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0. Introduction.

The object of this paper is to show the existence, uniqueness and L? esti-
mates (including p=co) of global solutions of some nonlinear degenerate diffusion
equations.

The first problem we are concerned with is the following initial-boundary
value problem of the perturbed porous medium equation;

%u—Aum“—{—f(x, t, u)=0 in £2X(0, o)

ulx, 0)=u,(=0), ulse=0 and wu=0

(Py)

where £ is a bounded domain in R¥ with smooth boundary 02 (C® class is
sufficient), m is a positive constant and f(x, ¢, ») is a function satisfying;

AssumpTION 1. (i) f(x,t?, u) is locally Holder continuous in QX R+*XR*
(R*=[0, o0)) and locally Lipschitz continuous with respect to » uniformly in (x, ).

(i) f(x, t, u)=—Cou'** on 2XR*XR* for some C,>0 and a=0.

It should be noted that the theory of nonlinear semi-groups does not apply
to (P,) for the existence of global solution since we do not assume that f(x, ¢, u)
is monotone with respect to u.

To treat the problem (P,) it is convenient to compare it with the problem;

%u——Aum“—Cou”"ZO in £2x%(0, o)

u(x, 0)=u,(=0), ul;p=0 and u=0.

(P2)

Recently in we have discussed the existence, nonexistence and some
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asymptotic behaviour of global solutions to the problem (P,).

THEOREM 0. (i) If m>a, (P,) admits a solution u(t) for each u, with
u'e Ht, and we have

<5i+1i
for t=0.

(ii)y If m<a<m*={mN-+2)+4}/(N—2) (N>2) or oo (N=1, 2) the same
assertion as above holds for each u, with ul**<% (for the definition of the
potential well %8 see the section 1). Moreover, the solution satisfies the decay

property ;
t+1
(I,
for t=0. (For the definitions of J and d see also the section 1.)

In the above and hereafter ||-||, denotes L? norm on £ and C(a) denotes
various constants depending on a and other known constants. We mean by a
solution of (P,) a function u such that u=0, (0/0)(u™'** Ve Li . (R*; L¥Q)),
u™e Lp(R*; Hi(£2)) and the following equation holds for any ¢=C3i([0, oo);

o)

2 mrsp[ as) "+ Imum LS CUTHR AL 0.1)

2 ummas[ds) TPl SCA— T )LD (0.2)

S:§9{~u<x, DG(x, +Tum™(x, 1)-T(x, §)—Cou*(x. (x, 1)} dx dt

::Sguo(x)gb(x, 0)dx . 0.3)

The solutions of the problem (P,) are defined similarly;

DEFINITION 1. A measurable function z on 2 X R* is called a solution of (P,)
if u=0, @/0)(u™*)e L (R*; L?), u™eLi(R*; Hy), f(x,t, )& Li(R*; L")
and the equation (0.3) holds with —C,u'** replaced by f(x,¢, u) for all ¢ as
above.

We want to estimate the solutions of (P,) by combining the result for (P,)
with the comparison principle (Aronson, Crandall and Peletier [2]). For this it
is needed moreover to establish L? estimates (2=p=<oco) for the solutions of the
problem (P,). In particular, the L™ estimate will yield the uniqueness theorem
in a certain class of functions where the existence is also assured. Such esti-
mation is done in the sections 2 and 3 on the basis of Theorem 0 and a result
of Alikakos [1]. Furthermore, the same estimates as in Theorem 0 will be
derived for the solutions of (P,).

Secondly, we apply the result for (P,) to the following system of reaction
diffusion equations;
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%*”_A“m“ﬂLfl(x, t,u, v)=0,  u=0,
(Ps)

%vav"HJrfg(x, t, u, v)=>0, v=0,

in 2x(0, o) with the initial-boundary conditions
ulx, O=u, (20), v(x, 0)=v, (=0) and ulse=v|s0=0.
We make the following assumptions on f; (1=1, 2).

ASSUMPTION 2. (i) f: is locally Holder continuous in 2 X R*X R*X R* and
locally Lipschitz continuous with respect to (u, v) uniformly in (x, ?).

(ii) filx, t, u, vV)Z—Cy(ut*e if 0=v=r, v>0.

(i) falx, t, u, v)=0 on QX R*XR*XR*,

The system (Ps) is a generalization of the so-called Martin’s problem (m=
n=0 and f,=—f,=—u'"*v) and also related to Rosenweig-MacArther equation
which arises in the theory of ecology (Alikakos [1], Conway and Smoller [6],
Masuda [11]). The definition of solutions of (P;) is given quite similarly to
that of (P,) and may be omitted.

Finally we briefly discuss another typical problem;

d ¥y 9 0 m g
Wuﬂtgl 0x; ﬂ 0x; ul 0x; u)—lul“uZO

u(x, 0)=u, and u]|z0=0.

Py

The existence and nonexistence problem for (P,) has been investigated by
many authors. Among others we refer to Fujita (the case m=0) and
Tsutsumi [18]. The decay or boundedness of u(¢) in Wi ™** norm was obtained
in [14]. Using the same method as in sections 2 and 3 we show L? estimates
(including p=o0) for the solutions of (P,). As a consequence of L> estimate we
can easily derive a uniqueness theorem in a certain function space where the
existence holds, which is given in only for the case 1=SN<m-+2.

1. Approximate solutions for the problems (P,) and (P,).

To show the existence and L? estimates of global solutions of (P,) and (P,)
it is convenient to comstruct smooth approximate solutions which exist globally.
In [13] we employed the Galerkin method together with the regularization of
singularity. As will be seen below this method is not suitable to get L? esti-
mates for large p. Here we adopt a slightly different method.

