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§0. Introduction.

Let f: M—M be an isometric immersion of a Riemannian manifold M into a
Riemannian manifold M. If for each geodesic y of M the curve feoy in M is of
osculating order d and has constant curvatures which are independent of the
choice of 7y, then f is called a helical immersion of order d. In this paper we
shall study helical minimal immersions of order 4 into a unit sphere S(1).

Besse showed that a strongly harmonic manifold admits a helical minimal
immersion into a sphere. As is well-known, making use of eigenfunctions of
the Laplace operator, we obtain minimal immersions of compact rank one sym-
metric spaces into spheres (cf. [14]). Similarly we have the a-th standard
minimal immersions of strongly harmonic manifolds into spheres. Let m, be the
multiplicity of the a-th eigenvalue of the Laplace operator and ¢; (1=1, ‘-, m,)
an orthonormal base for its eigenspace. Then we define @, by @,(x)=(d:(x),
+, @m,(x))ER™*. If we change homothetically the metric on the strongly
harmonic manifold, then @, becomes a helical minimal immersion into a hyper-
sphere of R™«, We call @, the a-th standard minimal immersion of strongly
harmonic manifolds. Tsukada proved that if f: M—S(1) is a helical minimal
immersion of a strongly harmonic manifold M, then f is equivalent to some
@, that is, =¥ @, with some isometry ¥ of S(1).

Let f: M—S(1) be a helical minimal imbedding of a compact n-dimensional
Riemannian manifold M. If the order d of f is equal to 1, then f is totally
geodesic. In the case d=2, Little [5] and the author showed that M is iso-
metric to one of real projective space RP", complex projective space CP™ (n=
2m), quaternion projective space QP™ (n=4m) and Cayley projective space CayP*
(n=16) with canonical metrics and f is equivalent to @,. If d=3, then M is
isometric to S™ and f=®, This result was given by Nakagawa (see also
[10], [11]). The case d=4 was studied in and proved that M is isometric
to one of projective spaces RP", CP™, QP™ and CayP? under the condition
that a=<7(0), 7(L)>>0 for any unit speed geodesic y where L is the diameter
of M and <, ) denotes the inner product of the Euclidean space in which S(1)
is naturally imbedded (also was proved that f=~@®,). Furthermore if d=5, then
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M=S"™ and f=®; (see [12]).

For a helical immersion f: M—S(1) there exists a function F such that
{flx), f()>=F(@(x, v)), 0 being the distance function on M. For instance, if
f=@,: M—S() is the a-th standard minimal immersion of a compact rank one
symmetric space M, then F is a zonal spherical function and it is easily shown
that the order of f is not greater than 2 if and only if F is monotone decreas-
ing on (0, L) (cf. [12]). Moreover in the author showed that for a helical
minimal imbedding f: M—S(1) of order d of a compact Riemannian manifold M
into S(1), if F is monotone decreasing on (0, L) and f is not totally geodesic,
then d is an even integer. Thus it seems very important to study the case
d=4. In fact, the condition a<0 in the case d=4 is equivalent to that F is
monotone decreasing on (0, L) (cf. (1.8)). In the present paper, we shall show
that if d=4, then a<0 does not occur.

Well we give the organization of this paper. In §1, we summarize the
results obtained in [11]. We give in §2 all normal Jacobi fields in terms of the
second fundamental form and using them we obtain many equations satisfied by
the second fundamental form. Also we define a one parameter family Sx(s) of
symmetric transformations acting on the subspace {X}' in the tangent space
T.M where XeT .M. In Lemmas 2.4, 2.5 and Corollary 2.5, good properties
possessed by Sx(s) will be given. Since M is a Blaschke manifold (cf. [9]), all
geodesics from a point x of M to vy of its cut-locus form a submanifold in M.
§ 3 is devoted to studying geodesics from y(L/2) to y(3L/2) where 7 is a geodesic
such that 7(0)=x and y(L)=y. We shall prove that such geodesics lie on the
submanifold. In §4, we shall show ¢<0 does not occur. The result is stated
in [[heorem 4.4

§1. Notations and preliminaries.

Let f: M—M be an isometric immersion of a Riemannian manifold M into
a Riemannian manifold M and 7 an arbitrary geodesic of M. If the curve for
in M has constant curvatures «i, -, £q-1 (#0, £g=0) which are independent of
the choice of 7, then f is called a helical immersion of order d. In this paper,
the ambient space M will be a unit sphere S(1).

In [9] the author showed that if a compact Riemannian manifold M admits
a helical immersion into a unit sphere, then M is a Blaschke manifold (for the
definition, see [1]). In particular, all geodesics of M are simply closed geodesics
with the same length, which will be denoted by 2L. Thus the diameter of M
is equal to L. Let x be an arbitrarily fixed point of M and XU, M (unit tan-
gent sphere at x). Let 7 be the unit speed geodesic such that y(0)=x and 7(0)
=X. The cut-locus Cut(x) of x is a submanifold in M whose dimension is in-
dependent of x. Let 4,(X) denote the linear subspace Span{4(0): ¢ is a minimal
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geodesic from x to y} in T,M where y=y(L). Then we see that T ,M=
T.Cut(y)BK (X) (orthogonal direct sum). Let e=dim 4 ,(X). It is well-known
that e is equal to 1,2, 4, 8 or n (=dim M) (cf. [1]). The orthogonal comple-
ment of X in % ,(X) will be denoted by £%(X).

