we have to do is to choose W} ; for h=t+1 fol-
lowing the method described in Section 3.

In the remainder of this section, we assume that the W, ; are chosen so
that the conclusion of Lemma 411 holds.

LEMMA 4.12. (i) Let 2=h=p. Then (UPp-n+1)2-1t=0 for all k.
(ii) Let 1=h=p—1. Then

OWy-1, WE

10-
,:3
L

for all k.
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(i) Let 2£h=p. Then if x=Z, satisfies the condition x*r-1.rcU®,_, for
some k, then x%n-1.r=(,

PROOF. We proceed by induction on h. Statement (ii) for A=1 follows
from (iv), and (i) for A=2 follows from (ii). Now
assume that (i) is proved for 2=<h=<wv, and that (ii) and (iii) are proved for
1=h=v—-1L

First we prove (iii) for h=v. Let

A={xeZ,| xf-1rcUP,_}.
By Lemma 4.9 and Lemma 4.4 (iv),
OA W)SA. (4.8)

Let y be an element of ANZ,.,. By y¥o-2,2=(), By (iii) for h=
v—1, y¥»-22=0 and so y¥»-1.#=0. Although the induction breaks down when
v=2, yet we can still prove y®o-1.2=0 as (Z,)?2*=0. Thus (ANZ,-,)"v 1. %=0,
which means that we may regard ¢,-1,: as a mapping from A/(ANZ,-,) into
U{¥,-,. We regard p°* as a bijection from A/(ANZ,-,) onto A*°' and denote
its inverse by p*. We know that A¢°! is an ideal of W by and by Lemmal
4.9. Now let x, A*", x,, x4, -+, x,W. Note that

0.(x%, x4, Xgy -, Xy)
is well-defined as an element of A/(ANZ,..), for xS x¢°+Z,, and
O(ANZ 1, WIS ANZ,-; by Also
0.(x8*, x5, X35, -+, X" 1=0,(%1, Xo, X3, **, Xy)
by Lemma 31, and so
0:(x", x5, X5, =, X)=04(x1, X3, X3, -+, X7)°".

Hence
0t(x€*¢v~1,k’ Xoy, X3y =", x‘r)

:0t(xq*: Xoy X3y, *t*, xr:)‘av—l'k (by M]’
:0z(x1: X2, X3y =0y xr)p*%"l-k.
Since xi, xs, X3, **-, X, Were arbitrary, this means that p*@,-;,, is normal with

respect to W. On the other hand, we have (U{®)r*¢v-1..=0, for (U{)%r-12=0
by (i) for A=v and

URAHANZ - )/ (ANZ - )=(UB)P".

Moreover, since a,,,# a;,  for u# k, we have A?° "W, ,=U. Since O=(Z,, W)
=W, ., this means O=(A°°"*, W)=U{*. Now since O=(A*""SO=(A*""*, W) and
since the restriction of 8 to (A°"Y)#*¢v-1.2 (SUH,SW, ,SW) is nonsingular, we
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may apply with X=W and Y=A*"" and ¢=p*p,1, to get
A‘Pv—l,k:O.

Next we prove (i) for h=v. Let x€Ug,-, and x,, x5, ---, x,€W. We
want to show

v
ﬁt(-x) xZ; x3y Tty xT>EliQUl(fe)p‘l‘
Let x;=x°""", and let a, , be asinLemma 3.8 Since x? UL, poo=(UL, p-)**
CY$'=Y, by [3.4),
Ht(xpa x27 X3, Tty xT)E@(YZ, W):Y2

by [3.3). On the other hand,

v-1
0;()6‘0, Xoy, Xsgy *°*y xr)g 1=1 Ul(?)p—l
by (i) for h=v—1. Hence
g YN
Oxt, o 20,0, DSV QU= G ULt

Since
-1 1-1
0t(xp) Xg, X3, "' xT):E(av-Ll)p
by (i) for m=v—1, this implies that

am,leUf{Z)p-l—v+m (49)
for 1=<m=v—1. Hence

v 1-1 v
E(av-l+1,l)p & EBUL(?)p—-l-
=2 =2
Since
2 pl-1
0.(x, x2, X3, -, xr)_—z“i (Qy-141,1) ’
this means that we have only to show that a,,=U{*,-;. Since xcUg",-,,

x87°eUR, 1S Y. (4.10)
We shall compute
0t(x€—v) Xeo, X3y **° ’ xr)pv,k

in two manners. Since (x{")P=xcU)-,, (x")%v-12=0 by (i) for h=v, and
S0 (x87")P0. k0 =(x07") %v. k=(x8"") %v-1, k=0 by Lemmas B.7 and Hence

