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$0$ . Introduction.

Let $T$ denote the action of a group $H$ as homeomorphisms of a topological
space $X$ ; then (X, $H,$ $T$ ) is said to be topologically transitive if for each pair of
non-empty open sets $A,$ $B\subseteqq X$ there exists an $h\in H$ such that $A\cap T_{h}(B)\neq\emptyset$ (see,

for example, [13] Chapter 5). Following [10], we define the $C^{*}$-dynamical sys-
tem $(\mathcal{A}, H, \tau)$ to be topologically transitive if for each pair of non-zero elements
$x,$ $y\in \mathcal{A}$ there exists an $h\in H$ such that $x\tau_{h}(y)\neq 0$ .

The algebraic definition is particularly natural if $\mathcal{A}$ is abelian. In this case
$\tau$ determines an action $\tau’$ of $H$ as homeomorphisms of the spectrum $X$ of $\mathcal{A}$ such
that $(\tau_{h}x)(\omega)=x(\tau_{h-1}’\omega)$ , for $x\in \mathcal{A}$ and $\omega\in X$, and $(\mathcal{A}, H, \tau)$ is topologically transi-
tive if and only if (X, $H,$ $\tau’$ ) is topologically transitive.

In [10] the definition is given in a slightly different form. These authors
require that the product $\mathcal{A}_{1}\mathcal{A}_{2}$ of each pair of non-zero $\tau$-invariant hereditary
$C^{*}$-subalgebras $\mathcal{A}_{1},$ $\mathcal{A}_{2}\subseteqq \mathcal{A}$ is non-zero. This obviously follows from our definition
but conversely if there exist non-zero $x,$ $y\in \mathcal{A}$ such that $x\tau_{h}(y)=0$ for all $h\in H$

then the product $\mathcal{A}_{1}\mathcal{A}_{2}$ of the $\tau$-invariant hereditary $C^{*}$-subalgebras $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$

generated by $\{\tau_{h}(x)^{*}\mathcal{A}\tau_{h}(x);h\in H\}$ and $\{\tau_{h}(y)\mathcal{A}\tau_{h}(y)^{*} ; h\in H\}$ must be zero.
Although the foregoing definition of transitivity is quite natural there is a

seemingly stronger notion which appears to be more useful. The $C^{*}$-dynamical
system $(\mathcal{A}, H, \tau)$ is defined to be strongly topologically transitive if for each
finite sequence $\{(x_{i}, y_{i});i=1,2, \cdots , n\}$ of pairs of elements $x_{i},$ $y_{i}\in \mathcal{A}$ for which

$\sum_{i=1}^{n}x_{\ell}\otimes y_{i}\neq 0$ ,

in the algebraic tensor product $\mathcal{A}\otimes \mathcal{A}$ , there exists an $h\in H$ such that

$\sum_{i=1}^{n}x_{i}\tau_{h}(y_{i})\neq 0$

in $\mathcal{A}$ .
Clearly strong topological transitivity implies topological transitivity; it suffices

to apPly the strong condition to a single pair $(x, y)$ . In Section 1 we show that
the two properties are equivalent if $\mathcal{A}$ is abelian or finite-dimensional. We also
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show that strong topological transitivity follows from other ergodicity properties,
but we do not know if strong topological transitivity is strictly stronger than
topological transitivity.

In Section 2 we analyze the structure of the action $\alpha$ of a compact group $G$

on a strongly transitive $c*$-system $(\mathcal{A}, H, \tau)$ under the assumption that $\alpha$ and $\tau$

commute. More specifically, we show that $\{\alpha_{g} ; g\in G\}$ consists of those auto-
morphisms $\beta$ of $\mathcal{A}$ which commute with $\tau$ and which reduce to the identity on
the fixed point algebra $\mathcal{A}^{\alpha}$ of $\alpha$ . Then in Section 3 we examine the infinitesimal
structure of $(G, \alpha)$ . In particular we show that if $\delta$ is a closed symmetric deri-
vation from the G-finite elements $\mathcal{A}_{F}$ into $\mathcal{A}$ then $\delta$ generates a one-parameter
subgroup of $\alpha$ if, and only if, $\delta$ commutes with $\tau$ and $\delta$ is zero on the fixed
points of $\alpha$ . Finally in Section 4 we make some remarks about the generation
problem for dissipations. This analysis extends results recently obtained by
Kishimoto and Robinson [9], Longo and Peligrad [10], and Robinson, $Strmer$

and Takesaki [11]; see also [1], [2], [3], [8] and [12] for earlier results of a
similar nature.

1. Topological transitivity.

In this section we analyze some basic properties of transitivity and strong
transitivity as defined in the introduction. First we show that these properties
are invariant under the adjunction of an identity.

Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system. If $\mathcal{A}$ does not contain an identity
one can adjoin such an element 1 by a canonical procedure and then extend
$(H, \tau)$ to $A=\mathcal{A}+C1$ by setting $\tilde{\tau}_{h}(x+\lambda 1)=\tau_{h}(x)+\lambda 1$ .

LEMMA 1.1. Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system without identity and
$(\tilde{\mathcal{A}}, H,\tilde{\tau})$ the system obtained by adjoining an identity. The following Pairs of
conditions are equivalent:

1. (1s.) $(\mathcal{A}, H, \tau)$ is (strongly) topologically transitive;
2. $(2s.)$ $(\hat{\mathcal{A}}, H,\tilde{\tau})$ is (strongly) topologically transrtive.
PROOF. $ls\Rightarrow 2s$ . Identify $\mathcal{A}$ with its universal representation. This gives a

faithful representation of J4, and the tensor product Hilbert space gives a rep-
resentation of $\tilde{\mathcal{A}}\otimes\tilde{\mathcal{A}}$ . Assume

$\sum_{i=1}^{n}\tilde{x}_{i}\otimes\overline{y}_{i}\neq 0$

for some $\tilde{x}_{i},\tilde{y}_{i}\in\tilde{\mathcal{A}}$ . Let $(e_{\alpha})$ be an approximate identity of $\mathcal{A}$ . Then $e_{a}\tilde{x}\otimes\tilde{y}e_{a}$

converges weakly to $\tilde{x}\otimes\tilde{y}$ for all $\tilde{x},\tilde{y}\in_{c}X$ . Thus for some $\alpha$ sufficiently large,

$\sum_{i\Rightarrow 1}^{n}e_{\alpha}\tilde{x}_{i}\otimes\tilde{y}_{i}e_{\alpha}\neq 0$

in $\mathcal{A}\otimes \mathcal{A}$ . Hence there exists $h\in H$ such that
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$e_{\alpha}( \sum_{i=1}^{n}\tilde{x}_{i}\tau_{h}(\tilde{y}_{i}))\tau_{h}(e_{\alpha})=\sum_{i=1}^{n}e_{a}\tilde{x}_{i}\tau_{h}(\tilde{y}_{i}e_{\alpha})\neq 0$

by Condition ls. But this implies

$\sum_{i=1}^{n}\tilde{x}_{i}\tau_{h}(\tilde{y}_{i})\neq 0$

so Condition $2s$ is fulfilled. $2s\Rightarrow ls$ . This is evident from the embedding of
$(\mathcal{A}, H, \tau)$ in (JZ, $H,\tilde{\tau}$). Ie2. This follows from the above with $n=1$ .