Setting u™*'=U the problem (P,) is equivalent to

1 0
-m/(m+1) 1/(m+1)) —
—] U pr U—-AU+f(x,t, U )=0

UOO)=U,=ug*', Ulsn=0 and U=0.

P
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Then we consider the following approximate problem ;
—1~((U+8) ”‘”m“)—%—e)ﬁU —AU+f(x, t, VD) e /mih —=()

m+1
(Py,0)
UO)=U,, Ulz=0 and U=0,

with a’>a.

Since the problem (P,.) has no singularity in the coefficients and, by
Assumption 1, (ii),

f(x, ¢ Ul/(m+1))+6U(l+“')/(m+1)_Z_—CE for Ugo

with some C.>0, it has a classical (smooth) solution U.(x, ) for each U,=C§ Q)
and for ¢>0 (Ladyzhenskaya, Solonnikov and Ural'tseva [9]). (The solution is in
fact unique.) We shall call (P, .) as (P, .) when f(x, t, u)=—Cu'*%

Here we state the definition of the potential well 28;

%z{UEH%, | J(U)<d and I|VUH%—COSQU“"+“+2’/‘m+1’dx>0}u{O}
where

](U)Z*{IZ‘HVUH%—— MS [ (m+atd) ) (maD) 4y

m+a+2)o
and

d=inf sup](ZU)

veHl >0
U+0

(see Sattinger [16] and Tsutsumi [18]).

PROPOSITION 1.1. Let U,eCiQ) (if m>a) or U,eBWNCY2) (if 0<m<a
<m*). Then the result of Theorem 0 is valid for u.=UY ™Y for sufficiently
small €¢>0, U, being the solutions of (P, .), with the estimates replaced by

("

)| ds) [T o sl B 13

<{ (VU s, lholmearsns € if a<m

T CUVuET e, eluomear LA PIMLCe i m<a<m*
where lirrol C(a, eb)=C(a).

(1.1)

Proor. The proof is essentially the same as that of Theorem 0. For com-
pleteness, however, we reproduce it briefly in a slightly simpler way for the
case N=3 and O<m<a<m*. We write U,=U for simplicity.

Multiplying the equation in (P, ) by (d/0t)U and integrating, we have

1
m+1

SS (U &)™ @D 1) U2 dxe ds—+ J.(U @) = J(U.) (1.2)
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where
Co(m-+1)
m+ta+2
em+1)
m+ta+2
Since U,eW, J. (U, <d for sufficiently small ¢>0. We assert that U()=2® for
any t>0. Indeed, if not, there exists t*>0 such that U(*)=d¥® and U)W
for 0<t<t*. Then, by the definition of %8 we have either

]E(U):%uvwg— SQU<m+a+2>,<m+D i

+

SQU(mﬂx' +2)/(m+1)dx .

JU@E*)=d or HVUU*)H§=C0SQU“”+“”’""‘“)(l‘*)dx-
Both cases easily yield contradictions. Thus, by in we have
HVUH%—COSQU“"*“”)“m“’ dxz=C(d—JU)IVU|} (1.3)

for a certain C(a)>0 such that lim C(a)=0, and

a—0

JUMNzZCd—JUNIVU®). (1.4
Now, is equivalent to
1 d
WSQ((U+ ) ™D +e)Utdx+ “d?]s(U(t)):‘O . .2y

Next, multiplying the equation of (P, .) by U we have

”vUH%_COSU(m+a+2) /(m+1)dx+€SU(m+a'+2) /(’m+1)dx

:——_m}l—l g((U+s)-m/<m+D+e)UU¢dx
é m}*_l {S((U+e>—m/(m+1)+€)U%dx}1/2{g((U+a)-m/(m+1)+5)U2dx}1/2
and, using (1.2},
JUCUW@ 1o s Loy - S Twol”. a9

From [1.5] we can derive easily

2C{JU@®)—e},  0<e<L.

}2(m+1) /(8m+2)

d
{(~-Srww
We may assume J,(Uy)=e (U,+0) and, as long as J.(U())>e,
%(JE(UU))~E)§—C(]E(U(t))_s)mmw)/z<m+u

which implies
JAUMZC{t+([TUl34-s Ul ) miscmen) -2menin g
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where we set B'=(m+a’+2)/(m+1). This inequality is valid for all {=0,
because J.(U(?)) is a nonincreasing function of ¢.
From the above we can conclude, for =0,

INUDN.=CUNUlls, elUsllg) (142" H0/m 4/ ¢

Integrating [1.2) from ¢ to {+1 we get the same estimates for

t+1
11

{S SQ((U+5)‘m"m+‘)+—s)U%dxds}llz.

PROPOSITION 1.2. Let ﬁs(t) and U (&) be the solutions with the same initial
value U,=CH Q) of (Py,.) and (P,,.), respectively. Then

0=0.)=U.t). (1.6)

Proor. The inequality follows from the comparison principle in non-
linear parabolic equations (Aronson, Peletier and Crandall [2]).

From the estimate in [Proposition 1.1 it easily follows that u.(f)=UM ™+ (¢)
converges as e¢—0 (along a subsequence) to a solution of (P,). The proof is
given in [18]. The resulting estimate contains no longer the norm |u,lm+ar+2,
and hence the assumption U,=C} %) is easily removed by approximation. Indeed,
when U,=28 (consider the case 0<m<a<m*) we can take a sequence {U, .}
CCi{2) such that U,,,—U, in H} as v—0. Since ¥ is open in H} we may
assume U, ,=BNCIH(2). Corresponding solutions u,(¢) with u,(0)=U}/{™* satisfy
essentially the same estimates as in Theorem 0, and we can apply again the
compactness argument to {u,} to obtain the desired solution with the initial
value u,=U} ™Y Thus we arrive at Theorem 0 through a slightly different
way from [13]. In what follows we regard the solution u in Theorem 0 as the
one just obtained. The nonnegativity of solutions is inessential in sections 1-3.