» In the sequel, we assume that f: M—SQ) is a helical minimal imbedding of
order 4 of a compact Riemannian manifold M. Here we remark the following.
If a helical immersion M—S(1) is not injective, then we see from Corollary 6.3
that M is diffeomorphic to a sphere S™ and the immersion is the composite
of the covering map S™—RP" and a helical imbedding RP"—S(1). Thus we
may always assume that a helical immersion into S(1) is an imbedding. Let
¢: S(1)>E be the canonical inclusion of S(1) into the Euclidean space E whose
origin coincides with the center of S(1). The imbedding ¢=¢-f is also a helical
imbedding of order 4. Let y be a unit speed geodesic in M. The curvatures of
fer will be denoted by #i, £, and x;. Then the curvatures 4,, 4, and 4; of r=
¢-y are given by

D t=ltal,  AB=eid  A+A=rited

(see Corollary 4.2 [9]). Let x=y(0) and X=7(0). Let H denote the second
fundamental form of the imbedding f. Frenet vectors of = at x are given by

TP (X)=X,

t@(X)=4a"{—x+HX, X)},
®(X)=(44)"(DH)(X?),

(X)) =(42:4:) " {—3x +BH (X, X)+(D*H)(X*)}

(1.2)

where D denotes the van der Waerden - Bortolotti covariant differential operator
(cf. Theorem 4.1 [9]). Define functions fi, ---, f, on R by the differential
equation

fi=1—-4,f,
(1.3> fézz.lfl—zzf?,

f:g:'zzfz'—lsfet

f‘;:lsfz
with initial conditions f,(0)= --- =f,(0)=0. Furthermore define &(s; X), {(s; X)
and F by

£(s; X)=[o(s)FP(X)+fu(s)FD(X),
E(s; X)=fs(s)c®(X),
F(s)=1—A7"f2(s)—A5(A145) " f4(5)
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respectively where
TO(X)=A7'H(X, X),
TO(X)=(A1deds) H{AH(X, X)+(D?H)(X*)}.

Then &(s; X) and {(s; X) are normal to M (and tangent to S(1)). Equation (1.3)
implies that F’=—f;. If we solve Frenet differential equation, then we have
(omitting ¢@)

t()=x+ () X+ o) P (X)+f()r @ (X)+fu(s)e® (X)

which is rewritten as

(1.4) o($)=F()x+fi($)X+&(s; X)+L(s; X).

It follows that
(1.5) Lz, w>=F(0(z, w))

for every z, we M where {, > denotes the inner product of E and ¢ the distance
function of M.

Since 7 is a periodic curve with period 2L, we see from (1.3) that f, and f,
(resp. f, and f,) are odd (resp. even) functions with period 2L. Hence we have
[H(D)=f(L)=0. Let a=fi(L), ai=fi{L), a,=f(L), a,=f(L) and b=F(L).
We should remark a+0 which is derived from the assumption f is minimal.
Since s is the arc-length parameter, we have a%+(a3)?=1 and moreover from
z(L)eS(1), ai+a2=2(1—b). Making use of (1.3), we see from these equations
that (I): a;=0 or (II): a;=24,4,a/(A3+1i—A4%. However we have shown in
that the case (I) does not occur. In the case (II), 4,, 4, and 4; are given by

2 9 , 1—a* 82
1. 2:”_ 2__ Y 2 2 _ Y
(1.6 A= Qetd),  B=atotes A=gs
where v=n/L=((1—a)/(1—b))"/2. Furthermore we obtain
1.7 f1(8)=4% {20—a) sinys+(1-+a) sin2vs},
3a—5 1
(1.8) F(s)zl—i—v +§;2— {4(1—a) cos ys+(1+a) cos 2vs}

(cf. [11]). Let A(s), k(s) and I(s) be defined by

h<s>=1—F<s>—51;<1—b>f4<s> ,

k(s) = -C%;f4(3) ,
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I(s)= a%fs(S)

respectively. Using (1.3), (1.6), and (1.8), we have

h(s) =

1 (1—cos 2vs),

(1.9) k(s) :%(3—4 €0s ys—cos 2vs)

l(s):——%}(Z sinys—sin2vs) .

Define (D&)(s; X) by (D&)(s; X)=V%&(s; 7) where V* is the covariant differential
operator with respect to the normal connection. Then we have (D§)(s; X)=
{'(s; X). Let &X)=&(L; X) and (D&)(X)=(DE(L ; X). Intermsof h, &, [, &X)
and (D&)(X), &(s; X) and {(s; X) are given by

(1.10) &(s; X)=h(s)H(X, X)+k(s)EX),
(1.11) Ls 5 X)=U(s)(DEX) .

It follows thatY(1.4) becomes

(1.12) t()=F()x+[i($)X+h(s)H(X, X)+ k()5(X)+I(s)(DENX) .

Here we notice the geometric meanings of &(X) and (D&)(X) as follows. Let
y=y(L) be the cut-point of x. Then shows y=bx+&(X). Also shows
t(L)=aX+(DE)(X). The tangent space T,.Cut(y) of the cut-locus of y and
I -(X) are eigenspaces of the second fundamental tensor Ay, corresponding to
&X), i.e.,

T.Cut(y)={Y : Aex, Y =bY},

'j[x(X): {Z . AE(X)Z:(b._a)Z}’

(1.13)

so that b=ea/n.
It is easily verified that a<0 is equivalent with ;>0 on (0, L). If a>0,
then we have

THEOREM 1.1 ([11]). Let f: M—S(Q1) be a helical minimal imbedding of order
4 of a compact Riemannian manifold M into S(1). Assume that a>0. Then a=
(e+2)/(n+2) and M is isometric to one of RP", CP™, QP™ (m=2) and CayP?
where m=n/e. If M=RP™, then the sectional curvature is equal to n/4(n-+3).
If M=CP™, QP™ or CayP? then the maximal curvature is equal to n/(n-+e-+2).
Moreover f is equivalent to the second standard minimal imbedding.

