Virtual character modules of semisimple Lie groups and representations of Weyl groups

By Kyo Nishiyama

(Received July 27, 1984)

Introduction.

Let G be a connected semisimple Lie group with finite centre and g its Lie algebra. We call G acceptable if there exists a connected complex Lie group G_{C} with Lie algebra $\mathfrak{g}_{C}=g \otimes_{R} C$ which has the following two properties. (1) The canonical injection from \mathfrak{g} into g_{c} can be lifted up to a homomorphism of G into G_{c}. (2) For a Cartan subalgebra \mathfrak{h}_{c} of g_{c}, let ρ be half the sum of positive roots of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$. Then $\xi_{\rho}(\exp X)=\exp (\rho(X))\left(X \in \mathfrak{h}_{c}\right)$ defines a character of H_{C} into \boldsymbol{C}.

We assume that G is acceptable throughout this paper.
For an irreducible quasi-simple representation π of G, we can associate π with an infinitesimal character $\lambda \in \mathfrak{h}_{c}^{*}$, where \mathfrak{h}_{c}^{*} is the complex dual of a Cartan subalgebra \mathfrak{h} of \mathfrak{g}. Also a distribution character $\Theta(\pi)$ of an irreducible quasisimple representation π can be defined. We call $\Theta(\pi)$ an irreducible character of π which has an infinitesimal character λ. Let $V(\lambda)$ be the virtual character module of G whose element has an infinitesimal character λ.

In many papers, representations of the Weyl group $W=W\left(\mathfrak{h}_{c}\right)$ on the space $V(\lambda)$ are considered under the assumption that λ is regular and integral for G_{C}, i. e., λ is regular and is a differential of a character of H_{C}. G. Lustig and D. Vogan [15] considered W-module structure of $V(\lambda)$, using so-called "Springer representations". G. Zuckerman [12] also defined a representation of W on $V(\lambda)$, taking advantage of tensor products with finite dimensional representations of G. After his work, D. Barbasch and D. Vogan [1] restated his definition of the representation of W by means of "coherent continuation" and determined the W-module structure in the case that G is a connected reductive group with all the Cartan subgroups connected and that G has a compact Cartan subgroup. On the other hand, representations of the Weyl group W on the space of so-called Goldie rank polynomials are considered by A. Joseph [10], D. R. King [11] and others. It seems that these representations on the space of Goldie rank polynomials or the character polynomials can be realized as subrepresentations of the representation on a virtual character module $V(\lambda)$.

If λ is not integral for G_{c}, the above definitions of representations of the Weyl group W do not work. But similar representations on $V(\lambda)$ are not defined, so far as we know. In this paper, we assume λ to be regular and define representations of "integral Weyl groups for λ " as explained below. If λ is not integral for G_{c}, the full Weyl group W cannot act on $V(\lambda)$. So we choose a certain subgroup $W_{H}(\lambda)$ of $W \cong W\left(\mathfrak{h}_{C}\right)$ for each Cartan subgroup H of G and also choose a suitable subspace $V_{H}(\lambda)$ of $V(\lambda)$. We can define $W_{H}(\lambda)$-module structure of $V_{H}(\lambda)$, using the results of T. Hirai $[6,7,8]$. We believe $W_{H}(\lambda)$ is the most natural among the subgroups of W which act on $V(\lambda)$, and call it an integral Weyl group for λ. In the case that λ is regular and integral for G_{C}, our representations are canonically identified with Zuckerman's one. Roughly speaking, this is a consequence of the fact that Zuckerman's representation and Hirai's method \boldsymbol{T} are "commutative" (see Theorem 4.3). Since we know the precise structure of the space of invariant eigendistributions (IEDs) due to T. Hirai, we can clarify the $W_{H}(\lambda)$-module structure of $V_{H}(\lambda)$ Theorem 5.1). If λ is regular and integral for G_{C}, a generalization of the result in [1] is obtained as a corollary of Theorem 5.1 Theorem 5.2).

We remark here that the results in this paper remain valid for a connected reductive group whose semisimple part has finite centre.