2. L7 estimates (p<oo) for the solutions of the problem (P,).

When N=1, 2 the estimate of |[Vu™"(#)||, in Theorem 0 implies L? 2=p <o)
estimates of «(¢). But, this is not true for the case N=3. Here we shall derive
L? estimates for such case. First we assume 0<m<a<m* (this case is more
complicated than the other case).

For our purpose it suffices to treat the approximate solutions U.(t) or u.(t)
defined in the previous section. We write again U.=U.

Now, multiplying the equation of (P, .) by U@/ ™m+h (p>m) we have

4m+1)(p+1)

(p+m+2)/2(m+1) 2
(p+nz+2)2 ]'VU ® 2/ (t)HZ

d
<o weran+

___COXU(p+a+2)/(m+l)dx+€§U(p+a' D IMAD () 2.1)
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where we set
ﬂp, E<U>ES: {()7__}_5)—m/(m+1) +6} 77(p+1)l(m+1)d7] . (22)

We shall denote by C. various constants depending on ||VU°||§+slonll§1 and e,
and by k(e) constants depending on ¢ in such a way that linol k(e)=0.
By Proposition 1.1 we know
IVU®)].=C(d) <o 2.3)

and applying Holder’s and Sobolev’s inequalities we have
[parenimm i v gm0
SC]iVUllép+a+2)/(m+1) —0pI|VU(p+m+2)/2(m+1) Hgo;,

<C|VU @+m+2 /20m+n “g&lp (2.4)
where

g=N(p+m-+2)/(N—2)(m+1),
5 N(p—m)(p-+m-+2) 8,m-+1)
P m+DAN(p+m4-2)—(N—2)(m-+a-+2)} p+m+2°
By our assumption on a we see 6,<1 for any p=m, and applying Young’s
inequality we have from [2.1) and that

4 2m+D(p+1)
dt 5‘81” U+ (p-+m-+2)*

and 60,=

HVU(p+m+2) /2(m+1) (t)”%

_i_SSU(zwa'+2)/(m+1)dxéc(p) . 2.5)
But, from the definition of 5, .(U) (see [2.2)),

1 €
< - (p+2) /(m+1) - - l](p+m+2)/(m+l)
Sﬂ“(wd’c: p+ng d p+m+25 dx
1

= IVU (p+m+2) /2(m+1) | 2(p+2) ] (p+m+2)

2371

><p+m+2)/ (p+a'+2)}

+8<SU(ZJ+0" +2)/(m+1)dx

Here we choose a’ as a’>max(a, (m*+4m)/2). Then (p+m—+2)*/(p+a’+2)(p+2)
<1, and

(

) (p+m+2)/ (p+2)

C ey

Bp.(w)dx

A

C )(p+m+2)2/(p+a'+2) (p+2)}

{HVU(Z"”'”Z’ J2MAD |2 | g (PHm+2) /(D) (SUWM' 2 maD gy

§C{—;— | VU (prm+2 /2(m+D II§+€SU<p+a'+z)/(m+1)dx_|_ kp(e)} . (2.6)
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It follows from and (2.6) that

(p+m+2)/(p+2)

%Sﬁp,e(U(t))dx-l-C(Sﬂp'e(U(t))dx> <C(p)+Ey(0) o
which implies (see Simon [17])
Jos.wanas={([8,.woax) "+

mC }-(p+2)/m

) +{Cp)+hp(NE.  (2.8)

Moreover, we see

1 (v
ﬁp,e(U)zr_HSO(77+s)‘"”(m+1)7]<p+1)/(m+1>d77
p+1 p+1
= Hmeb g eenimh — £ (P2 /(m+D) | L (p+2) [ (m+1)
ChDh sz Ute o
1
>~ [J@tn/min _
=20p+2) U kp(e)

and hence, by (2.8),

-m/(p+2) -1/m
e+ =0 (|85, UDdx) ™ 1t} O+ oD T Ryfe) (2.9)
for 0<t<oco. We obtain also from (2.9) that

(D) pr2=CPIH™A-C(PI P2 Ak (e) (2.10)
for 0<t<Coo,

The inequalities (2.9) and are useful to know the behaviour of u(t)
near t=0. In order to see the decay property of u(¢) in L? norm as t—co we
must make a further device. We use another inequality instead of [2.4). First,
by Holder’s inequality

N1U o+ aters amsy §“U”$—0HU”Z 2.11)

where we set ¢g=N(p+m-+2)/(N—2)(m+1), r=N(a—m)/2(m-+1) and §=(p+m-+2)
/(p+a-+2). Since r<2N/(N—2) by our assumption on e, it follows from [2.11
that

SU(p+a+2) /(m+1)dx§C“VU”ép+a+2) (1-0)/(m+1) HVU(ZH—TI’L+2) /2(m+1) H% (212)

which we shall employ instead of [2.4).
By [Proposition 1.1l we already know

VU@ = C(l41)-m+0imy k()

and implies
§U(p+a+2>/(m+l)dx§ C‘-s {(1_|_t>—(a—m)/m_]_ ,12(5)} HVU(Z"i‘m'i-Z)/Z(m'fl) H% . (2.13)