Therefore, in the sequel, we shall assume a<0. Under this condition, we
shall prove a=—1 which implies a;=0.
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§2. Equations satisfied by the second fundamental form.

We shall use the following normal vectors:

.
Ex(s: V>_1|Vn—g(s cos wX—I-smw”V”)

(D&)(s; V5 X)=Vp(s; X™)

where X UM (unit sphere bundle), V< {X}* and X* is the local field extending
X such that VX*=0 at the origin of X. In the same way, we define {x(s; V)
and (DO)(s; V; X). Clearly we have

(DO (L; V; X)=Vp(DEXH)=(D*)V ; X) .

Let 7 be the unit speed geodesic such that 7(0)=x and 7(0)=X. Let J, and J#
be Jacobi fields along 7y such that J,(0)=0, Vx/y=Ve {X}* and J3¥0)=V, Vx/#
=0 respectively. Then they are given by

(2.1) Jr($)=f1(8)V+Ex(s; V)+Lx(s; V),
(2.2) ]%(S):F(S)V_AE(S;X)V'—AC(S;X)V
+f1()HV, X)+(D&)(s; V ; X)+DY(s; V; X)

which were computed in (see also [107]). Notice that Ae,x)V and Az x)V
are orthogonal to X (cf. [9]). Since y(s) is not a conjugate point of
x for every s=(0, L), {Jy(s): Ve {X}*} spans {j7(s)}*. Thus there exists We
{X}* such that J¥(s)=Jw(s). Define the symmetric transformation Sx(s) on
{X}* by

(2.3) Sx(s)= {F(S)— Az 20— Azis; 00}

f1( )

where I denotes the identity transformation. Equations and show that
W=Sx(s)V. Furthermore we have

Ex(s; W)+Cx(s; W)=F(sYHWV, X)+(DE)(s; V; X)+H(DO(s; V; X).
It follows that
(2.4) F()DE)(s; V5 X)
=—Ex(s; AewnV)HF($)Cx(s; V)—Lx(s; Az 0 V),
(2.5) [1()*HV, X)+f1(s)(DO(s; V5 X)
=F(s)6x(s; V)=€x(s; AesrV)—Lx(s; Aresnr V)

(cf. [11]). If we compute the first and the third derivatives of at s=L,
then we get
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LEMMA 2.1 (cf. Lemmas 5.3 and 5.5 [11]). Let Z=4¥X), YT ,.Cut(y)
(y=7(L)) and c=(a-+2)*/2—1. Then we have

1)2

2a
=2H(X, Aws ) 2)+DEx(Anx. v, 2) ,

2.6) (e+5)DOx(2)— 5 —&x(Awp i 2)

2.7) (DB (V) — 5 —Ex(Awp 0 Y)

=2HX, Apey 0)Y)+(DEx(Anx, x,Y),

where (D§)x(Z2)=C%(L; Z), EX(A(DE) 0 Z)=E5x(L; A(De) xZ) and so on.
Next we shall compute the second and the fourth derivatives of (2.5) at
s=L and s=0 respectively. Let n(X)=£"(L; X). From (1.10) we have

(2.8) P X)=H(X, X)—v*%(X).
LEMMA 2.2. For YT ,.Cut(y) we obtain

(2.9) aH(X, YV)+(D*%)(Y ; X)

1 1 1
=—S&x(Y+ 24,07 )= 2 (DOx(Avp 0 Y),

”2
2a

(2.10) —2¢H(X, Y)— c5X<Y>+—;a—sx<AH<X,X)Y>

2
+2H(X, Apx, xY)+ %(DS)X(A(DG) xY)=0.

PrOOF. Calculate the second derivative of the both hand side of at
s=L. We have
2¢’H(V, X)+2a(D*§)(V ; X)

= aEX(V)+'b7]X(V)"7]X(A5(X)V)
—€x(Ay 0 V)—2(D8) x(Awey x»V)

where we have used equations f,(L)=f,(L)=f7(L)=f{(L)=0. Let V=Y. In
virtue of (1.13), we obtain Substitute '

(DO(s; V; X)=U(s)D*)(V ; X)  (ef. [L.II)),
Ex(s; V)=2h(s)H(X, V)+k(s)sx(V)  (cf. [L.1I0)),
Cx(s; M=Us)DEx(V),

(1.10) and [1.11) into [2.5). Then becomes
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F1()*H(X, V)+f1()(s)D*)V 5 X)
=F(s){2h(s)H(X, V)+k(s)sx(V)}
—2h(s$)H(X, h($)Aux, v,V +R(8)AecxsV)
—k($)Ex(h($)Anx, 1V +E(S)Aex)V)
— ()X D) x(Awe V) -
Letting V=Y and making use of (1.13), and [2.9), we have
(f:—2hF+2bhk—alf)HX, Y)

2 1 2
+{okr—kF— 5 (1—if}ex(1)
+(hk - ?la—lﬂ)&v(/lmx, oY) +2RPHX, Arx.x)Y)

(= 1) (DB x (A 0 ¥)=0.