We now describe the contents of this paper, explaining each section briefly. In $\S \S 1$ and 2 , we state some main results of T. Hirai $[6,7,8]$ about IEDs on G for the sake of self-containedness. In $\S 1$, we clarify the structure of $V(\lambda)$ and define $W_{H}(\lambda)$ for each Cartan subgroup H of $G . \S 2$ is devoted to explaining Hirai's method \boldsymbol{T} constructing IEDs. The definition of representations of the integral Weyl groups $W_{H}(\lambda)$ on $V_{H}(\lambda)$ is given in § 3 (Definition 3.1). This definition looks very natural and when λ is integral for G_{c}, it is essentially the same as Zuckerman's definition Corollary to Theorem 4.3). We prove this in §4. In $\S 5$, we clarify the $W_{H}(\lambda)$-module structure of $V_{H}(\lambda)$ Theorem 5.1). If λ is integral for G_{c}, we get a generalization of the result in [1] without any additional assumption on G Theorem 5.2. In the last section $\S 6$, we describe some interesting examples for the groups $U(n, 1)$ and $S L(2, \boldsymbol{R})$.

Main results of this paper have been reported in [17].
The author thanks Prof. T. Hirai for his kind encouragements and useful discussions. Without his suggestions, this work would not have been completed.

§ 1. Preliminaries on virtual character modules.

1.1. Basic definitions. Let G be a connected semisimple Lie group with finite centre and \mathfrak{g} its Lie algebra. We always denote the Lie algebra of a Lie group H by corresponding German small letter \mathfrak{h}, and its complexification by \mathfrak{h}_{c}. We call G acceptable if there exists a complex Lie group G_{c} with Lie
algebra g_{c} which has the following two properties. (1) The canonical injection from \mathfrak{g} into g_{c} can be lifted up to a homomorphism j of G into G_{c}. (2) For a Cartan subalgebra \mathfrak{h}_{c} of \mathfrak{g}_{c}, let ρ be half the sum of positive roots of ($\mathfrak{g}_{c}, \mathfrak{h}_{c}$). Then $\xi_{\rho}=\exp \rho$ is a well-defined character of $H_{C}=\exp \mathfrak{h}_{c}$ into \boldsymbol{C}^{*}. We assume G acceptable throughout this paper and fix a group G_{C} in the following.

Choose a Cartan subgroup H of G. By H_{C} we denote the analytic subgroup of G_{c} corresponding to \mathfrak{h}_{c}. Let $\Delta=\Delta\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ be the root system and $W=W\left(\mathfrak{h}_{c}\right)$ the Weyl group of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$. We fix an order on Δ and write Δ^{+}for the set of positive roots with respect to this order and Π for the simple system in Δ^{+}. Moreover, we define real roots Δ^{R} and imaginary roots Δ^{I} as follows.

$$
\begin{aligned}
& \Delta^{R}=\{\alpha \in \Delta \mid \alpha \text { takes real values on } \mathfrak{h}\} \\
& \Delta^{I}=\{\alpha \in \Delta \mid \alpha \text { takes purely imaginary values on } \mathfrak{h}\} .
\end{aligned}
$$

Here we give a brief survey of admissible representations and give some definitions. Let $G=K A N$ be an Iwasawa decomposition, where K is a maximal compact subgroup of G.

Definition 1.1. If (g_{c}, K)-module V satisfies the following conditions 0)-3), we call V admissible.

0) Every vector $v \in V$ is K-smooth and generates a finite dimensional K stable subspace.

1) The representation of $\mathfrak{q} \subset \mathfrak{g}_{c}$ and the differential of that of K are compatible, i. e.,

$$
\lim _{t \rightarrow 0} \frac{1}{t}(\exp (t X) v-v)=X v \quad \text { for } \quad v \in V, X \in \mathfrak{f} .
$$

2) The adjoint representation of K on g_{c} is compatible with (g_{c}, K)-module structure, i. e.,

$$
(\operatorname{Ad}(k) X) v=k^{-1}(X(k v)) \quad \text { for } \quad k \in K, X \in \mathfrak{g}_{c}, v \in V .
$$

3) The multiplicity of any irreducible representation of K in V is finite.