From [2.1) and [2.1I3] we see that there exists 7,>0 such that, if t=T,,
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1 {(p+2) }-(p+2)/m

[, 0Ox={({85. W Naz) ™4 20T +Ealet—T)

or
-m/(p+2)

oo ={ ([ 5. U(T )dx)
R ()T )P L B () . 2.14)
Combining the estimate in [Proposition 1.1 with (2.9), and we

can prove the following;

THEOREM 2.1. Let 0<m<a<m* (N=3) and let ul**€2. Then the problem
(Py) admits a solution in the sense of Theorem 0 which satisfies, in addition to
0.3),

C -1/m
+;(t—Tp>}

lu@®llpre=CPH™+C(p, [Vuf A+~ (2.15)

on (0, c©) for any p=m. Moreover, if we assume ul+*eTNLPDIMD the
solution satisfies

@l p+:=COPXNuoll T+ +C(p, [Nufd (1451 (2.16)

on [0, o) for any p=m.

At this stage the proof of [Theorem 2.1 is routine (see the section 1) and
omitted.

Next, we consider the case 0Za<m. In this case the situation concerning
the global existence and L? boundedness of solutions is much simpler. Indeed,
we can estimate the third term in as follows;

2m+1)(p+1) o,
(p+a+2)/(m+1) < (p+m42)/2(m+1) ||2_|.
SU dx< T ) VU 13-+C(p)

and we obtain again (2.9) and (2.10) through (2.5)-(2.8). Furthermore, we have
from

S‘BP'E(U(t))dx-S—maX{S,Bp,s(U(S))dX, (C(Z))—i—kp(e))‘p+2’/(p+m+2)} 2.17)
for t>s, and also
E@S‘B;,E(U(t))dxé(qp)_{_kp(e))(p+2)/(p+m+2).

Thus we can assert;

THEOREM 2.2. Let 0Za<m and ul!**<Hi. Then the solution of (P,) in
Theorem 0 satisfies, in addition to (0.1),

@l p+=COPI™HC(p, [Vud*o)  on (0, )

and Tim|u®)] p+.=<C(p) for any p=m. If we make additional assumption u,< LP+2,
tooo



50 M. Nakao

then
lu®ll pre=max(lluoll pes, [Vui s, C(p))  on [0, o)

for any p=m.

We close this section by noting that the estimates (2.9), and
(2.17) remain valid for the approximate solutions u.(f) (or U.(t)) of the problem
(P, .) because of the relation (1.6).

3. L> estimate of the solutions of the problem (Pg).

Taking the limits as p—oo of the estimates obtained in the section 2 all of
the right hand sides are divergent and we can not get any result on L norm
of the solutions. Here we shall show that adopting the Moser’s technique as in
Alikakos this difficulty is overcomed to yield the boundedness or decay prop-
erty of the solutions of (P, .) (and consequently of (P,)) in L* norm under the
condition

ulrHte HiNL> 0Za<m) or upteWNL® O<m<a<m?*).

LEMMA 3.1. Let w(t) be a function defined on 2X[0, oo (appropriately
smooth) satisfying

%H w®OIHH-Co(14+2) 7| Vw () A+ D 7 < Co(1+- 1) 1 w145

for any A=2,>max0, r—m—1, on—r+1)/(r—1)) with some constants C, (>0),
C, (>0), 6, (=0), 6, (=0) and r>1. Suppose that w,=w(0)eL>(2) and
%‘;E”w(” 2441<<00. Then, there exist constants a, b, ¢ and d such that

sup|| w(t)llo= a?rt01+Corbn0rimax {1, sup|w(®)]§+1, cllwllet
tzo tzo
where p=[A—(m—r+1)/(r—1)]""

The special case; r=2, #,=1 and 6,=0 is proved in Alikakos and the
general case is also proved quite similarly. For completeness, however, we shall
give the outline of the proof later in the Appendix.

Now, our result is;

THEOREM 3.1. Let u(t) be the solution of the problem (P,) obtained in the
section 1.

(i) If 0=Za<m and ul*<HINL®, then we have us L=(R*X Q) and
[u@-=CUVud* s, ludle)  on [0, co).

(1) If O<m<a<m* and ul™eINL>®, then we have also uc L(QXR*)
and

lu@llo=CUVUT s, Nuolla)X+1)71™.
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PrROOF. We shall give a formal proof, which may be made rigorous by the
use of approximate solutions u, or the theory of nonlinear semi-group (Evans
[7], Benilan and Crandall etc.). We consider the case N=3. The proof is
valid for N=2 with slight modification.

By (with e=0)

b—ﬁ;b—ll-z % lu@)) 5334 % [V ptm+2 /zugzcogumaﬂdx . 3.1

The right hand side is estimated as follows.
Colup+ertdx = ColulJhelleh 2easel ) ¥ oo - (3.2)

where we set

Na mN
01_(p+2){1_ 2(m+a+2)+mN}’ 62-—a{1— 2(m+a+2)+mN}
_ Na(p+m+2)
and 0= AT N
Noting that [|u(®)|m+a+2=C(|Vul*'||,), and applying Sobolev’s Lemma and Young’s
inequality we have

6,
p+2
{ 2m+1)(p+1) 2(m+a+2)+mN }—Na(p+2)/01(2(m+a+2)+mN)

(p+m2)* Na

Xl ATV, fyyormenin

{COCC203/<p+m+2>} (p+2) /60y

Cogup+a+2dx§

_2((77;17172(_*{);211 Hvu(p+m+2)/2ug
where C denotes constants depending on ||[Vu7+!|.,.
It follows from (3.1) and the abeve that
2m+D0(p+D(p+2)
(p-+m-+2)*
with v=Na/[2m-+a-+2)+mN—Na].
Applying Lemma 31 with »=2, §,=0, 6,=v, ,=m-+1 and A=p-+1 to (3.3)
‘we obtain