In order to compute the fourth derivatives of coefficients at s=0, we use
(1.8) and [1.9). The following are easily verified :

(D O)=—4*Ba+5), (AF)?®0)=—2(2»*+3),
(hE)®(0)=0, (U DPO)=—62  (AH)®(0)=6,
#H®0)=0, ()“(0)=0, (kF)“"(O):—g—v“-
Thus we have [2.10). Q.E.D.

LEMMA 2.3. For any Y, VT, Cut(y) we get

.11 Hex(Y+ 1 4,wY), &)=, V),

2.12) (DAY, ExV =2 <Aup e, V.

ProOOF. Consider Jacobi field Ky along 7y such that K(0)=Y T ,Cut(y),
K#(L)=0 and V; Kp(L)=YeT,Cut(x). If we put W=V,Kp, then Kp=J¢+]w
(cf. Theorem 3.4 [11]). Using and [2.2), we have

V=—AweswY+aW+aHX, Y)+D¥Y ; X)+(DExW).
Since T,Cut(x)={£x(Y);YeT,Cut(y)} (cf. [11]), we see that
W=(1/a)A(D5) (X)Y and so

¥ =aH(X, V)HDRY ; X)++ (DOx(Avo ).
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From it follows that Y=—(1/2)¢x(Y+(1/a)A4,xY). Since {Kz, V;Jy>—
V;Kp, Jy>=constant along 7y, we have <Y, V>=—<)7, Ex(V)>, which shows
(2.11). Next we prove [2.12). Observe

d? . . . . o
~5 Ke=R(, Kp)i —An g xpp7+2HF, ViKp) +HDH)T, 7, K?)

where R denotes the curvature tensor of M. Thus we have
d2

—a K D)=2HG(L), ¥).

On the other hand, equations show
d2
'gg;(f#‘l‘fW)(L):—aY—An(X)Y'HD??)(Y ; X)+nxW)

where (D7)(YV; X)=Vpp(X*). As &x(V) is tangent to M at y, we obtain
DOPY ; X)+nx(W), Ex(V)>=0. Therefore it suffices to show

@13) D ; X)bnxW)=— 3o DN +2H(X, < Awp oY)
because from (1.13) we have
CHX, U), §x(V)y=—<H(V, U), &X)+<H(X, X), §X)<U, V>
=—alV, U>
for every U< {X}*. Equation gives
DY ; X)=DH)Y, X, X)—v DY ; X),
nx(W)=2H(X, W)—v*&x(W).

By using (3.4) [11], we obtain (D&)(Y ; X)+&x(W)=0. Moreover the definition
of {(s; X) shows

2
3t

for every U=U M where we have used (1.6). It follows that

DEW)=L (L ; U)=ai(A:4,) " (DH)U®*) =—

(DH)U?)

(DH)Y, X, X)=%{(DH)(Y, X, X)+(DH)X, Y, X)+(DH)(X, X, Y)}

=5 (D§)x(1).

Therefore we have proved [(2.13). : Q.E.D.
The symmetric transformation Sx(s) has nice properties stated in the follow-
ing two lemmas.

LEMMA 2.4 [12]. Let g; (s€(0, L)) be the Riemannian metric induced on
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UM by the map U,M—(geodesic sphere with center x and radius s) sending V
to exp,sV. The derivative S(s) satisfies

gs(Sx()WV, W)=—<V, W)
for every V, We {X}* and s€(0, L), where we note that
gs(V, W)={Jw(s), Jw(s)> .
LEMMA 2.5. Define ¢x,s: {X}—{F(s)}* by
Px,s(V)=Js wv(s).

Then we have
HE o (T()=¢x, (Ker(Sx(s+L)—Sx(s)))
for each s<(0, L).

PrROOF. Let s=(0, L) be arbitrarily fixed. Let # be a Jacobi field such that
F(s)=0and 17 on 7. Let W=4(0) and V=Vy4(0). Then this Jacobi field
can be written as

$=I+]v.

Since #(s)=0, we have from and
[1&)Sx(SW +£1(s)V =0.

The assumption a<0 is equivalent to f;>0 on (0, L) because of [1.7). Thus
V=—Sx(s)W. We shall compute V;,#. Since

F(s+D)=JH(s+t)+Jv(s+1)
=f1(s+t)(Sx(s+t)—Sx(sHW
+Ex(s+1; (Sx(s+8)—Sx(sHW)

+Cx(s+1; (Sx(s+H)—Sx(sHW),
we obtain

V805 = (s +)

t=0

=f1($)Sx (W +Ex(s; Sx(IW)+Lx(s; Sk(sIW)
=¢x,(W).

Noting that 4(s+L)=&;(¢x sW)) and using [11], we see that
Sx, (W) I%(7(s) if and only if F(s+L)=0. Thus we have proved ¢x, (W)
€ K% (7(s)) if and only if (Sx(s+L)—Sx(s))W=0. Q.E.D.

COROLLARY 2.6. Let Z< {7(L/2)}* and Z=¢x,1,s(W). Then Z& % 1/5(F(L/2))
if and only if F(L/2)W—A¢wiz;xyW=0.
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PROOF. By we see that ZeE 4%, (7(L/2)) if and only if
(Sx(BL/2)—Sx(L/2)W=0. It is easily verified that

SxBL/2)=Sx(L/2)=—=2{F(L/2)]—Aswix>} /f(L/2).  Q.E.D.

REMARK. Equations [2.1), [2.2), [2.4), [2.5), [2.9), [2.11), Lemmas 2.4} 2.5 and
hold for any order helical minimal imbedding of a compact Rie-
mannian manifold into a unit sphere.