Let π be a quasi-simple irreducible representation of G on a Hilbert space \mathfrak{y} and \mathscr{F}_{K} the space of K-finite vectors. Any element of \mathscr{J}_{K} is differentiable and \mathscr{J}_{K} forms a g_{C}-invariant space. Thus we get the differential $\left(d \pi, \mathfrak{K}_{K}\right)$ of the representation π and ($d \pi, \boldsymbol{f}_{K}$) is an irreducible admissible (g_{c}, K)-module. Conversely, if an irreducible admissible (g_{c}, K)-module V is given, there exists a quasi-simple irreducible representation π of G on a Hilbert space \mathscr{J}^{2} such that ($d \pi, \mathfrak{F}_{K}$) is isomorphic to V (see, for example, [13]). If two irreducible quasisimple representations $\left(\pi_{1}, \mathfrak{F}_{1}\right)$ and $\left(\pi_{2}, \mathfrak{F}_{2}\right)$ give equivalent (g_{c}, K)-modules, then we have $\Theta\left(\pi_{1}\right)=\Theta\left(\pi_{2}\right)$, where $\Theta\left(\pi_{i}\right)(i=1,2)$ is the distribution character of π_{i}. As we consider the virtual character module, we identify irreducible quasi-
simple representations of G with irreducible admissible representations of (g_{c}, K) and sometimes we say irreducible admissible representations of G instead of (g_{c}, K).

Let V be an irreducible (g_{c}, K)-module. An element of the centre 3 of $U\left(g_{C}\right)$ acts as a scalar operator on V, so we can define $\lambda \in \operatorname{Hom}_{\text {alg }}(\mathcal{B}, \boldsymbol{C})$ by the following equation

$$
z v=\lambda(z) v \quad(z \in \mathcal{3}, v \in V) .
$$

We call this λ the infinitesimal character of V.
Put $\mathfrak{n}^{+}=\sum_{\alpha \in \Lambda^{+}} \mathfrak{g}_{\alpha}$ and $\mathfrak{n}^{-}=\sum_{\alpha \in \Lambda^{+}} \mathfrak{g}_{-\alpha}$, where \mathfrak{g}_{α} is the root space of α. Then by Poincaré-Birkhoff-Witt theorem,

$$
U\left(\mathfrak{g}_{C}\right)=U\left(\mathfrak{h}_{C}\right) \oplus\left(\mathfrak{n}^{+} U\left(\mathfrak{g}_{C}\right)+U\left(\mathfrak{g}_{C}\right) \mathfrak{n}^{-}\right) .
$$

Let η be the projection from $U\left(g_{c}\right)$ to $U\left(\mathfrak{h}_{c}\right)$ with respect to the above decomposition. Since \mathfrak{h}_{c} is abelian, we can canonically identify $U\left(\mathfrak{h}_{c}\right)$ with $S\left(\mathfrak{h}_{c}\right)$, the symmetric algebra of \mathfrak{h}_{c}. We define a linear map $\Gamma_{\rho}: U\left(\mathfrak{h}_{c}\right) \rightarrow U\left(\mathfrak{h}_{c}\right)$ by

$$
\Gamma_{\rho} f(\lambda)=f(\lambda-\rho) \quad \text { for } \quad \lambda \in \mathfrak{h}_{c}^{*},
$$

where we consider $f \in U\left(\mathfrak{h}_{c}\right)$ as a polynomial function on \mathfrak{h}_{c}^{*}, i. e., an element of $S\left(\mathfrak{h}_{c}\right)$.