Lemma 1.1 is useful because it means that one can usually assume that $\mathcal{A}$

has an identity in the discussion of transitivity.
Next note that the use of two elements in the definition of topological tran-

sitivity is not particularly significant. In fact by iteration one readily sees that
$(\mathcal{A}, H, \tau)$ is topologically transitive if, and only if, for each sequence $x_{1},$ $x_{2},$

$\cdots$ , $x_{k}$

of non-zero elements of $\mathcal{A}$ there exist $h_{1},$ $h_{2},$ $\cdots$ , $h_{k}\in H$ such that

$\tau_{h_{1}}(x_{1})\tau_{\hslash_{2}}(x_{2})\cdots\tau_{h_{k}}(x_{k})\neq 0$ .

A similar conclusion is true for strong topological transitivity.

PROPOSITION 1.2. The following conditions are equivalent:
1. The $C^{*}$-dynamical system $(\mathcal{A}, H, \tau)$ is strongly topologically transitive.
2. For each family of finite sequences $\{x\ell^{1)}, \cdots , x\ell^{k)} ; i=1, \cdots , n\}$ of elements

of $\mathcal{A}$ satisfying

$\sum_{i=1}^{n}x_{i}^{(1)}\otimes x_{i}^{(2)}\otimes\cdots\otimes x_{i}^{(k)}\neq 0$

in the k-fold algebraic tensor product $\otimes^{k}\mathcal{A}$ , there exist $h_{1},$ $h_{2},$ $\cdots$ , $h_{k}\in H$

such that

$\sum_{i=1}^{n}\tau_{h_{1}}(x_{i}^{(1)})\tau_{h_{2}}(x_{i}^{(2)})\cdots\tau_{h_{k}}(x_{i}^{(k)})\neq 0$

PROOF. $1\Rightarrow 2$ . We argue by induction. Assume Condition 2 is valid for
$2\leqq k<N$. Now consider $x_{i}^{(j)}$ such that

$\sum_{i=1}^{n}x_{i}^{(1)}\otimes x_{i}^{(2)}\otimes\cdots\otimes x_{i}^{(N)}\neq 0$

By making a linear rearrangement, if necessary, one can express the relation in
the form

$\sum_{i=1}^{p}yj^{1)}\otimes Y_{i}\neq 0$

where the $y_{i}^{(1)}$ are linearly independent and the $Y_{i}$ are elements of $\otimes^{N- 1}\mathcal{A}$ which
can be written as

$Y_{i}= \sum_{j=1}^{m}y1_{j}^{2)}\otimes\cdots\otimes y\ell\S^{r})$

But we can also assume that $Y_{1}\neq 0$ . Therefore by the induction hypothesis there
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exist $h_{2},$ $h_{3},$ $\cdots$ , $h_{N}\in H$ such that

$\sum_{j=1}^{m}\tau_{h_{2}}(y_{1j}^{(2)})\tau_{h_{3}}(y_{1j}^{(3)})\cdots\tau_{h_{N}}(y_{1j}^{(N)})\neq 0$ .

Consequently

$\sum_{i\Rightarrow 1}^{n}\sum_{j=1}^{m}yl^{1)}\otimes\tau_{h_{2}}(yj_{j}^{2)})\tau_{h_{S}}(y1_{j}^{3)})\cdots\tau_{\hslash_{N}}(y1_{j}^{N)})\neq 0$

because the $y_{i}^{(1)}$ are linearly independent. Hence by Condition 1 there exists an
$h_{1}\in H$ such that

$\sum_{i=1}^{n}\sum_{j=1}^{m}\tau_{h_{1}}(yj^{1)})\tau_{h_{2}}(yj_{j}^{2)})\cdots\tau_{h_{N}}(y1_{f}^{N)})\neq 0$

and by rearrangement this gives the conclusion

$\sum_{i=1}^{n}\tau_{\hslash_{1}}(x\}^{1)})\tau_{h_{2}}(xj^{2)})\cdots\tau_{h_{N}}(x\}^{N)})\neq 0$

Thus the induction hypothesis is valid for $k=N$. $2\Rightarrow 1$ . This is evident.
Although strong topological transitivity aPpears to be a strictly stronger

property than topological transitivity we do not know of any example in which
this is established. In fact in many situations the two properties are equivalent.

THEOREM 1.3. Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system with $\mathcal{A}$ abelian. The
following conditions are equivalent:

1. $(\mathcal{A}, H, \tau)$ is topOlOgically transrtive;
2. $(\mathcal{A}, H, \tau)$ is strongly topologically transitive;
3. $Su_{B^{\Vert x\tau_{h}(y)\Vert=\Vert x\Vert\cdot\Vert y\Vert}}h\in$ $x,$ $y\in \mathcal{A}$ ;

4. $\Vert\sum_{i=1}^{n}x\}^{1)}\otimes\cdots\otimes x\}^{k)}\Vert_{k}=\sup_{\hslash_{1}.\cdots.\hslash_{k}\in H}\Vert\sum_{i=1}^{n}\tau_{h_{1}}(x\}^{1)})\cdots\tau_{h_{k}}(x1^{k)})\Vert$ for all $x\ell^{j)}\in \mathcal{A}$

and all $k\geqq 2$ , where $\Vert\cdot\Vert_{k}$ denotes the unique $C^{*}$-norm on the tensor product
algebra $\otimes^{k}\mathcal{A}$ .

PROOF. Clearly $4\Rightarrow 3\Rightarrow 1$ and $4\Rightarrow 2\Rightarrow 1$ . Hence it suffices to prove that $1\Rightarrow 4$ .
But for this we can, by Lemma 1.1, assume that $\mathcal{A}$ has an identity.

The proof of $1\Rightarrow 4$ is almost identical to the proof of Proposition 2.1 of [9].

First for $h=(h_{1}, h_{2}, \cdots , h_{k})\in H^{k}$ one dePnes a linear map $T_{h}$ from $\otimes^{k}\mathcal{A}$ into,
$\mathcal{A}$ by

$T_{h}( \sum_{i=1}^{n}xj^{1)}\otimes\cdots\otimes xj^{k)})=\sum_{i=1}^{n}\tau_{h_{1}}(xj^{1)})\cdots\tau_{h_{k}}(xj^{k)})$ .

It then follows that
$a \in\otimes^{k}\mathcal{A}rightarrow\Vert a\Vert_{k}=\sup_{h\in H^{k}}\Vert T_{h}a\Vert$

defines a seminorm on $\otimes^{k}\mathcal{A}$ . But since $T_{h}a^{*}=(T_{h}a)^{*},$ $T_{\hslash}aa^{*}=(T_{h}a)(T_{h}a)^{*}$ , and
$T_{h}ab=(T_{h}a)(T_{h}b)$ , one readily concludes that $\Vert\cdot\Vert_{k}$ is a $C^{*}$-seminorm. By the
form of topological transitivity stated immediately before Proposition 1.2, for any
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elementary tensor $a=a_{1}\otimes\cdots\otimes a_{k}\in\otimes^{k}\mathcal{A}$ there exists $h\in H^{k}$ such that $T_{h}a\neq 0$ ,
whence $\Vert a\Vert_{k}\neq 0$ . Hence by Lemma 2.3 of [9] the $\Vert\cdot\Vert_{k}$ are in fact $C^{*}$-norms.

The next result establishes the equivalence of the two notions of transitivity
for matrix algebras.