éCpNa/(Z(m+a+2) +mN-Na) H u(t)”gi%_}_

[Nurm2 @i <Cplu®iz  (3.3)

d
57 I @I+

[u@O=CVuF* 2, luele) <oo.
To show the further estimate for the case O<m<a<m* we set (1+H)Y™u(?)
=w(). Then, w(t) satisfies

5 1
o Y O=

{Awm“(t)+C0(1+t)1‘“’mw1+“+%—w(t)}
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and, changing the scale as r=log(l4¢)™*V/™ we have

__.a__ e Aagmin 1 7 lCO -a/m,,l+a
Py w(t)= 1 Aw™ - 1 w+ 1 (141 w
<l _ m+1 1+a
= i Aw™+ 4 1 w+Cwi*e, (3.4)

From we can get an inequality similar to (3.3) for w(f). Since we know
already

lw@lmee = CAEDY™[Vum ()] ™ =C([Vug ) <oo,

Lemma 31 yields
[w®le=CUVud* 2, lluole)

which proves the assertion of (ii).

4. Existence, uniqueness and behaviour of solutions of the problem (P,).

On the basis of the results in the sections 1-3 we shall treat here the prob-
lem (P,). We make the same assumptions on u, as in the section 1. The
smoothness assumption can be removed easily at the last stage as is usual (see

the section 1). Let u. and #. be the approximate solutions of (P, .) and (P, .),
respectively.

By and (2.9) we know
[ms<t)”p+2§Hus(t)”p+2§C(P, Hu0”p+2; Hvug“rl”z, k(5>Huoﬂm+a'+2, ) 4.1
where the right hand side tends to a constant C(p, |[uolp+s, |VuT*|.) as e—0.
In order to see the convergence of #.(f), let us consider the problem;

ﬁ«Uﬂ)—m“mws)m—AU Feyaranim=g(x, 1)

4.2)
Ux, )=U,, Ulse=0 and U=0

where g(x, ?) is an appropriately smooth function. We may assume U,=C} Q).
By (4.2) we have

1

d
i U+ e Utdt - FU ) =g

where we set
_l 2 (m+1) (m+a’+2)/(m+1)
FAU) = W0+ 22 dx.
Now,

SchdX§ 2(ml_LD ((U+s)'m/(m+1)+8)U%dx+cgg2((U—(~6)"7"’(7”“)—}-s)"ldx
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__1___. -m/(m ) 2
ST S((U+s> D4 ) 2dx

FC{l gllZ VU |3/ ™+ g™/ maD | g2}
where we set

AN(m~+1)/(mN-+2N+2m) if N>2
go=1 arbitrary (>2) if N=2 4.3)

2 if N=1.
Thus we have

1 -m/(m+1 2 d
mg(wﬂ) D L)+ FU®)

=C(|gOggm+D/mAD g MDY g() |34 F(U(2)))
and hence

IIVU(Z‘)ll§+€SU‘”+“'”)”’”“’(t)dx

N e

0

éC(T) UO) g; $)<OO (4.4)

for any 1[0, T], T>0, where the above constant depends on

T
So(llg(S)lléé’“”“m”’+sm“”‘“>Ilg(S)H%)ds, T and VU l5+elU,l%

(B'=(m+a’+2)/(m+1)).
Here, we make an additional assumption ;

| flx, t, W] =C1+u**®)  for u=0 (4.5)
with some a (=a).

Then, we see by (4.1) that
£ty g =CA+| 38 a) =€ (4.6)
where C denotes constants depending on ||[Vu?**!||, and lollgya+m- Thus, setting
glx, H)=f(x, t, #i.(x, 1)), we obtain from and (4.6)
, T @ |2
IIVum“(t)H%-f-sSum*“ +2(t)dx+S |- umms)|'as=cr, o &.7)
oll Ot Il

where C(T, ¢) is a constant depending on u,, 7" and e. Note that lim C(T, ¢)
e~0

depends on only |[Vul*!|, and |uolsa+s. The estimates (4.1) and (4.7) are
sufficient for the convergence of #.(f) to the required solution of (P,).

THEOREM 4.1. Suppose that the Assumption 1 and (4.5) are valid, and let
uPHre HiN LoW+® /md (Gf 0<a<m) or ul €W LW0+D/m+D (5 0 <m < a<m*)
with q, defined by (4.3). Then the problem (P;) has a solution u(t) such that
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”u(t)”(1+a)q0<c for teR*
and

St+1
t

Moreover, if 0O<m<a<m* and f satisfies the stronger condition

(um/2+1(s))u ds-+ || Tum+1(8)|2 é for teR* (4.8)

[f(x, t, | =Cu**  for uz=0, (4.9)

the right hand side of (4.8) can be replaced by é(l+t)“2‘m+l”m.
PROOF. It remains to prove and the final assertion. By (4.7) we know
already

STH 2 umieei(sy)|ldsHITum 03T 4.10)

for each T>0. Now, let us consider the problem
—Aum=g(x, 1) (4.11)

with the conditions u(0)=u,, u|sp=0. It is known that for ge LL.(R*; LY(Q))
and u,= L) the problem has a unique solution in the sense of semi-
group theory (Evans [7], Benilan and Crandall [3]). By the general uniqueness
theorem (Brézis [4], Brézis and Crandall [5]) the solution of must coincide
with our solution u(¢) when g(x, )=—f(x, ¢, u(x, t)). We shall give somewhat
formal proof of our estimates, which can be made rigorous by use of semi-group
theory ([3]) or appropriate approximate solution ([12]). (In fact our argument is
a simplified version of the proof of the theorem in [12].)
Multiplying [(4.11) (With glx, H)=—f(x, t, u)) by (u™*'), we have