ThEOREM 1.2 ([18, p. 168]). (1) The centre of $U\left(g_{c}\right)$ is isomorphic to $U\left(\mathfrak{h}_{c}\right)^{W}$ as an algebra. An isomorphism between 3 and $U\left(h_{c}\right)^{W}$ is given by $\Gamma_{\rho} \circ \eta: 3 \rightarrow$ $U\left(\mathfrak{h}_{c}\right)^{W}$.
(2) The set of algebra homomorphisms from 3 to \boldsymbol{C} and the set of equivalence classes of \mathfrak{h}_{c}^{*} with W-action can be identified by $\Gamma_{\rho} \circ \eta$, so-called Harish-Chandra map:

$$
\operatorname{Hom}_{\mathrm{alg}}(\mathfrak{3}, \boldsymbol{C}) \cong \operatorname{Hom}_{\mathrm{alg}}\left(U\left(\mathfrak{h}_{c}\right)^{W}, \boldsymbol{C}\right) \cong \mathfrak{h}_{c}^{*} / W .
$$

By the above theorem, we consider λ as an element of \mathfrak{h}_{c}^{*}. Assume that V is irreducible and has infinitesimal character λ. Denote the distribution character of V by $\Theta(V)$. Then $\Theta(V)$ can be expressed on a Cartan subgroup H as follows. Define the subset $H^{\prime}(\boldsymbol{R})$ of H and the function $D(h)$ on H as

$$
\begin{aligned}
& H^{\prime}(\boldsymbol{R})=\left\{h \in H \mid \xi_{\alpha}(h) \neq 1 \text { for any } \alpha \in \Delta^{R}\right\}, \\
& D(h)=\xi_{\rho}(h) \prod_{\alpha \in \Delta^{+}}\left(1-\xi_{-\alpha}(h)\right) \quad(h \in H),
\end{aligned}
$$

where ξ_{α} is a character of H defined by the equation $\operatorname{Ad}(h) X_{\alpha}=\xi_{\alpha}(h) X_{\alpha}\left(X_{\alpha}\right.$ is a non-zero root vector for α). For $h \exp X \in H^{\prime}(\boldsymbol{R})(h \in H, X \in \mathfrak{h})$, we have

$$
\Theta(V)(h \exp X)=\frac{1}{D(h \exp X)} \sum_{s \in W} c(V, s ; h) \exp s \lambda(X),
$$

where $c(V, s ; h)$ is a locally constant function on $H^{\prime}(\boldsymbol{R})$. Of course the function $c(V, s ; h)$ depends on the Cartan subgroup H and the order of Δ. In the next subsection 1.2, we write $\Theta(V)$ more explicitly after T. Hirai in the case that λ is regular.

Let $\operatorname{Car}(G)$ be the set of conjugacy classes of Cartan subgroups of G under inner automorphisms of G. We define a natural order on $\operatorname{Car}(G)$ as follows. Take $[A] \in \operatorname{Car}(G)$, where $[A]$ means the conjugacy class of a Cartan subgroup A. For $\alpha \in \Delta^{R}=\Delta^{R}\left(\mathfrak{g}_{c}, a_{c}\right)$, let H_{α} be the element of \mathfrak{a}_{C} for which $\alpha(X)=$ $B\left(H_{\alpha}, X\right)$, where $B($,$) denotes the Killing form on \mathrm{g}_{c}$. Take root vectors X_{α}, $X_{-\alpha}$ from g_{c} in such a way that $\left[X_{\alpha}, X_{-\alpha}\right]=H_{\alpha}$, and we put

$$
H_{\alpha}^{\prime}=\frac{2}{|\alpha|^{2}} H_{\alpha}, \quad X_{ \pm \alpha}^{\prime}=\frac{\sqrt{2}}{|\alpha|} X_{ \pm \alpha} .
$$

Let $\nu=\nu_{\alpha}$ be the automorphism of g_{c} defined by

$$
\nu=\nu_{\alpha}=\exp \left\{-\sqrt{-1} \frac{\pi}{4} \operatorname{ad}\left(X_{\alpha}^{\prime}+X_{-\alpha}^{\prime}\right)\right\},
$$

so-called Cayley transform with respect to α. Then $\mathfrak{b}=\nu\left(\mathfrak{a}_{c}\right) \cap \mathfrak{g}$ is a Cartan subalgebra of g not conjugate to a under any automorphism of \mathfrak{g}, and $\beta=\nu(\alpha)$ is a singular imaginary root (see [7, p. 31]) of \mathfrak{b}. We have

$$
\mathfrak{a}=\sigma_{\alpha}+\boldsymbol{R} H_{\alpha}^{\prime}, \quad \mathfrak{b}=\sigma_{\alpha}+\boldsymbol{R} H_{\beta}^{\prime},
$$

where σ_{α} is the hyperplane of \mathfrak{a} defined by $\alpha=0$ and

$$
H_{\beta}^{\prime}=\nu\left(H_{\alpha}^{\prime}\right)=\sqrt{-1}\left(X_{\alpha}^{\prime}-X_{-\alpha}^{\prime}\right) .
$$