THEOREM 1.4. Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system with $\mathcal{A}$ finite-dimen-
sional. The following conditions are equivalent:

1. $\tau$ is ergodic, $i.e$ . $\mathcal{A}^{\tau}=C1$ where $\mathcal{A}^{\tau}$ denotes the fixed point algebra of $\tau$ ;
2. $(\mathcal{A}, H, \tau)$ is topologically transitive;
3. $(\mathcal{A}, H, \tau)$ is strongly topologically transitive.
PROOF. $2\Rightarrow 1$ . If Condition 1 is false there must exist two non-zero orthog-

onal projections $x,$ $y\in \mathcal{A}^{r}$ . Hence $x\tau_{\hslash}(y)=xy=0$ for all $h\in H$, and Condition 2
is false. $1\Rightarrow 3$ . Assume $x_{i},$ $y_{i}\in \mathcal{A}$ are such that

$\sum_{i=1}^{n}x_{i}\otimes y_{i}\neq 0$

but
$\sum_{i=1}^{n}x_{i}\tau_{h}(y_{i})=0$

for all $h\in H$. By linear rearrangement, if necessary, one may assume the $x_{t}$

are linearly independent and $y_{1}\neq 0$ . But it follows from Condition 1 that

$\int dh\tau_{h}(y_{i}y_{1}^{*})=\omega(y_{i}y_{1}^{*})1$

where $\omega$ is the unique normalized $\tau$-invariant trace on $\mathcal{A}$ , and the integral is
over the compact closure of $H$ in $Aut\mathcal{A}$ . Therefore

$0= \int dh(\sum_{i=1}^{n}x_{i}\tau_{\hslash}(y_{i}y_{1}^{*}))=\sum_{i=1}^{n}x_{i}\omega(y_{i}y_{1}^{*})$ .

Since $y_{1}\neq 0$ one has $\omega(y_{1}y_{1}^{*})>0$ and one concludes that the $x_{i}$ are linearly de-
pendent, which is a contradiction. Thus Condition 3 must be valid. $3\Rightarrow 2$ .
This is evident.

REMARK. For finite-dimensional $\mathcal{A}$ there are no analogues of Properties 3
and 4 of Theorem 1.3 for topological transitivity. In fact if $\mathcal{A}=M_{2}$ (the algebra
of $2\cross 2$ matrices) and $\tau$ is an ergodic action of a finite group then there exist
projections $p,$ $q$ such that

$\sup_{h}\Vert P^{\tau_{\hslash}(q)\Vert<1}$ .

The above arguments establish two criteria for strong topological transitivity,
both of which require the existence of a certain kind of ergodic state.

THEOREM 1.5. Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system for which there exists
a $\tau$-ergodic separating state $\omega,$ $i.e$ . $\omega$ is $\tau$-invariant and the cyclic covariant rep-
resentation $(\mathcal{H}_{\omega}, \pi_{\omega}, U_{\omega}, \Omega_{\omega})$ associated with $\omega$ satisfies
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1. $\Omega_{\omega}$ is the unique $U.(H)$ invariant vector in $\mathcal{H}_{\omega}$ ,
2. $\pi_{\omega}$ is faithful and $\Omega_{\omega}$ is separating for $\pi_{\omega}(\mathcal{A})’$ .

It follows that $(\mathcal{A}, H, \tau)$ is strongly toPologically iransitive.
PROOF. Again assume that

$\sum_{i=1}^{n}x_{i}\otimes y_{i}\neq 0$

but
$\sum_{i=1}^{n}x_{t}\tau_{h}(y_{i})=0$

for all $h\in H$, where the $x_{i}$ are linearly independent and $y_{1}\neq 0$ . Therefore

$\sum_{i=1}^{n}\pi_{\omega}(x_{i})\pi_{\omega}(\tau_{h}(y_{i}y_{1}^{*}))=0$

for all $h\in H$. Now it follows from the theory of $\tau$-invariant states (see, for
example, [5] Chapter IV, and in particular Theorem 4.3.23) that

$\sum_{i=1}^{n}\pi_{\omega}(x_{i})\omega(y_{i}y_{1}^{*})=0$ .

But since $\Omega_{\omega}$ is separating for $\pi_{\omega}(\mathcal{A})’’$ and $\pi_{\omega}$ is faithful one concludes that

$\sum_{i=1}^{n}x_{i}\omega(y_{i}y_{1}^{*})=0$

and $\omega(y_{1}y_{1}^{*})>0$ . Thus the $x_{i}$ are linearly dependent, which is a contradiction.

COROLLARY 1.6. Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system with $H$ compact.
The following conditions are equivalent:

1. $\tau$ is ergodic;
2. $\tau$ is topologically transztive;
3. $\tau$ is strongly top0l0gcally transztive.
PROOF. $3\Rightarrow 2\Rightarrow 1$ is evident. $1\Rightarrow 3$ . Since $\tau$ is ergodic there is a unique

$\tau$-invariant state $\omega$ over $\mathcal{A}$ given by

$\omega(x)1=\int_{H}dh\tau_{h}(x)$ .
But $\omega$ is a trace by [7] and hence $\Omega_{\omega}$ is separating for $\pi_{\omega}(\mathcal{A})’’$ . Thus Condi-
tion 3 follows from Theorem 1.5.

THEOREM 1.7. Let $(\mathcal{A}, H, \tau)$ be a $C^{*}$-dynamical system. Assume there exists
a $\tau$-ergodic state $\omega$ such that the corresponding representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ is
faithful. Moreover assume that $(\mathcal{A}, H, \tau)$ is asymptotically abelian in the sense

$inf\Sigma^{n}\Vert\pi_{\omega}([\tau_{\hslash}(x_{i}), y_{i}])\psi_{i}\Vert=0$

$h\in Ht=1$

for all finite sequences of elements $x_{i},$ $y_{i}\in \mathcal{A}$ and vectors $\psi_{i}\in \mathcal{H}_{\omega}$ . It follows that
$(\mathcal{A}, H, \tau)$ is strongly topologzcally transitive and furthermore
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$\sup_{h\in H}\Vert x\tau_{\hslash}(y)\Vert=\Vert x\Vert\cdot\Vert y\Vert$ , $x,$ $y\in \mathcal{A}$ .

PROOF. Again assume
$\sum_{i=1}^{n}x_{i}\otimes y_{i}\neq 0$

with the $x_{i}$ linearly independent and $y_{1}\neq 0$ , but

$\sum_{i=1}^{n}x_{i}\tau_{h}(y_{i})=0$

for all $h\in H$. Then

$\sum_{i\Rightarrow 1}^{n}\pi_{\omega}(\tau_{h}(z)x_{i}\tau_{h}(y_{i}y_{1}^{*}z^{*}))=0$

for all $h\in H$ and $z\in \mathcal{A}$ . Therefore by taking a limit over a suitable net of
convex combinations over $h$ one concludes that

$\sum_{i=1}^{n}\pi_{\omega}(x_{i})\omega(zy_{i}y_{1}^{*}z^{*})=0$

This again follows from the general theory of $\tau$-invariant states as described in
Section 4.3 of [5] together with our choice of the asymptotic abelianness condi-
tion. Now since $\pi_{\omega}$ is faithful, $z$ can be chosen such that $\omega(zy_{1}y_{1}^{*}z^{*})>0$ . Hence
the $x_{i}$ must be linearly dependent, which is a contradiction. Consequently
$(\mathcal{A}, H, \tau)$ is strongly topologically transitive.

The last statement of the theorem follows by an argument given in [9].

One has

$\omega((a\tau_{h}(b))^{*}(x\tau_{h}(y))^{*}(x\tau_{h}(y))(a\tau_{h}(b))\leqq\sup_{h}\Vert x\tau_{h}(y)\Vert^{2}\omega((a\tau_{h}(b))^{*}(a\tau_{h}(b)))$ .