1
_(m;- )S muldx + 5 :j—t_”vuﬂl“(t)HZ—S—‘C”g(z)“goi‘ivumH(If)H;"'/(mH) (4.12)

with g, defined in (4.3) (note that [4.11) is equivalent to (4.2) with ¢=0). Next,
multiplying by u™*' and using (4.12) we have (cf. [1.5))

Ivar s (fumusde) “pum @l @R +H 2Ol w0l

§C|Ivum+l(t>“ém+2) /2(m+1) {C[Ig(t)Hgoi[vum+l(t)”;n/(77’L+1)

1 1/2
— = I gl I o)l
and hence

Hvum+1(t) Hém'FZ) /(m+1) {C]‘vumﬁ-l(t) Hé{’;m+2) /(m+1)

+ T O Clg O Tum O )} 0.
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Thus we obtain
T CITUm D D SC g g e (4.13)

as long as |Vu™*(f),#0. Comparing |Vu™*(f)|} with a solution of ordinary
differential inequality
y’+cy(3m+2)/2(m+l)2h(t)

with A@)=[g®|E™ ®/™*V we conclude from (4.13) that

IVum @Ol = {[IVu™ ()z™/ ™+ +C(t—s)} *mrv/m

+C| lgtpigrenrmeody (4.14)

for t=s=0.
Setting g(x, t)=—f(x, t, u) and taking s=t—1, t=1, it follows from (4.14)
that

0

“vum+1<t)ngéc—2(m+1)/m_{__CSZ lug(ﬂ)”ésmn)/(m+1)d77§6
under the assumption (see (4.6)). We have alsoiby (4.12)
t+1 ~
[ rumeugas=c.

If m<a<m* and holds, we see from and that
1£Cx, 8, Wl =S Collu® s =CAHn=F0m,
Thus, taking s=t/2 in we have
[Vum+i@) g Cemremenim, (4.15)

Combining with [(4.10) we obtain the desired estimate for [Vu™"(®)|..
Finally, integrating (4.12) we see easily

ST“umlgqu%dSé6(1+t)~2<m+1)/m

which is a slightly stronger version than required. g.e.d.

We do not know whether the uniqueness is valid or not under the assump-
tions of [Theorem 41. However, if we can derive L™ estimate of solutions the
uniqueness follows rather easily. We establish the following ;

THEOREM 4.2. Let ull*eHINL> if 0Sa<m and let ulTeWNL> if
O0<m<a<m*. Then, under the Assumption 1, the problem (P,) has a unique
solution u(t) such that
C<oo if 0<a<m

llu(t)i!oé{ _ )
Cl+t)~uym if O<m<a<m*
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and (4.8) is satisfied with C replaced by C, where C denotes constants depending
on |Vul*|l, and ||uelew. Moreover, if 0<m<a<m* and f satisfies

[ f(x, t, w)| =Cutt*  for 0=Zu=sr, r>0,

the right hand side of (4.8) can be replaced by C(1-4t)~(m+vim,

PrRoOOF. The existence and the estimates except for |u(t)]. are clear from
the proof of [Theorem 41. The L= estimate follows from [Theorem 3.1 and
[Proposition 1.2, To show the uniqueness we let u, and u, be two solutions.
Then, by the theory of nonlinear semi-groups we have

”u1(t)'—u2(t)”1§[|u1(0>“u2(0)]|1+S:[lf(y s, u)—f(+, s, u,)|l,ds

=C{ (s —ua(o)]ds (4.16)

where we have used the L* boundedness of u; (=1, 2) and the Lipschitz con-
tinuity of f with respect to u. The inequality implies u;=u,. g.e.d.

REMARK. Quite recently Levine and Sacks have proved essentially the
same result as for the case 0=<a<m. Their proof is different
from ours. The existence and decay for the case 0<m<a, which is more
difficult, is not investigated there. Subsequently, Sacks has established
closely related result to our His method is also quite different
from ours and does not seem to be applicable to the problem (P,).

5. Solutions to the system (P;).

In this section we discuss the problem (P,;). Since the case m=0 or n=0
is simpler we assume m and n are positive.
Let U, and V, be a pair of solutions of the approximate equations
1
-m/(m+1) . 1/(m+1) 1/(n+1) —
m+1 ((U+5) +€)UL AU—I_fl,s(x’ t; U ’ V ) 0
1
n+1
with U(x, 0)=U,, V(x, 0)=V,, Uls=Vl]s0=0, and U, V=0, where we set

(Ps,0)
(V&)™ @4 L)V —AV -+ fi(x, 8, UH™+D, YD) =0

fl,s:f1+sul+a, (a’'>a).

First, we assume U,eCy¥£) and V,=CL2) which can be weakened at the
last step by approximation. Then it is easy to see that (P; .) has a local classical
solution (U.(t), V(1)) and for the continuation of it to [0, o) it suffices to derive
a priori L® bounds for U.(t) and V. () on [0, o0). To prove the convergence of
them as e—0 we have only to show the estimate like which follows
immediately from L* boundedness of them. Denoting the limits as ¢—0 of U,
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and V., by U and V, respectively, u=U"™*? and v=V¥®+D should be a pair
of desired solutions of the problem (P;) with u,=U} ™Y and v,=V§ Y, Thus
our task is to derive L= estimates for U, and V.. To make the essential feature
clear we consider the original problem (P;) (or (Ps,.) with ¢=0) and treat the
equations formally. The result can be made rigorous through U, and V. as is
done in previous sections.