§3. A geodesic from y(L/2) to y(3L/2).

As before, let y be the unit speed geodesic such that y(0)=x and 7(0)=X.
Let ¢ be a unit speed geodesic such that ¢(0)=y(L/2) and ¢(0)=2< K* 1,57 (L/2))
NUy@inM. Then a(L)=y(3L/2). Let Z be given by Z=¢yx 1,,(W) where

We {X}*. Using (1.8)~(1.10) and [Corollary 2.6, we have
1 2
3.1) Ance, oW ={7 (@=3+2HW =2 AW .
Moreover ||Z||=1 implies that
3.2) (Sx(L/2W, WH=—1

since | 2|*=g/(Sx(L/2W, Sk(L/2)W)=—<Sx(L/2)W, W) in virtue of Lemmal
2.4.

LEMMA 3.1. We have

: 2 1
(3.3 SU(L/DW == Ao oW = (W 125 AW,
" 4 1+a
G4 SHL/2W == | 2o (b= W =AW} + s Ao oV |.

ProoF. Differentiating the both hand sides of
[1(8)Sx(SW=F (W —h(s$) Anx, ny W —k(8) Aect W —1(8) A oey cuW
at s=L/2 and using (1.7)~(1.9), we have
—v(1+a)Sx(L/2)W+(1—a)Sx(L/2)W
=—1—a)W—-v*Aecx,;W+vAwps oW .

Since SX(L/Z)W:'—(l/f1)(L/2)A(De><.¥)W:A(De><X)W/(1—a), we obtain [3.3). If
we make use of then we have (3.4) in a similar way. Q.E.D.

LEMMA 3.2. The unit tangent vector (L) is given by
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6(L)y=aZ+(DE)(2)
:—Sb-X,L/z(W) .

Proor. The first equality is an immediate consequence of [1.12). As in
the preceding section, let 4 be the Jacobi field along 7 such that 4(0)=W,
&(L/2)=0 and V;4(L/2)=2. Taking account of we see that V;4(3L/2)=
aZ+(D8)jwi»(2). Since (DE)i e (B)=(DENZ) (cf. in [11]), we have 6(L)
=V;4@BL/2). Differentiating the both hand sides of

FL/2AD)= (L/2+)(Sx(L/2+t)—=Sx(L/2)W
+Ex(L/2+t; (Sx(L/24+8)—Sx(L/2)W)

+Cx(L/24t; (Sx(L/2+t)—Sx(L/2))W)
at t=L, we obtain

VSBLD =S 8Lzt
=F,BL/2)Sk(BL/2W +8x(BL/2; SxBL/2W)
+Cx(3L/2; SBL/DW).
By the definition we easily have S¥(BL/2)W=S_x(L/2)W. It follows that

6(L)=—f1(L/2)SLx(L/2)W—E&_x(L/2; SLx(L/2)W)
—{-x(L/2; SLx(L/2)W)
=—¢_x,,2W). Q.E.D.

Let s@t)=0d(x, a(t)) and V()=U,.M the unit tangent vector of the geodesic
from x to o(t). Notice that V(f) is unique for each t<[0, 2L). In fact, suppose
o(to)eCut(x), t,=(0, L). If t,=L/2, then length (7|c,zs20)-+length(e |, )=L.
Thus #(L/2)=% which contradicts 7(L/2)1Z&. If t,=L/2, then it suffices to
consider the curves @], 21 and 7|wr/s, 2220 Decompose W as

W=Zy+Y, Z,c4¥X), Y, €T Cut(y).
LEMMA 3.3. We see that s(t) and V(t) satisfy

a ar
IVl

3.5) F(s®)=F(L/2)+

(3.6) (f1(s@)/F1(L/2)V )= {F ) —(L+b) k() +p(X, W)h[®O} X
+{/1®)—al@®)} Sk(L/2W
—IOSZx(L/2)W +v*h() B(X, W)
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with s(0)=s(L)y=L/2, s'(0)=0, V(0)=X and V’'(0)=S%(L/2)W, where p(X, W)=
1—||SX(L/2W P+ Q2a(l+a)/(1—a)1—b)D|Yl|? and B(X, W) is a certain tangent
vector orthogonal to X.
PrROOF. Let N,M denote the normal space of M at x in S(1). We may
write o(t) as
at)=F(st)x+fi(s@)V (L) mod N, M.

By [1.12), we may also write
3.7 c)=F®)r(L/2)+f,)Z+h(O)H(Z, Z)

+E®E(Z)+IE(DE(Z) .

Let W=S%(L/2W/|IS%(L/2W|. Then we have J#(L/2)=%/|IS%(L/2W|. Let
a(f) be the curve on M defined by

a(@)=F(L/2)x+f(L/2)U(0)+&(L/2; U@)+LL/2;U@)),
where U(8)=cosf@X~+sindW. We find
&0)=Jw(L/2)=2/|SX(L/2W|,

aO)=—f(L/DHX mod N, M.
It follows that

—f1(L/2)X=V;a(0)+<a(0), a(0)>a(0)
=V4a(0)+H(@(0), a(0))—|la)|*r(L/2)
=V,;a(0)+||S%(L/2W |2 H(Z, 2)—7(L/2))

mod N.;M, ¥V being the covariant differential operator on S(1). Decompose
V:a(0) as
Vaa(0)=Jacx,wy(L/2)+<{ac(0), 7(L/2)>7(L/2),

where A(X, W)e {X}*. Then we have
H(Z, Z)={F(L/2)+f(L/2)|Skx(L/2)W|*Na&(0), 7(L/2)>} x
+{f(L/2)—||SK(L/2W |*f(L/2)—f{(L/2)|SK(L/2)W|?
«(Va(0), T(L/2)5} X—f1(L/2)|SK(L/2)W|*AX, W)

mod N, M because of and [2.1)} We next prove
3.8) Vad(0), ?(L/2)>=——;—<S§(L/2)W; WH/ISx(L/2)W|?.