It then follows from the conditions of asymptotic abelianness and ergodicity of
$\omega$ that

$\omega(a^{*}x^{*}xa)\omega(b^{*}y^{*}yb)\leqq\sup_{\hslash}\Vert x\tau_{h}(y)\Vert^{2}\omega(a^{*}a)\omega(b^{*}b)$ .
Since $\pi_{\omega}$ is faithful it follows that

$\Vert x\Vert^{2}\Vert y\Vert^{2}\leqq\sup_{h}$ I $x\tau_{h}(y)\Vert^{2}\leqq\Vert x\Vert^{2}\Vert y\Vert^{2}$

which gives the desired conclusion.
The property of strong topological transitivity can also be expressed in terms

of norms on tensor products, $e$ . $g.$ , the system $(\mathcal{A}, H, \tau)$ is strongly topologically
transitive if, and only if,

$\Vert\sum_{i=1}^{n}x_{i}^{(1)}\otimes x_{i}^{(2)}\otimes\cdots\otimes x_{i}^{(k)}\Vert_{k}=\sup_{\hslash_{1\prime}\cdots.h_{k}\in H}\Vert\sum_{l=1}^{n}\tau_{h_{1}}(x_{i}^{(1)})\tau_{\hslash_{2}}(x_{i}^{(2)})\cdots\tau_{h_{k}}(x_{i}^{(k)})\Vert$

dePnes a norm on $\otimes^{k}\mathcal{A}$ for all $k\geqq 2$ . This rephrasing follows directly from the
original definition for $k=2$ and from Proposition 1.2 for higher $k$ . Unfortunately
these norms are not necessarily $C^{*}$-norms, although this is the case if $\mathcal{A}$ is
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abelian by Theorem 1.3. For example all $c*$-norms on $\mathcal{A}\otimes \mathcal{A}$ satisfy the cross-
norm property

$\Vert x\otimes y\Vert=\Vert x\Vert\cdot\Vert y\Vert$ .

But the norm $\Vert\cdot\Vert_{2}$ has this property if, and only if,

$(*)$
$\sup_{\hslash\in}\Vert x\tau_{h}(y)\Vert=\Vert x\Vert\cdot\Vert y\Vert$ .

We have, however, already given an example where property $(*)$ fails (see the
remark after Theorem 1.4). Thus $(*)$ is a necessary condition for the $\Vert\cdot\Vert_{k}$ to
be $C^{*}$-norms. It is also sufficient to guarantee the more general cross-norm
property

$\Vert a\otimes b\Vert_{k+l}=\Vert a\Vert_{k}\Vert b\Vert_{l}$

for $a\in \mathcal{A}_{k}$ and $b\in \mathcal{A}_{l}$ . This follows by the argument used in the proof of Prop-
osition 2.1 of [9]. It would be of interest to obtain necessary and sufficient
conditions on $(\mathcal{A}, H, \tau)$ for the $\Vert\cdot\Vert_{k}$ to be $c*$-norms. It would also be of interest
to compare the $\Vert\cdot\Vert_{k}$ and the similar norms dePned for norm asymptotically abelian
systems in [9]. These latter norms are defined as above except the supremum
is replaced by a limit supremum, and Proposition 2.1 of [9] establishes conditions
under which the $C^{*}$-norm property is valid.

2. Topological transitivity and compact actions.

Next we consider a strongly topologically transitive $C^{*}$-system $(\mathcal{A}, H, \tau)$ and
also an action $\alpha$ of a compact group $G$ on $\mathcal{A}$ . We assume $\alpha$ commutes with $\tau$

and our aim is to analyze the structure of $(G, \alpha)$ .
THEOREM 2.1. Let $(\mathcal{A}, H, \tau)$ be a strongly topologically transitive $C^{*}$-dynam-

ical system and $\alpha a$ (faithful) continuous action of a compact grouP $G$ as $*$-auto-
morphisms of $\mathcal{A}$ such that $[\alpha, \tau]=0$ . If $\beta$ is a $*$-automorphism of $\mathcal{A}$ such that
$[\beta, \tau]=0$ and $\beta(x)=x$ for all $x\in \mathcal{A}^{a}$ , the fixed point algebra of $\alpha$, then $\beta=\alpha_{g}$

for some $g\in G$ .
REMARK. This theorem is a direct generalization of Theorem 1.1 of [11].

If $\mathcal{A}$ is a von Neumann algebra, the theorem remains true if strong topological
transitivity is replaced by ergodicity ([12]; see also [1], [2], [3]).

If $G$ is abelian, one may also replace strong topological transitivity by
topological transitivity ([10], Theorem 3.1).

PROOF. Let $\mathcal{A}_{F}$ denote the set of G-finite elements in $\mathcal{A},$
$i$ . $e$ . the linear

span of the spectral subspaces

$\mathcal{A}^{a}(U)=\{\int dgTr(U_{g}^{-1})\alpha_{g}(x);x\in \mathcal{A}\}$
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corresponding to the irreducible representations $U$ of $G$ . Alternatively, $\mathcal{A}_{F}$ is
characterized as the set of $x\in \mathcal{A}$ such that the linear span of $\{\alpha_{g}(x);g\in G\}$ is
finite-dimensional. We note that $\mathcal{A}_{F}$ is a dense $*$-subalgebra of $\mathcal{A}$ and if $V\subseteqq \mathcal{A}$

is a finite-dimensional $\alpha$-invariant subspace then $V\subseteqq \mathcal{A}_{F}$.
Next for each $h\in H$ let $T_{h}$ denote the linear map from $\mathcal{A}\otimes \mathcal{A}$ into $\mathcal{A}$ defined by

$\tau_{h}(\sum_{i=1}^{n}x_{i}\otimes y_{i})=\sum_{i=1}^{n}x_{i}\tau_{\hslash}(y_{i})$ .

It follows immediately from $[a, \tau]=0$ that

$T_{h}(\alpha_{g}\otimes\alpha_{g})=\alpha_{g}T_{h}$

for all $g\in G$ , and similarly since $[\beta, \tau]=0$ ,

$T_{h}(\beta\otimes\beta)=\beta T_{h}$ .
Now let $V$ be a finite-dimensional $\alpha$-invariant subspace of $\mathcal{A}$ and introduce the
finite-dimensional subspace $W=V+\beta(V)$ . It follows from strong topological tran-
sitivity that there is a finite subset $H_{W}$ of $H$ such that the map

$\bigoplus_{\hslash\in H_{W}}T_{h}$ : $W \otimes Warrow\bigoplus_{h\in H_{W}}\mathcal{A}$

is injective.

OBSERVATION 1. If $x,$ $y\in \mathcal{A}_{F}$ and $\phi,$ $\psi\in \mathcal{A}^{*}$ then

$\int_{G}dg\overline{\psi(\beta a_{g}(x))}\phi(\beta\alpha_{g}(y))=\int_{G}dg\overline{\psi(\alpha_{g}(x))}\phi(\alpha_{g}(y))$ .

PROOF. After replacing $x$ by $x^{*}$ and $\psi$ by $\psi*it$ suffices to show

$\int_{G}dg\psi(\beta\alpha_{g}(x))\phi(\beta\alpha_{g}(y))=\int_{G}dg\psi(\alpha_{g}(x))\phi(\alpha_{g}(y))$ .

Since $x,$ $y\in \mathcal{A}_{F}$, the linear $a$-invariant space $V$ generated by $\{\alpha_{g}(x);g\in G\}$ and
$\{a_{g}(y);g\in G\}$ is finite-dimensional. Set $W=V+\beta(V)$ . The injection

$\bigoplus_{h\in H_{W}}T_{h}$ : $W \otimes Warrow\bigoplus_{h\in H_{W}}\mathcal{A}$

transports the linear functional $\psi\otimes\phi$ on $W\otimes W$ onto a linear functional $\xi$ on the
subspace

$( \bigoplus_{\hslash\in H_{W}}T_{\hslash})(W\otimes W)\subseteqq\bigoplus_{h\in H_{W}}\mathcal{A}$ .