Multiplying the second equation of (P;) by v?*! and integrating we have, by
Assumption 2, (ii),

1 d peny AnFD(pFD)

- AL A ( n+2)/2 2
p+2 dt “U(t)”p—i—z (p+n+2)2 ”Vv pt (t)”2§0
which yields as in the section 3
[v@) o= lvolle=K (5.1)
and
HU(t)Hp+2§.c(.”7/o“p+2)(1+t)—1/n (5.2)
for 0=p=<co. By and the Assumption 2, (i), we have
filx, &, u(@®), v@)=—Co(K)u'*e (5.3)

with the above K. We denote by 8% the potential well 8 defined by (1.1) with
C, replaced by Cyo(K). Then, the estimates in Theorem 4.3 are valid for wu(?)
under the assumption uPMeWrNL” O<m<a<m*) or ullt*e HiNL> 0=5a<m).
From the L* boundedness of u(f) and v(f), fix, ¢, u, v), i=1, 2, are uniformly
bounded and we obtain the estimates like for » and v. We state our
conclusion.

THEOREM b5.1. Let vi"*eHINL™ and let ul'eWxNL> (K=|vil«) @f 0<
m<a<m*) or ult*eHINL® (if 0=Za<m). Then, under Assumption 2, the sys-
tem (Ps) admits a unique pair of solutions (u(t), v(¢)) such that

C,(1+-2)-1m if O<m<a<m*

du(z‘)llwé{ )
C, <0 if 0=Za<m,

and

o e=Co(l+1)~1n
] ium/2+l<s)

+1 0 2
I (5 o] e
FVu™ @[V 2 (D)= Cs <o 6.4

2
+
2

for any t€[0, o), where the definitions of solutions are similar to that of Theo-
rem 0. Moreover, if we assume

[ filx, t, u, v)| éC(r)(ulgt—-}—vEt) , i=1, 2,
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for 0=u, v=r with p,=nim+1)/m, gi=zm+1, B.>m(n+1)/n and B.>n+1, we
have the following decay properties instead of (5.4);

(172 umeeico[as) "+ 1mumolscaa - m 6.5
and
(7 -&vmso} )+ rmvm s scaa oo G5y

where (5.5) is valid only for the case 0<m<a<m*. The dependence of the con-
stants C; are as follows;

Ci=CllVud ey Nolle, lvollw),  Co=Cy(llvolls) and
Ci=C([Vud* Iz, V082, ol lvoll),  7=3, 4, 5.

PrOOF. It remains to prove the uniqueness and the estimates (5.5), (5.5).
Applying to v(t) with g(x, H)=f(x, ¢, u(x, ), v(x, t)) we have easily

[Vor (D)= Cs(14-2)77 (5.6)
with

(n—l—l B:Bn+2) . B.(3n+2) __1)

> 2m(n+1) 7 2n(n+1)
where we have used the decay properties of ||u(t)|. and ||v(f)]|.. The inequality
implies (5.5)" immediately by our assumptions on B, and B, (5.5) is also
proved quite similarly.

Next we shall prove the uniqueness. Let (uy, v;), i=1, 2, be two pairs of
solutions of the problem. Then by the theory of nonlinear semi-groups we have

7=min

lsO—wus®L = W, s, s, 0)=Filx, s, s, 09lds

t
=Const. | lus—uel+lv,—v. s

where we have used the Lipschitz continuity of f, and the uniform boundedness
of u; and v;, 7=1, 2. Similar inequality holds for [v,—wv,|l;, and we have, for
w(t)=[u,#)— w1+ 0:O)— v,

w(t)=<Const. S:w(s)ds

which implies u;=u, and v,=v,. g.e.d.

REMARK. If we consider the case m=0 or (and) n=0 the all assertions are
valid with the right hand sides of (5.5) or (and) (5.5)" replaced by exp(—Aat) for
some A2>0. The proof is clear from the derivation of (5.5) and (5.5)".
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6. L~ estimate and uniqueness of solution to the problem (P,).

In this section we shall discuss briefly on solutions to the problem ;

ti— B (e Moo —u*t=0 i QX(0, o)
Py

u(x, O)=u,, ulzp=0 and u=0,
where m is a positive constant.

The existence and nonexistence of global solutions to (P,) were investigated
by Tsutsumi and the results are generalized by several authors. Decay
property of global solutions for the case m<a<m* (see below) is included in
[14]. The condition imposed to the initial data in is somewhat stronger
than that in [18]. But, this gap is easily buried by a method similar to the proof
of [Proposition 1.1 (see [13]). For comparison with Theorem 0 and for later use
we state the following;

THEOREM 0'. (i) If 0=Za<m the problem (P, admits a solution u(t) (n a
standard generalized sense) for each u(=0)eW}i ™2 such that

u@)e L=>(R*; Wy™+?), us LE(RY; LX)
and

| N lads O 12220 <Cllual s e 6.0

where |+ ||1, m+2 denotes W ™*2 norm.
(i) If O<m<a<m*, the same assertion holds for u,(=0)=¥B, and moreover
u)e for any t=0 and we have

|, Iedolads + ol 20— Ta - meoim, 6.2)

In the ab'ove theorem we define m*, d, J and 98 as follows;

{(771(N+2)—§—4)/(N—(m+2)) if N>m-+2
m* =

co if 1ENZEm+2,

e,

J— x m+2
Ju)= ESQ|u1:,;[ dx—aJrzg

d= inf sup J(du)
uewl m+2 >0
u#0

and

‘lB:{u eWp™? | J(u)<d and éggluxilm”dﬁc—SQ{ul““dx>0}u{0}.