Let I" denote the variation (s, 8) — exp,sU(8). Then
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(Vad(0), 7(L/2)>=— <30 ’ amaaa[’/as>\ (s,0)=(L/2,0)

<80 , VBF/BsaF/60>

(s,0)=(L/2,0)

1d ,
===l

s=L/2 -«

Furthermore using [Lemma 2.4 we have

d ;o _d 5y
E“]W” S=L/2_—— ds gS(Wy W) s=L/2

=& (SUISHLIDW, SUL/2W| [ ISKL/2We

={SE(L/2W, WH[|Sx(L/2W*.

Therefore we have shown [3.8). Thus
3.9) H(Z, 2)={F(L/2~ 5 f(L/2XSHLIDW, Wi}
+HAL/2A-1SKL/2W )

3 FUL/2XSHLIDW, Wy} X

+fi(L/2)v*B(X, W) mod N, M,

where B(X, W)=—||S¥(L/2)W|2A(X, W)/v® Since y(3L/2)=by(L/2)+&(Z), we
see that

(3.10) EB)=1—-b)F(L/2)x—1+b)fi(L/2)X mod N M.
Moreover implies (DE)(Z)=—¢-x,1:W)—adx,1,2(W), so that
(3.11) (DEYZ)=—f1(L/2){SLx(L/2)W+aS%(L/2)W} mod N. M.

Substituting (3.9)~(3.11) into and noting that F@)+ha)+1—b)k({)=1, we
obtain

(3.12) 0O={F(L/2— 5 FAL/2CSHLI2W, Woh®)}x

+A(L/2)HF O —QA+b) k@) +p(X, W)} X
+{fi)—al®)} Sk(L/2W
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—I®)SLx(L/2)W+v*h () B(X, W)]

mod N, M, where u(X, W)=1—[S%(L/2)WI|*+(f1(L/2)/2f.(L/2))XS%(L/2)W, W>.
Finally we shall prove (fi(L/2)/2f(L/2))XS%(L/2)W, W)=2a(1+a)/(1—a)1—b)?)
-|IY,)%. Consider geodesics 7(s)=y(2L—s) and ¢(¢)=0c(L—1). We have r(O):—X
and (0)=¢_x, 1x(W) (cf. Lemma 3.2). Thus & satisfies in which X is
replaced by —X. Since <{o(L—1), x)=<(¢{), x> and h(L—1)=h(t), we get
(S%(L/2YW, WHy=(S"x(L/2)W, W>. It follows from (3.4) that

3.13) Aoy oW, WH=0,
and so, using (1.13),
_ —bay .
WL/, W= i s Il
From we obtain the assertion. Q.E.D.

LEMMA 3.4. We obtain

(3.1 [+ 2 AW | =4 Lyl

(1-b)?

a(l—a)¥(3a+1)
4(1—b)

PROOF. Substituting into and making use of [3.13), we have

1-b

(3.15) H A(DE) (X)WH2:

1Yol

<W+%A$<X)W, W>:1 .
—b
If follows from (1.13) that
1
VZHZO||2+”1_—b [Y,l?=1.
Thus we see that

HW+ Ag(mW.l 2Zo+—1—1?Yo

= v+ Y[

- b)2

Next we prove [3.15) As in the proof of Lemma 3.3, we consider geodesics
7(s)=r(@L—s) and G(t)=a(L—t). Since <g(L/2), X>=<ao(L/2), XD, for ¢
and G give

2AF(L/2)—A+b)k(L/2)} + {p(X, W)+p(—X, W)} h(L/2)=0.
Using (1.8) and [1.9), it is easily shown
{F(L/2)—(1+b)k(L/2)} /h(L/2)=v"—1.
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Furthermore using [3.3) and [3.14)] we have

w(X, W)+p(—X, W)
4a(1+a)

9 2 (|1Q/ 2
=2—||SE(L/2W|*—|ISLx(L/2)W|? -l- —a)1—b) Yl
. 4y aBa+1)
—2{l—v— 2 Aon oW I+ ot D IVl
Therefore we obtain [3.15). Q.E.D.
LEMMA 3.5. Vectors Awe xyW, WA yW/(1—0b) and B(X, W) are orthog-
onal.
ProOF. From [1.7), [1.9) and [3.3)] we see that
(3.16) {/10)—al®)} Sx(L/2)W —I({t)S_x(L/2)W

1 . 1 . 1
= (1_—21)—2 sin 2yt A(DS) (X)W_' '; sin vt (W—i—"]jtgAe(X)W) .

Thus can be written as
(fils@)/fFL(L/2))V (@)
={FO—QA+bk®+uX, W)h®)} X+v*h(t)B(X, W)

+— Sln2vtA(Da,(X)W-——l—sm vt (W+ 1 AS(X)W) .

1
(1—a)?
Since V(f) is a unit vector, we get

(O AL /2 =2(72—) O sin2st CAwp oW, BEX, W)

—2yh(t) sin vt<W—!— AscxsW, B(X, W)>

—b

+(even function).