It then follows from the Hahn-Banach theorem that $\xi$ has a continuous extension
to $\bigoplus_{h\in H_{W}}\mathcal{A}$ which we also denote by $\xi$ . But $\xi$ has a linear decomposition

$\xi=\bigoplus_{h\in H_{W}}\xi_{h}$ .
Therefore
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$\int_{G}dg\psi(\beta a_{g}(x))\phi(\beta a_{g}(y))=\int_{G}dg(\psi\otimes\phi)(\beta\alpha_{g}(x)\otimes\beta\alpha_{g}(y))$

$= \int_{G}dg\sum_{\hslash\in H_{W}}\xi_{h}(T_{h}(\beta a_{g}(x)\otimes\beta\alpha_{g}(y)))$

$= \int_{G}dg\sum_{h\in H_{W}}\xi_{h}(\beta a_{g}(x\tau_{h}(y)))$

$= \sum_{h\in H_{W}}\xi_{h}(\beta(\int_{G}dg\alpha_{g}(x\tau_{h}(y)))$ ,

$= \sum_{\hslash\in H_{W}}\xi_{\hslash}(\int_{G}dga_{g}(x\tau_{\hslash}(y)))$

$= \int_{G}dg\psi(a_{g}(x))\phi(a_{g}(y))$

where the penultimate step uses the fact that $\beta$ leaves the fixed points $\mathcal{A}^{\alpha}$ of $a$

pointwise invariant, and the ultimate step follows from reversal of the previous
steps.

Next let $C_{F}(G)\subseteqq C(G)$ denote the G-finite elements for the action of $G$ as
right (or, equivalently, left) translations on $C(G)$ . Thus $C_{F}(G)$ is the set of
continuous functions over $G$ whose orbit under right translations spans a finite-
dimensional subspace of $C(G)$ . Again $C_{F}(G)$ is a dense $*$-subalgebra of $C(G)$ .

OBSERVATION 2. Every $f\in C_{F}(G)$ has the form
$f(g)= \sum_{l=1}^{n}\phi_{i}(\alpha_{g}(x_{i}))$

where $x_{i}\in \mathcal{A}_{F}$ and $\phi_{i}\in \mathcal{A}^{*}$ .
PROOF. Let $\mathcal{D}$ be the subspace of $C_{F}(G)$ of functions of the form

$f(g)= \sum_{i=1}^{n}\phi_{i}(a_{g}(x_{i}))$

In the proof of Observation 1 we established an identity of the form

$\psi(a_{g}(x))\phi(\alpha_{g}(y))=\sum_{h\in H_{W}}\xi_{h}(a_{g}(x\tau_{h}(y)))$

for all $x,$ $y\in \mathcal{A}_{F}$ and $\psi,$ $\phi\in \mathcal{A}^{*}$ . The $\xi_{\hslash}\in \mathcal{A}^{*}$ and $H_{W}$ is a finite subset of $H$

depending on the finite-dimensional subspace $V$ spanned by the orbits $\alpha_{g}(x)$ , and
$\alpha_{g}(y)$ , of $x$ , and $y$ . Since $x,$ $y\in \mathcal{A}_{F}$ and $\tau$ commutes with $\alpha$ it follows that
$x\tau_{h}(y)\in \mathcal{A}_{F}$. Therefore this identity establishes that $\mathcal{D}$ is an algebra. Also

$\overline{\psi(\alpha_{g}(x))}=\psi^{*}(\alpha_{g}(x^{*}))$

so $\mathcal{D}$ is a $*$-algebra. As $a$ is a faithful representation of $G$ it follows that the
functions in $\mathcal{D}$ separate points of $G$ , and hence $\mathcal{D}$ is dense in $C(G)$ by the Stone-
Weierstrass theorem. Since $\mathcal{A}_{F}$ is closed under regularization by matrix elements
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of the irreducible representations of $G$ it follOws that $\mathcal{D}$ has the same property
(with respect to the right regular representation). Then it easily follows from
the orthogonality relations that $\mathcal{D}=C_{F}(G)=the$ linear span of the matrix elements
of the irreducible representations of $G$ .

OBSERVATION 3. There exis $ts$ an isometric linear isomorphism $B;C_{F}(G)arrow C_{F}(G\rangle$

with the Properties

1. $B( \sum_{i=1}^{n}\phi_{i}(\alpha_{g}(x_{i})))=\sum_{i=1}^{n}\phi_{i}(\beta a_{g}(x_{i}))$ , $x_{i}\in \mathcal{A}_{F},$ $\phi_{i}\in \mathcal{A}^{*}$ ,

2. $B(f_{1}f_{2})=B(f_{1})B(f_{2})$ , $f_{1},$ $f_{2}\in C_{F}(G)$ ,

3. $B(\overline{f})=\overline{B(f)}$ , $f\in C_{F}(G)$ ,

4. $B(r_{g}f)=r_{g}(B(f))$ , $f\in C_{F}(G)$ ,

where $r$ denotes right translations.
PROOF. It follows from Observations 1 and 2 that there exists a unitary

operator $B$ on $L^{2}(G)$ with the action given by Property 1. Thus $B$ is well
defined as a linear operator from $C_{F}(G)$ into $C(G)$ by Observation 2. But since
$\phi_{i}(\beta\alpha_{g}(x_{i}))=(\beta^{*}\phi_{i})(\alpha_{g}(x_{i}))$ , Observation 2 implies that $B$ is in fact an operator
from $C_{F}(G)$ into $C_{F}(G)$ . Now if $m(f)$ denotes the operator of multiplication by
$f\in C_{F}(G)$ on $L^{2}(G)$ then

$(B^{*}F, m(f)B^{*}G)=(F, m(Bf)G)$

for all $F,$ $G\in L^{2}(G)$ . Since $B$ is unitary on $L^{2}(G)$ it then follows that

$\Vert f\Vert_{\infty}=\Vert m(f)\Vert=\Vert m(Bf)\Vert=\Vert Bf\Vert_{\infty}$ ,

$i.e$ . $B$ is an isometry from $C_{F}(G)$ into $C_{F}(G)$ . By considering $\beta^{-1}$ instead of $\beta$

we see that $B$ maps $C_{F}(G)$ onto $C_{F}(G)$ .
The multiplicative property of $B$ follows from the calculation

$B( \psi(\alpha_{g}(x))\phi(a_{g}(y)))=B(\sum_{h\in H_{W}}\xi_{h}(\alpha_{g}(x\tau_{h}(y))))$

$= \sum_{h\in H_{W}}\xi_{\hslash}(\beta a_{g}(x\tau_{h}(y)))$

$=\psi(\beta a_{g}(x))\phi(\beta a_{g}(y))$

$=B(\psi(a_{g}(x)))B(\phi(a_{g}(y)))$

and $B$ commutes with the involution because

$B(\overline{\psi(\alpha_{g}(x))})=B(\psi^{*}(\alpha_{g}(x^{*})))$

$=\psi^{*}(\beta a_{g}(x^{*}))$

$=\overline{\psi(\beta\alpha_{g}(x))}=\overline{B\psi(a_{g}(x))}$ .