Our result in this section reads as follows.
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THEOREM 6.1. (i) If 0Za<m and u,csWym*NLP* (mZp=co), the solu-
tion of Theorem 0’ may be assumed to satisfy the additional estimate

@l pre=C(P, Ntoll1 mees 1ol pra) <00 (6.3)

(i) If O<m<a<m* and u,sWNLP** (mZp=00), then the solution may be
assumed to satisfy the additional estimate

@l p+:=C(p, Ntolls, mre, [%oll po)(T+H)7H™ (6.4)

(iiiy If p=co in the above (i) and (ii) such solution is unique.

PROOF. It suffices to derive the estimates formally, The detailed proof,
which we omit, can be given by virtue of standard compactness and monotonicity
arguments through approximate solutions u.(f), say, of the problem;

_— ;:21 (( I u.’ti l 2+5)m/2uzi)xi+€u1+a,_u1+a::0
(Py,e)
u(0)=u,, ulse=0 and u=0.

Since the case (i) is treated in a similar and simpler manner we restrict
ourselves to the case (ii). We have only to show the estimate for [u(f)]|p+s. As
is seen from the treatment of the problem (P,) the case p<co is easier and we
consider the case p=co only.

Now, multiplying the equation by u?*! (»p=0) and integrating we have

1 Ju( g PFLED" &
D2 dt (p+m-+2)™* =

(p+m+2)/(m+") m+2d
S |8x1 ) *
:S uPretidy (6.5)
Q
By Holder’s inequality and the boundedness of [u(®)|l1, m+e

Juzr e @13 N Bl u @1 SOl @l T 2o 0100 | ggn 051z emsen

with y=(p-+m-+2)N/(N—2) (we consider the case N=3). Applying Young’s
inequality we have

at (p+Dim+2)* & man many| ™
Sulﬁ e 20p+m—+2)™*2 {o S 0x; A detGlu@izi: ©6.6)
where we set in the above
Na mN
‘91‘<p+2){1_ mN~+(m—+2)(a+2) } ‘92‘“{1” mN+(m+2)(a—}—2)}
Na(p+m+2)

and  Os=- o D)

and C, is a constant such that
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Cpéc(”uoul,m+2)(p+l>(m+1)(mN+(m+2)(a+2)—Na”NaEC(p+1)§-
Thus, from and (6.6) we obtain

% [u@®NB334+Cp+1)~™[Tu@rm+o/med ()| mig < C(p+1)7 1 |u@)|213.  (6.7)

This together with implies, by [Lemma 3.1, the boundedness of [u(t)|.
The decay property for the case 0<m<a<m* is also proved quite similarly to
the proof of [Theorem 3.1, (ii), and the details are omitted.

After the uniform boundedness is known the uniqueness of such solution
easily follows from the monotonicity of the principal elliptic term and the
Lipschitz continuity of u'*%. Indeed, letting u;, 7=1, 2, be two solutions we have

S R ) = (RO AR =e 4V PR ORRC

with Mzstup(Hui(t)Hw), which implies u,=u.. g.e.d.

REMARK. If we assume only u, Wi ™2 0<Za<m)or u, =W O<m<a<m*)
we can obtain (see Theorems 2.1 and

lu()| <{ Cpt—llm+cp<l[u0511,m+2) if 0a<m
u _
PEE Gt Gyl me) LD i O<m<a<m®

for any 0=p<oo, which is a kind of regularizing effect. We can conjecture
that these estimates should be valid for the case p=co, The nonnegativity of
solutions is inessential in this section.

Appendix. Outline of the preof of Lemma 3.1.
We follow Alikakos [1]. Setting

akzcllil » Vk:CoZEOO ’

Ar+-1

‘Bk:—/i—;:;-{__l and L’:wlk‘l'*‘l (k:]-’ 2) 3) "')9

the inequality takes the form
—(%Svﬁkdxg—ukgle[de+akSv5kdx. (A.1)
Noting 1<8,<r and applying the Gabliardo-Nirenberg inequality, we know

lvlBs<eulVoli+Ce lvliTe (A.2)

where ¢, is a positive constant to be chosen later, C.=¢"* for a certain >0, and
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_ rA=7e)Be - rN(B:—1)
* r—7efr k Br(r—N+rN)®
Now, choosing ¢, so small that we may have a.e,+ei<v,, it follows from (A. 1)

and (A.2) that

—%SWAk+1dx§'"'ekswxkde"l'(ak"l—sk)Csk[SggSwlk—lﬂdx]rk

and hence

Swz k“a’x_é_max{ék[stxgooSwX k—l“dx]rk, Swik“(x, O)dx} (A.3)

where 0,=(a;+¢e:)C;,/er (>1).
Thus, inductively from (A.3), we can obtain

wak“dX§5k5£51 e Q2 TR AR (A.4)
with

K=max{l, c¢|wo|., Slngw(t)wa}, ¢, d>0.

Since 7,<r and §,<rk01+@e+I0a+m g for certain a and p>0, we have from
(A.4) that

lw®llz,1=aPrrie K (A.5)
where we set
k-1 (P =k —=1)0,+(0,+ 0 ) 1+ p)(rF—1)
P e P :

Taking the limit in (A.5) as k—co, we obtain

supl{ w(t)uwéa”(rwﬁwwel) Q+m)Iry
tz0

with p=[A—m—r-+1)(r—1)"']"", which completes the proof.
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