Taking account of the fact that F is monotone decreasing on (0, L) and A(?) is
an even function into we obtain s(f)=s(—t). Therefore the above equa-
tion implies that B(X, W) is orthogonal to A g xrnW and W+ A x,W/(1—b). We
next prove Aoy xW is orthogonal to W-+Agx,W/(1—b). Apply (resp.
to Z, (resp. Y,) and add to [2.7). Then the result is

c(DE)xW) += (DS)x(Z 0— Sx(Awg) W)

=2H(X, Aws o W)+D8 x(Axx, 0, W) .
Noting that
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Ex(U), HX, V))=—<&X), HU, V)>+0—a)XU, V>,
2(H(X, U), HX, V))=—<H(X, X), HU, V)>+&U, V>,
(D& x W), HX, V))=—DENX), HU, V)>
for every U, Ve {X}* (cf. Corollary 3.5 [9]), from we have
CAwpey oW, av*Z—v*AgcryW—4aAngx, 0 W>=0.

Using (1.13) and [3.1), it follows that <Ape x,W, Z,»=0, from which we obtain
the assertion. ‘ Q.E.D.

LEMMA 3.6. Eguation (3.6) reduces to
1 1
(SO F(L/2)V @)=cos vt X——sinvt (W+1= Aecr W)

1 . 1
+ (1—a)? sin2vt Ae <X>W+Z(1—COS 20)B(X, W) .

Proor. By [(3.3), Lemmas B.4 and B.5, we find

2a(1+a)

[Sx(L/2)W |>=v*+ A=) l—b)F

1Y of®

from which u(X, W)=1—1% Hence the straightforward computation shows
F)—Q1-+b)k(t)+p(X, W)h(t)=cos vt .
The second and the third terms have already been computed as [3.16). Q.E.D.

LEMMA 3.7. We have YOZA(DG) (X)W:B<X, W):O.
PROOF. Since

CAS@NS' OV O +L1(s@V' @), f1(s@)V )
=—f1UsONF (@),
we easily see from (1.7)~(1.9) and that

Lfils@WV @Y, Fuls@V @)/ (f1(L/2))

— Y vz
A=ai=py | oll*sin2ut

-{(1—a) cos ys(t)+(1+a) cos 2vs(@®)}.

On the other hand, Lemmas and implies that L.H.S. of the above equa-
tion is equal to
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v

9 v
+(1—:JG—FCOS 20t | A e (X>W||2+§(l—cos )| B(X, W)HZ} )

Using [3.14) and [3.15), we thus have

(3.17) —2allY o[> {1—a) cos ys(t)+(1+a) cos 2vus(t)}

=a(l—=a)lY,[*+G+{aBa+D|Y,|*—G} cos 2ut
where G=(1—a)*(1—b)||B(X, W)|?*/4. Equation is equivalent to
(3.18) 4(1—a) cos ys(t)+(1+a) cos 2vs(t)
2a
1—b
If we eliminate (1+a) cos 2vs(¢), then and (3.18) give

=—01+4a)+

1Y ,]2(1—cos 2vt) .

(3.19) 1Y ol1% cos vs(t)=G*(1—cos 2vt)
where G* is defined by

. 1
" 6a(l—a)

Assume that Y,#0. Noting that cos2vs(t)=2cos?vs(t)—1 and substituting
into (3.18), we obtain

G*

6+ {52 17— aBat+DHYIE]

2(14-a)G**(1—cos 2vt)+{4(1— a)G*— 2ab HYOH“}[IYOHZ———O

1—

for every t. Therefore we get G*=0 and so ||Y,[|=0, which is a contradiction.

We have proved Y,=0. Equations and show ApexrW=0 and
B(X, W)=0 respectively. Q.E.D.

COROLLARY 3.8. We see that Ker(Sx(3L/2)—Sx(L/2)=4%(X), Awe i H¥X)
=0 and, for Z< 4*(X),

2

(3.20) AH(X,X)Z:<C+%>Z’

¢ being defined in Lemma 2.1.
Proor. The first and second assertion are derived from Lemmas and

B.7 Equation is derived from (1.13) and [3.1). Q.E.D.

COROLLARY 3.9. For every s=(0, L) we have

Ker(Sx(s+L)—=Sx(s)=393(X) .
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PrROOF. Since the dimension of Ker(Sx(s+L)—Sx(s)) coincides with that of
H%(X) (cf. Lemma 2.5), it suffices to show (Sx(s+L)—Sx(s)Z=0 for every
s€(0, L) and Ze «¥(X). In virtue of (1.7)~(1.11), (1.13) and

we easily obtain
fl(S+L) {F(S>Z_A$(3;X)Z_AC(s;X)Z}

= 1 sin2vs{{14+a)?cos®*vs—(1—a)?} Z .

8y
The right hand side of the above equation is a periodic function with period L.
Hence the definition shows the assertion. Q.E.D.

§4. Theorem.

Let xeM and X<U .M be arbitrarily fixed. Let 7 be the unit speed geodesic
such that 7(0)==x and 7(0)=X. In the preceding section, we have shown that
Apx. x leaves 4*(X) invariant (cf. [3.20)). Thus Agx,x) also leaves T,Cut(y)
invariant. At first we prove

LEMMA 4.1. Suppose Ampx,x)Y =vY for YT ,Cut(y) where y=y(L). If
(D&)x(Y)#0, then v=c. If (D§)x(Y)=0, then Awpex Y =0.
PrRoOOF. From [2.7) we have

w—c)(D&)x(V)+2HX, Aws xY) + %ESX(Awe) »Y)=0.