Finally $B$ commutes with right translations because
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$B(r_{h}(\psi(\alpha_{g}(x))))=B(\psi(\alpha_{g}(a_{h}(x))))$

$=\psi(\beta\alpha_{g}(a_{h}(x)))$

$=r_{h}(\psi(\beta a_{g}(x)))=r_{h}(B(\psi(\alpha_{g}(x))))$ .
The proof of Theorem 2.1 is now straightforward.
The operator $B$ as defined is an isometry from $C_{F}(G)$ onto $C_{F}(G)$ . But as

$C_{F}(G)$ is norm dense in $C(G)$ one can extend $B$ by continuity to an isometry
from $C(G)$ onto $C(G)$ . The properties established in Observation 3 then extend
by continuity. Hence $B$ is a $*$-automorphism of $C(G)$ which commutes with right
translations. Now let $b$ be the homeomorphism of the spectrum $G$ of $C(G)$ cor-
responding to $B$ . If $b(e)=g$ then

$b(h)=b(eh)=b(e)h=gh$

for all $h\in G,$ $i.e$ . $B$ is left translation by $g^{-1}$ . Thus

$\psi(\beta\alpha_{h}(x))=B(\psi(\alpha_{h}(x)))=\psi(\alpha_{g}\alpha_{h}(x))$

$for_{L}^{-}al1x\in \mathcal{A}_{F},$ $\psi\in \mathcal{A}^{*}$ , and $h\in G$ . Consequently

$\beta(x)=a_{g}(x)$

for all $x\in \mathcal{A}_{F}$ which implies $\beta=a_{g}$ .
The above procedure of constructing $C_{F}(G)$ from elements of $\mathcal{A}_{F}$ gives infor-

mation about the spectral subspaces of $(\mathcal{A}, G, \alpha)$ .
COROLLARY 2.2. Let $(\mathcal{A}, H, \tau)$ be a strongly topologically transitive $C^{*}$-dynam-

ical system and $a$ a (faithful) continuous action of a compact group $G$ as $*$-auto-
morphisms of $\mathcal{A}$ such that $[\alpha, \tau]=0$ . Further let $\mathcal{U}(G)$ denote the set of irredu-
cible representations of $G$ and for each $U\in \mathcal{U}(G)$ define the spectral subspace $\mathcal{A}^{a}(U)$ by

$\mathcal{A}^{a}(U)=\{\int dgTr(U_{g}^{-1})\alpha_{g}(x);x\in \mathcal{A}\}$ .
It $\vee follows$ that

1. $\mathcal{A}^{\alpha}(U)\neq\{0\},$ $U\in \mathcal{U}(G)$ ,
2. If $U_{1},$ $U_{2}\in \mathcal{U}(G)$ and $V\in \mathcal{U}(G)$ occurs in the decomposition of $U_{1}\otimes U_{2}$ then

$(\mathcal{A}^{a}(U_{1})\mathcal{A}^{a}(U_{2}))\cap \mathcal{A}^{a}(V)\neq\{0\}$ .

We conclude this section with two examples which demonstrate the difficulty
in characterizing the automorphisms $\alpha_{g}$ . In both examples one has a $*$-auto-
morphism $\beta$ which leaves invariant each finite-dimensional $\alpha$-invariant subspace

of $\mathcal{A}$ but $\beta\not\in\alpha_{G}$ .
EXAMPLE 2.3 (Longo and Peligrad [10]). Let $S_{3}$ be the permutation group

on 3 elements; $S_{3}$ has order 6 and is generated by two elements $r,$ $s$ with the
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relations $r^{3}=e,$ $s^{2}=e,$ $rs=sr^{2}$ . The dual $\hat{S}_{3}$ consists of 3 representations $\gamma_{1},$ $\gamma_{2}$ ,
$\gamma_{8}$ with dim $\gamma_{1}=\dim\gamma_{2}=1$ , and dim $\gamma_{3}=2$ , where

$\gamma_{1}(r)=1$ , $\gamma_{1}(s)=1$

$\gamma_{2}(r)=1$ , $\gamma_{2}(s)=-1$

$\gamma_{3}(r)=(\begin{array}{ll}\cos 2\pi/3 \sin 2\pi/3-\sin 2\pi/3 \cos 2\pi/3\end{array})$ , $\gamma_{3}(s)=(\begin{array}{l}-100 1\end{array})$ .

Let $\mathcal{A}=M_{2}$ be the algebra of $2\cross 2$ matrices and define $\alpha_{g}=Ad(\gamma_{3}(g))$ . Then $\alpha$

is ergodic, and hence strongly topologically transitive by Theorem 1.4. The
representation $\alpha$ of $G$ has the decomposition

$\alpha=\gamma_{1}\oplus\gamma_{2}\oplus\gamma_{3}$

into irreducibles and there is a unitary operator $V\in \mathcal{A}$ such that $\alpha_{g}(V)=\gamma_{2}(g)V$ .
The operator $V$ is determined up to a phase factor by the requirement that $V$

is in the $\gamma_{2}$-subspace of $\mathcal{A}$ . Let $\beta=Ad(V)$ . It follows that $[\beta, \alpha]=0$ . Moreover
as each of the representations $\gamma_{1},$ $\gamma_{2},$ $\gamma_{3}$ occurs with multiplicity one it follows
that the only $\alpha$-invariant subspaces of $\mathcal{A}$ are the subspaces corresponding to
these three representations, and all linear combinations of these subspaces.
Therefore $\beta$ leaves all these a-invariant subspaces invariant, but nevertheless
$\beta\not\in\alpha_{G}$ .

EXAMPLE 2.4. Let $\mathcal{A}=C(S_{2})$ denote the continuous functions over the two
sphere $S_{2}$ and $\alpha$ the canonical action of the group $G=SO(3)$ of rotations on $\mathcal{A}$ .
The system $(\mathcal{A}, G, a)$ is topologically transitive, and hence strongly topologically
transitive by Theorem 1.3. Let $\beta$ be the $*$-automorphism of $C(S_{2})$ corresponding
to reflection about the origin. Then $\beta\not\in\alpha_{G}$ . Nevertheless $[\beta, a]=0$ and a cal-
culation with spherical harmonics shows that all the irreducible representations
of $SO(3)$ occur in the decomposition of $\alpha$ with multiplicity one and hence $\beta$

leaves all the finite-dimensional $\alpha$-invariant subspaces invariant.

3. The infinitesimal structure of $(G, a)$ .
The next result gives an infinitesimal characterization of the one-parameter

subgroups of the group action $(G, \alpha)$ considered in Theorem 2.1. It is similar
to Theorem 2.1 of [11]. It is possible to give a proof roughly following the
lines of the proof of Theorem 2.1 of [11], but we give a shorter proof based
upon the relation between $\mathcal{A}_{F}$ and $C_{F}(G)$ established in the previous section.

THEOREM 3.1. Let $(\mathcal{A}, H, \tau)$ be a strongly topologically transitive $C^{*}$-dynam-
ical system and $a$ a (faithful) continuous action of a compact group $G$ as $*$-auto-
morphisms of $\mathcal{A}$ such that $[\alpha, \tau]=0$ . Further let $\delta$ be a symmetric derivation of
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$\mathcal{A}$ with domain $D(\delta)=\mathcal{A}_{F}$, the G-finite elements of $\mathcal{A}$ . The following conditions
are equivalent:

1. $\delta$ is closable and its closure $\delta$ generates $a$ one-parameter subgroup of $\alpha_{G}$ .
2. $a$ . $\delta(x)=0$, $x\in \mathcal{A}^{\alpha}$ ,

$b$ . $\delta\tau_{h}(x)=\tau_{h}\delta(x)$ , $x\in \mathcal{A}_{F},$ $h\in H$.
REMARKS. 1. The drawback of this result as opposed to the comparable

results of [9] and [11] is that in Condition 2 we must explicitly assume that $\delta$

is zero on the fixed point algebra $\mathcal{A}^{\alpha}$ . In [9] and [11] this was a consequence
of $D(\delta)=\mathcal{A}_{F}$, simplicity of $\mathcal{A}$ , and asymptotic abelianness of $(\mathcal{A}, H, \tau)$ . Also this
holds if $\mathcal{A}$ is abelian.

2. If $G$ is abelian, the techniques of [10] show that the assumption of strong
topological transitivity may be replaced by topological transitivity.