(xv ke Z,. (4.11)
On the other hand, since

-V p0+1-1
(xq )P EUL(?)p—ngéfZ)p—l ’ lglév—_ly
we have
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-1
(2 ke QU (4.12)
by Lemma 411 By (4.11) and [£12),

v=-1
(x4 ”)Q”'”EZI\(@U{?})—;):U{%-I-

Hence
- —
0.(x87%, x4, x5, vy X0) 0 k=0,((x87)P0 %, x5, x4, -, xNEUF,.;  (4.13)

by Lemma 4.9 and Lemma 4.4 (iv). On the other hand,

0(x87°, xg, X3, -, xr)=§ (@pet49,1)P* 7 (4.14)
by (1). Since @y-140,1€UPF,- 141 for 3ZI=v by [4.9),
(2 (@o-122,0)# )P0 #=0
by (i) for 3<h=v. AISO (ays1,1)7>*#=0, for ay4;,,€Z,. Therefore
0:(x87°, xa, Xsy -+, X)T0E=(ay,1)° Prkt(ay,1)? 0., (4.15)

Since a1,:€UFp-v, (a1,1)° oe€U¥,y by (i) for h=v and by Lemma 4.11
Hence, comparing (4.13) and [4.15), we get

(av,1)p—1%'k:0t(x€_%”"z, Xo, X3y *t7, xr)_(al.1)p_%”'k€U1(%—1- (4.16)
By (@y,1)? **1.2€U®,_;. On the other hand, (4.10) implies

0t(xq_v’ x27 Xgy ot ’ xT)EQ(YO; W):Y07
and so
(av,l)p-leyomvz':Wz,p—l

by [414). Thus (a,, )¢ " satisfies the hypotheses of Hence (a,,.)?”"
eU¥,-;, and s0 a,,€UH,-;. Note that this implies (a,,)? '#2.¢=0, and so we
have

0.(x87"00.k, Xg, Xg, w0, X)=0,(X1, Xgp Xgy o0, X,)P 0,k 4.17)
by [4.16).

It remains only to prove (i) for A=v-+1. Note that shows that the
mapping p~°p,,» from U{¥,_, into U{¥,_; is normal with respect to W. Now we
shall show

OWU®, UE)P =0,

from which we can obtain the desired conclusion by applying with
X=W and Y=U{",_,, for

6~(U )= 06Uy, W)=6"U).
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Let x4, x5, x5, -+, x,€U#. Let an,1, bn,: be as in Lemma 3.8, andjlet
1= 3 (bo-112,)? ' € 2,
Since x£'""¢v-1,4=0 by (i) for h=v,
0Ux8, 187, kg, e, )P0 k=0
by (i). Namely,
EQU—DQ%JHJ+a%HLJ““%J+x%¢=o (4.18)
by (ii). By (ii) for hA=v, @p,1EUF)-1-psnm for I=m=v. Hence
(ay,0)P PR U, (4.19)
by (i) for A=v and by Lemma 4.11, and
2 U=1)@pmtn, 17 om0, ) 080

by (i) for 2<h=<v. Thus can be written in the form
v@s,1)? "0kt 2%0.6=0. (4.20)

Therefore x%v.:=sU®,_, by Since x=Z,, this means that x satisfies the
hypotheses of (iii) for A=v. Hence x%v.x=0, and so

(ay,1)? " ?v.2e=0
by Namely,

-v
0:(x1, Xoy X3, =+, %) Pok=0.

Since x,, x,, xs, -, X, were arbitrary, OU®, UH)? ™ ?v,2=0 as desired.

LEMMA 4.13. For each k,
a,: <40, 1, 2, -+, p—1}.
Proor. Let 0+weU®. By Lemma 4.10l(ii) and Lemma 4.12 (i) for h=p,
O(we™®, we™, w, -, w)?r-1.k
=((p—Dap-1, s— a1, 2®p-1, )0 (W, w, w, -+, W)EUH.

This means that x=80(w?'"?, w*™, w, ---, w) satisfies the hypotheses of
4,12 (iii) for h=p. Hence x?»-1.x=0. Since 6(w, w, w, ---, w)#0 by the non-
singularity of the restriction of # to W, this implies

(p"l)ap—l.k’_al,kap—l.k:()- (421)
Substituting for h=p—1, p—2, ---, 3, 2, successively, in we get
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(ay, e —(p—D)ay, r—(p—2)) -+ (@1, r—Day, =0,

and hence a, , is one of 0,1, 2, -, p—1 as desired.

5. Proof of Proposition F.

We finish the proof of Proposition F in this section.

LEMMA 5.1. If t€Cy(Z,) acts trivially on
@<W1,1: Wl.l)GBQ(WI,ly W1,1>p—1)

then t acts trivially on Y,.
PROOF. Let s, a;,; be as in Then s=1 and a; ;=0 by Lemmal
4.5. Thus the desired conclusion follows from (1).

LEMMA 5.2. If t€Cy(Z,) acts trivially on Y,, then z=1.