Taking the inner product with (D&)x(Y), we obtain
—ll(DE) xI*—2[ Awey r Y |12

5 ExlAwo @), (DH(¥)H=0.

Apply to the last term. Our assumption was —1<a<0. It follows that

1+a

=) l(DExT)|P=2=

”A(Dé)(X)Yllzéo:

completing the proof. Q.E.D.

LEMMA 4.2. Suppose Agyx, x,Y =vY for YeT,.Cut(y). Assumev>c. Then
we have v=c+({1+a)’

PrROOF. From we see that (D) x(Y)=0 and hence A Y =0.
Using we have

DZ

HX, Y) +—-

£x(Y)=0.

It follows that if [|[V'||=1, then
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4.1) IH(X, Y)|*=v*/4,
from which we obtain (cf. and (1.6))
CH(X, X), HY, Y)>=£i—2|HX, Y)|*
=c+(1+a)t. Q.E.D.
LEMMA 4.3. For every Y T ,Cut(y), we have
4.2) Apx,. prY=cY .

PrOOF. Firstly we shall prove that if » is any eigenvalue of
Anx. x| T:Cut(y), then v=c¢. Assume that v>c¢ for some eigenvalue v. Let
Y eT.Cut(y) be its eigenvector such that |Y|=1. By Lemmas 4.1 and we
see that (D&)x(Y)=0, ApswxY =0 and v=c+(+a)® Also we have [4I)
Taking the inner product of with H(X, Y), we get

(4.3) alHX, Y)?—<(D&)(X), (DH)X, Y, Y))
1
:'%<Y +Z‘A7(X)Y, Y> )

where we have used the fact that {(D&)(V), H(V, U)>=0 for every V, UsUM
satisfying U1V (cf. [9]. Since (DEWU), (DH)U, U, V)»=0 for
every U, Ve UM such that U1V, we have

2((DEIX), (DHXX, Y, YY)
=—((D&)x(Y), (D)X, X, Y)-+(DEX), (DH)(X*)
2 8\|12
= — 5 [(DHXX?)]

(cf. the proof of [Lemma 2.3). Using (1.2) and (1.6), the second term of the
left hand side of is equal to 3v*(1—a?/4. Furthermore implies that if
AH(X,X)Y:UY, then

1
a
Thus the right hand side of is equal to (a+v—bv?)/2. It follows that
becomes

4.4 Y + A,y(X)Y:%(a—!—v—bvz)Y.

v w1 ? _ >
Z{a+3<1-—a)}._2{2<3a+4> 1—i—a—bv}.

Since »*(1—b)=1—a, we have (14+a)(1—3a)=0 which contradicts —1<a<0.
Secondly we shall prove every eigenvalue v of Ayx, x)|T.Cut(y) is greater
than ¢. By virtue of Lemma 2.5 and [Corollary 3.8, we see that J(s) is propor-
tional to ¢y (Z) for every s€(0, L) and Z< 4% X). Moreover and
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orollary 3.9 show [J;(s)& 4% (7(s)) for each s=(0, L). Since {Jy, Jz>=0 on
0, L) for YeT,Cut(y) and Z< 4*(X) because of and [3.20), it
follows that Jy(s)eT, Cut(y(s+L)). We have proved

T Cut(y(s+L)=Span{Jy(s); Y €T Cut(y)}

for each s=(0, L). The base point x and vector X are arbitrarily chosen. Thus
we see that {An¢w,;onY, Y>=c for every YT, Cut(y(s+L)NUysyM. By
Causs equation, the sectional curvature K(¥, 7(s)) of the section spanned by ¢ and
7(s) is given by
K, 1)=1+<H{, 1), HY, 9)>—H(7, D]*.
Noting that
21HG, PP=—<HF, 1), HY, G)>+x3

(cf. [7]), we have

K@, =1~ +-CHG, ), HE, W)
1,3
=1- o i + 5 ¢
)J2
-4

Consider an n-dimensional sphere of curvature v*/4 and use Rauch’s comparison
theorem (cf. [2], [4)). We get | Jy(L)|?=4/yv* for every YT ,Cut(y)NU. M.
Since gives Jy(L)=£&x(Y), it follows that ||§x(Y)|?=4/v®. On the other
hand, by [2.I) and [4.4] we have |&x(Y)|*=2a/(a+v—0bv?). Since a<0, we
conclude v=y?a/2—a+bv®%. The right hand side is equal to c. Q.E.D.

THEOREM 4.4. Let f: M—S(1) be a helical minimal imbedding of order 4 of
a compact Riemannian manifold M into a unit sphere S(1). Then M is isometric
to one of RP™ CP™, QP™ (m=2) and CayP® where m=n/e (the maximal curva-
ture is given in Theorem 1.1). Moreover [ is equivalent to the second standard
minimal imbedding.

ProOF. From and (4.2) we find

”2
Trace Az x. 1 =x%+<e—1>(c+7)+<n—e>c

2
:32— {(n+2)a+2n-+1)+e}—n.
Since f is minimal, Trace Ay x, xy=0. Using v*=(1—a)/(1—b) and b=ea/n, we

obtain
(I+a){(n+2)a—(e+2)} =0,
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which contradicts the assumption —1<a<0. We have proved a>0. From

Theorem 1.1l the assertion follows. Q.E.D.
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