PROOF. $1\Rightarrow 2$ is evident. $2\Rightarrow 1$ . If $x,$ $y\in \mathcal{A}_{F}$ and $\phi,$ $\psi\in \mathcal{A}^{*}$ then using the
notation of Section 2 with $W=V+\delta(V)$ where $V$ is the a-invariant span of $x$

and $y$ , one calculates that

$\int dg\{\psi(\alpha_{g}(x))\phi(\delta(\alpha_{g}(y)))+\psi(\delta(\alpha_{g}(x)))\phi(\alpha_{g}(y))\}$

$= \int dg\sum_{h\in H_{W}}\xi_{h}(\alpha_{g}(x)\tau_{h}(\delta\alpha_{g}(y))+\delta(\alpha_{g}(x))\tau_{h}(\alpha_{g}(y)))$

$= \sum_{\hslash\in H_{W}}\xi_{\hslash}(\int dg\delta(a_{g}(x\tau_{\hslash}(y))))$

$=0$ .
The last step follows because $\delta$ is zero on $\mathcal{A}^{\alpha}$ . This establishes that one can
define a linear operator $D:C_{F}(G)arrow C(G)$ by

$D( \sum_{i=1}^{n}\phi_{i}(a_{g}(x_{i})))=i\sum_{i=1}^{n}\phi_{i}(\delta(a_{g}(x_{i})))$

and $D$ is symmetric on $L^{2}(G)$ . (Use Observation 2 of Section 3.) But further
calculations analogous to those in the proof of Observation 3 of Section 2 then
establish that

$D(f_{1}f_{2})=D(f_{1})f_{2}+f_{1}D(f_{2})$ , $f_{1},$ $f_{2}\in C_{F}(G)$ ,

$D(\overline{f})=\overline{D(f)}$ , $f\in C_{F}(G)$ ,

$D(r_{g}f)=r_{g}(D(f))$ , $f\in C_{F}(G)$ .

Since $D$ commutes with right translations it leaves the corresponding finite-
dimensional spectral subspaces of $C(G)$ invariant. Hence $D$ is essentially self-
adjoint since it is the direct sum of bounded symmetric operators. Consequently
the closure $\overline{D}$ of $D$ generates a strongly continuous one-parameter group $\beta$ of
$*$-automorphisms of $C(G)$ (see, for example, the discussion in Example 3.2.67 of
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[5]). Moreover $\beta$ must commute with right translations. Therefore $\beta$ is a
one-parameter subgroup of left translations by the argument used in the proof
of Theorem 2.1.

Let $l$ denote left translations on $C(G)$ ; then there is a one-parameter subgroup
$t-h_{t}$ of $G$ such that

$\beta_{t}\phi(\alpha_{g}(x))=l_{h_{t}}\phi(\alpha_{g}(x))=\phi(\alpha_{h_{t}}^{-1}\alpha_{g}(x))$

for $x\in \mathcal{A}_{F}$ and $\phi\in \mathcal{A}^{*}$ . But if $\hat{\delta}$ denotes the generator of the one-parameter
group of $*$-automorphisms $trightarrow a_{h_{t}}^{-1}$ one finds

$\phi(\delta(\alpha_{g}(x)))=D\phi(\alpha_{g}(x))=\phi(\hat{\delta}(a_{g}(x)))$

by differentiation. Thus $\delta=\hat{\delta}$ on $\mathcal{A}_{F}$. Finally since $\mathcal{A}_{F}$ is invariant under $\alpha_{h_{t}}$

for all $t$ it follows that $\mathcal{A}_{F}$ is a core for $\hat{\delta}$ ; see Chapter 3 of [5]. Hence $\delta$ is
closable and $\overline{\delta}=\hat{\delta}$ . (Compare [6], where the group $G$ is only assumed to be
locally compact, but the derivation $D$ is assumed to be closed.)

REMARK. The generation property in Theorem 2.1 of [11] was established
by first proving that $\delta$ leaves invariant each finite-dimensional a-invariant sub-
space. This can be deduced directly from strong topological transitivity as
follows.

Let $x_{1},$ $x_{2},$
$\cdots$ , $x_{n}$ be a basis of linearly independent elements of the $\alpha-$

invariant subspace $\mathcal{M}$ . Then the action $a$ is given on $\mathcal{M}$ by a matrix,

$\alpha_{g}(x_{i})=\sum_{j\Rightarrow 1}^{n}U_{ji}(g)x_{j}$ ,

and by linear rearrangement, using the orthogonality relations in the group, one
can suppose that $(U_{ji})$ is in fact unitary. Then since $a$ commutes with $\tau$ one
calculates that

$a_{g}( \sum_{i=1}^{n}x\beta\tau_{h}(x_{i}))=\sum_{i=1}^{n}xf\tau_{h}(x_{i})$ .
Thus

$0= \delta(\sum_{i=1}^{n}xf_{T_{h}}(x_{i}))=\sum_{i=1}^{n}\delta(x_{i})^{*}\tau_{\hslash}(x_{i})+xf\tau_{h}(\delta(x_{i}))$

for all $h\in H$. But strong topological transitivity then implies that

$\sum_{i=1}^{n}\delta(xf)\otimes x_{i}+x\beta\otimes\delta(x_{i})=0$

Consequently

$\sum_{i\Leftarrow 1}^{n}\delta(x_{i})\omega_{j}(x\beta)=-\sum_{i=1}^{n}x_{i}\omega_{j}(\delta(xf))\in \mathcal{M}$

for any state $\omega_{j}$ over $\mathcal{A}$ or, by linear algebra,

$\delta(x_{i})Det\overline{\omega_{j}(x_{i})}\in \mathcal{M}$ .
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But since the $x_{i}$ are linearly independent the $\omega_{j}$ can be chosen such that the
determinant is non-zero and hence $\delta(x_{i})\in \mathcal{M}$ .

4. Dissipations.

We conclude with some remarks on the generation problem for dissipations.
Consider the assumptions of Theorem 3.1 but with $\delta$ a symmetric dissipa-

tion, $i.e$ .
$\delta(x^{*}x)\leqq x^{*}\delta(x)+\delta(x)^{*}x$

for all $x\in \mathcal{A}_{F}$. It is then natural to ask whether the conditions $\delta(\mathcal{A}^{\alpha})=\{0\}$ and
$[\delta, \tau]=0$ imply that $\delta$ is closable and its closure $\overline{\delta}$ generates a strongly positive
semigroup $\beta$ .

If $\mathcal{A}$ is simple with identity, $\tau$ is norm asymptotically abelian, and $G$ is
abelian, then this question is answered in the affirmative by Theorem 3.1 of [9]

and in fact $\beta$ is completely positive. On the other hand the example in Section
3 of [4] with $\mathcal{A}=M_{2}$ , $G=H=Z_{2}\cross Z_{2},$ $\tau=\alpha$, and $\delta=H$ shows that even if $\delta$

generates a positive semigroup strong topological transitivity of $(\mathcal{A}, H, \tau)$ does
not necessarily imply that the semigroup is completely positive.