PrROOF. We prove by induction on i that ¢ acts trivially on Z,. If h=],
there is nothing to be proved. Now we assume that z acts trivially on Z;.4,
and let ¢ be the mapping defined by

x0=[x""" 7], xeV§
By the inductive hypothesis, (V4 1)*SZ, Let x,€V8 ™ x, xg -, x:E2Z4,
and let a,,; be as in We have
0&([x€1vh) T]; Xoy, X3y *°° xr)ztﬁt(xlfl_h) Xoy, X3y **, x'r); T]

R 1-1 1-h
=[l§(an-z+1, D0 wl=[(a, )", 7]

=0,(x1, X2, X3, =+, X)?

by the inductive hypothesis. This means that ¢ is normal with respect to Z,.
Also (Wi, p-r+1)?=0 by the hypothesis of the lemma. Since (V&' ™)*<SZ,N[V, 7]
SCy(@NLV, ], we may now apply with X=2Z, and Y=V&""" to
get (V& ")e=0. This means [V, ]=0, and so [Z;, z]=0 as desired.

PROOF OF PROPOSITION F. Let W,,=@%,; XY be a fixed direct sum decom-
position of W, , in which each X is an indecomposable ideal of W, ,. By the
nonsingularity of the restriction of 6 to W,,,, @(X, W, ,)+0 for each ;. Hence,
by Lemmas 4.4 and and by

1Co(Z1)/Coqzpy(@W 1,1, Wi )DOW sy, Wi,1)* )|
§pd§pdim Wl’lépmz.
Since
CC@(Zl)(@(WLl, Wl,l)@@(Wl.]: W1. 1)9_1):1

by Lemmas and B.2, this yields the desired conclusion.
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6. Proof of Theorem E.

In this section, we finish the proof of Theorem E by induction on .
Let §=Q/Co(Z,). Also let W,=Z,N\V*¢". Thus W,=W, and W,=Z,. Let
my=dim(W,/W,).

LEMMA 6.1.
£ [my/ptl

ICQ_(WP—1>I éﬁigl
Proor. First we show
(Wi, CegW,-11=0. (6.1)

In order to do this, we prove by downward induction on A that
[Wh, C@(I/Vp—l):lzo, 1§h§p_1

Assume [Wyi,, Cg(W,-)1=0, and, by way of -contradiction, suppose
(W1, CogW,-1)]1#0. Then there exist x, yeW, and r€Cg(W,-;) such that x*=
x+y, y=y+#0. Then

0(x, v, 3, =, ) =0(x, 9, 9, =, )+, v, 3, -, 9.

But since 4(x, y, y, -+, ¥)EWy+1 by Lemma 34, this contradicts the nonsingu-
larity of the restriction of # to W,. Thus (6.1) is proved. Next let Wo=Wo/W,.
Let ¢ be an arbitrary element of Cg(W,-;). Let x be an element of W, such
that ¥=Cy(r). Then x*=x-+y, yeW, Arguing as above, we get y=0, and
so xECy,(r). Since x was arbitrary, this means

Ciry(£)=Cory() - 6.2)

Since r was arbitrary, this, in particular, implies that Co(W,-,) acts faithfully
on W, On the other hand, we can easily verify O(W,, W,)SW, by
for h=1. Hence # naturally induces a multilinear mapping on W, which we
shall denote by 4. Then we may regard C5(W,-,) as a unipotent subgroup of
Aut(d). Now we show that for every r=Cg(W,.,) and for every y such that
OiyeCﬁzo(r)f\[W’o, 7], we have

5(3‘7, jj) 5}" Y 5)');&0’
from which we get the desired conclusion by the inductive hypothesis. Let z,
v be as above, and suppose, by way of contradiction, that 4(¥, 7, 7, -, 5)=0,

namely, (v, v, y, -+, y)eW,. Since ye[Wo, 7], we may assume that there
exists xW, such that x*=x-4y. Then

H(JC, Yy Yy y)rze(xy Yy ¥, s y)_]_a(y’ Vs Yy o, J’), (63}
N
for y&Cy,(2) by (6.2} Since 8(y, ¥, y, -, ¥)EW,, (6.3) shows O(x, y, v, -, )
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€y, (7). By this implies 6(x, y, v, -, »)€Cy(z), which means 6(y, y,
¥, -+, 3)=0 by [6.3). Since y&Cy,(t)N[W,, 7], this contradicts the hypothesis
0
of Theorem E.
Proor OF THEOREM E. By the inductive hypothesis,
— = [mo/ %l
|Q/CqWp-1) | =p™=* .
Combining this and Lemma 6.1, we get
| Q | épél(tmz/pihcml/pi])
Combining this and Proposition F, we get

+ £ [my/pil+ T [mq/ptl
2y e P P

Q1<p"

= ( [pi1+lm 4/ piD Z [nlpt
iz1 Lpmglpti+lmq/p] <pigltnp]

<p <
as desired.
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