If one tries to tackle this problem with the techniques of the present paper
then it is not clear that the dissipation $\delta$ lifts to an operator $D$ on $C_{F}(G)$ , as in
the proof of Theorem 3.1, $i.e$ . by the definition

$D(\phi(a_{g}(x)))=\phi(\delta(a_{g}(x)))$ , $x\in \mathcal{A}_{F},$ $\phi\in \mathcal{A}^{*}$ .
If, however, $G$ is abelian and $\tau$ is only assumed to be topologically transitive

then it follows from the techniques used in the proof of Theorem 3.1 in [10],

combined with techniques of [3], that there exists a function $\phi:\hat{G}rightarrow C$ such that

$\delta(x)=\phi(\gamma)x$

for all $x\in \mathcal{A}^{\alpha}(\gamma)$ , the a-spectral subspace of $\mathcal{A}$ corresponding to the character
$\gamma\in\hat{G}$ . Using this, it is easy to see that $D$ is well defined, and in fact is given by

$D(\gamma(g))=\phi(\gamma)\gamma(g)$

for $\gamma\in\hat{G}$ . But $D$ is not generally a dissipation, or, equivalently, $\phi$ is not gener-
ally negative dePnite. This is clear from the example on $\mathcal{A}=M_{2}$ mentioned
above. In this example $D$ is a dissipation if $\delta$ is a complete dissipation, and
then $\delta$ is generally a generator of a completely positive semigroup (see, for
example, [3], [4]).

There is one important special case where $D$ is a dissipation, the case that
both $\mathcal{A}$ and $G$ are abelian.
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PROPOSITION 4.1. Let $(\mathcal{A}, H, \tau)$ be $a$ 1op0l0gically transitive $C^{*}$-dynamical
system where $\mathcal{A}$ is abelian, and let $a$ be a faithful continuous action of a compact
abelian group $G$ as $*$-automorphisms of $\mathcal{A}$ such that $[\alpha, \tau]=0$ . Further, let $\delta$ be
a symmetnc operat0r on $\mathcal{A}$ with domain $D(\delta)=\mathcal{A}_{F}$, the G-finite elements of $\mathcal{A}$ .
Assume that

$i$ . $\delta$ is a $dis\alpha pation,$ $i.e$ .

$\delta(x^{*}x)\leqq\delta(x)^{*}x+x^{*}\delta(x)$

for all $x\in \mathcal{A}_{F}$,

ii. $\delta(x)=0$ for all $x\in \mathcal{A}^{\alpha}$ ,
iii. $\delta\tau_{h}(x)=\tau_{h}\delta(x)$ for all $x\in \mathcal{A}_{F},$ $h\in H$.

It follows that $\delta$ is closable and its closure $\delta$ generates $a$ one-parameter semigroup
$t\geqq 0-\Rightarrow\exp\{-t\delta\}$ of completely posjtive contractions. Furthermore, there exists a
convolution semigroup $t\geqq 0-\mu_{t}$ of pr0bability measures on $G$ such that

$e^{-t\overline{\delta}}(x)= \int_{G}d\mu_{t}(g)a_{g}(x)$

for all $x\in \mathcal{A}$ .
PROOF. The proof combines the tensor product characterization of topologi-

cal transitivity on abelian $C^{*}$-algebras in Theorem 1.3 with ideas from the proof
of Theorem 3.1 in [9], but the present case is simpler.

First note that by Lemma 1.1 we may assume $\mathcal{A}$ has an identity. Next we
have already remarked that topological transitivity of $\tau$ implies the existence of
a function $\phi:Garrow C$ such that

$\delta(x)=\phi(\gamma)x$

for all $x\in \mathcal{A}^{\alpha}(\gamma),$ $\gamma\in\hat{G}$ . Next for $x_{i}\in \mathcal{A}^{\alpha}(\gamma_{i})$ and $h_{i}\in H,$ $i=1,2,$ $\cdots$ , $k$ , set
$x= \sum\tau_{h_{i}}(x_{i})$ ; then

$\delta(x^{*})x+x^{*}\delta(x)-\delta(x^{*}x)=\sum_{i.j=1}^{k}M_{ij}\tau_{\hslash_{i}}(x_{i})^{*}\tau_{\hslash_{j}}(x_{j})\geqq 0$

where
$M_{ij}=\overline{\phi(\gamma_{i})}+\phi(\gamma_{j})-\phi(\gamma_{j}-\gamma_{l})$ .

Now, if $y_{i}^{(j)}$ are elements in $\mathcal{A}$ such that

$\tau_{\hslash}(\sum_{i=1}^{n}y\mathfrak{l}^{1)}\otimes yf^{2)}\otimes\cdots\otimes yj^{k)})$

$= \sum_{i=1}^{n}\tau_{\hslash_{1}}(yl^{1)})\tau_{h_{2}}(yj^{2)})\cdots\tau_{\hslash_{k}}(yl^{k)})$

$\geqq 0$

for all $h\in H^{k}$ , then it follows from the isometric nature of the morphism

$\bigoplus_{h\in H^{k}}T_{h}$ : $\otimes^{k}\mathcal{A}arrow\bigoplus_{h\in H^{k}}\mathcal{A}$
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(Theorem 1.3) that

$\sum_{i=1}^{n}yj^{1)}\otimes y\}^{2)}\otimes\cdots\otimes y1^{k)}\geqq 0$

in $(\otimes^{k}\mathcal{A})^{\wedge}$ , the $C^{*}$-algebra completion of the algebraic tensor product $\otimes^{k}\mathcal{A}$ .
Applying this to the inequality for $M_{ij}$ above, we deduce that

$(*)$ $\sum_{i.j=1}^{k}M_{ij}X_{i}^{*}X_{j}\geqq 0$

in $(\otimes^{k}\mathcal{A})^{\wedge}$ , where $X_{i}=1\otimes 1\otimes\cdots\otimes x_{i}\otimes\cdots\otimes 1$ with the $x_{i}$ occurring in the $i’ th$

position.
As $\mathcal{A}$ is abelian there exist pure states $\omega_{i}$ on $\mathcal{A}$ with $|\omega_{i}(x_{i})|=\Vert x_{i}\Vert$ . Hence,

taking $x_{i}\neq 0$ , replacing $x_{i}$ by $\lambda_{i}x_{i}/\omega_{i}(x_{i})$ in $(*)$ , where $\lambda_{i}\in C$ , and applying the
product state $\omega_{1}\otimes\cdots\otimes\omega_{k}$ we find

$\sum_{i.j=1}^{k}M_{ij}\overline{\lambda}_{i}\lambda_{j}\geqq 0$ .

Thus the function $\phi$ is negative definite on $\hat{G}$ . The rest of the proof is exactly
as in the last part of the proof of Theorem 5.1 in [3].

Finally we note that if $(\mathcal{A}, H, \tau)$ satisfies the strong condition

$\sup_{h\in H}\Vert x\tau_{h}(y)\Vert=\Vert x\Vert\cdot\Vert y\Vert$ , $x,$ $y\in \mathcal{A}$

of transitivity, and if $(G, a)$ is the action of a compact abelian group which
commutes with $\tau$, and if $\delta$ is a symmetric dissipation satisfying $\delta(\mathcal{A}^{\alpha})=\{0\}$ and
$[\delta, \tau]=0$ , then one can deduce that the associated function $\phi:\hat{G}arrow C$ satisfies

$(*)$ $\sqrt{|\phi(\gamma+\mu)|}\leqq\sqrt{|\phi(\gamma)|}+\sqrt{|\phi(\mu)|}$ .

This follows by examining the inequalities

$\omega(x^{*}\delta(x)+\delta(x)^{*}x-\delta(x^{*}x))\geqq 0$

for states $\omega$ and elements $x=\lambda x_{\gamma}+\tau_{h}(x_{\mu})$ where $\lambda\in C,$ $x_{\gamma}\in \mathcal{A}^{\alpha}(\gamma)$ , and $x_{\mu}\in \mathcal{A}^{\alpha}(\mu)$ .
It is an interesting question whether $(*)$ is sufficient to ensure that exp $\{-t\delta\}$

is contractive as a map from $\mathcal{A}_{F}$ to $\mathcal{A}_{F}$ since this would ensure that it extends
to a positive semigroup.
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