This relation between \mathfrak{a} and \mathfrak{b} is denoted by $(\mathfrak{a}, \alpha) \rightarrow(\mathfrak{b}, \beta)$ or simply by $\mathfrak{a} \rightarrow \mathfrak{b}$. We introduce the order $<$ in $\operatorname{Car}(G)$ by defining $[A]<[B]$ when $\mathfrak{a} \rightarrow \mathfrak{b}$ for an appropriate choice of representative B of $[B]$, and extend it transitively.

Let $V(\lambda)$ be the virtual character module of admissible representations of G which have an infinitesimal character λ. Here, we mean by a virtual character a complex linear combination of irreducible characters. An element of $V(\lambda)$ can be naturally considered to be an invariant eigendistribution (IED) on G with eigenvalue λ. We say a virtual character or an IED $\Theta \in V(\lambda)$ has a height $[H] \in \operatorname{Car}(G)$ if $\left.\Theta\right|_{H} \not \equiv 0$ and $\left.\Theta\right|_{J} \equiv 0$ for any $[J] \in \operatorname{Car}(G)$ such that $[J]>[H]$. We call Θ extremal if Θ has the unique height.
1.2. The structure of virtual character modules. We quote the results of T. Hirai [8] in this subsection. Let H be a Cartan subgroup of G. Let $S\left(\mathfrak{h}_{c}\right)$ be the symmetric algebra of \mathfrak{h}_{C} and $I\left(\mathfrak{h}_{C}\right)=S\left(\mathfrak{h}_{C}\right)^{W}$ the space of Weyl group invariant elements in $S\left(h_{C}\right)$. For any subset B of G and a subgroup D of G, we write $W_{D}(B)=N_{D}(B) / Z_{D}(B)$, where $N_{D}(B)$ denotes the normalizer of B in D and $Z_{D}(B)$ the centralizer.

We denote by $\mathfrak{B}(H ; \lambda)$ the set of analytic functions ζ on H satisfying the conditions (1) and (2).
(1) ζ is an eigenfunction of $I\left(\mathfrak{h}_{c}\right)$ with eigenvalue λ, where we identify canonically elements of $I\left(\mathfrak{h}_{C}\right)$ with differential operators of constant coefficients on H.
(2) ζ is ε-symmetric under $W_{G}(H)$, i.e.,

$$
\zeta(w h)=\varepsilon(w, h) \boldsymbol{\zeta}(h) \quad\left(h \in H, w \in W_{G}(H)\right),
$$

where $\varepsilon(w, h)$ is locally constant in h and is defined as follows. An element $w \in W_{G}(H)$ naturally induces an element \tilde{w} of $W\left(\mathfrak{h}_{c}\right)$. Let $N_{I}(\tilde{w})$ be the number of imaginary roots $\alpha>0$ for which $\tilde{w}^{-1} \alpha<0$, and $S_{R}(\tilde{w})$ the set of real roots $\alpha>0$ for which $\tilde{w}^{-1} \alpha<0$. We put for $h \in H$ and $w \in W_{G}(H)$,

$$
\begin{equation*}
\varepsilon(w, h)=(-1)^{\left(N_{I} \tilde{w}\right)} \prod_{\alpha \in S_{R}(\tilde{w})} \operatorname{sgn}\left(\xi_{\tilde{w}-1 \alpha}(h)\right) . \tag{1.1}
\end{equation*}
$$

Theorem 1.3. If λ is regular, $V(\lambda)$ is equal to the space of all the IEDs on G with eigenvalue λ.

Proof. This theorem is actually known. Here, we give a sketch of the proof. It is obvious that $V(\lambda)$ is contained in the space of IEDs with eigenvalue λ. Let P be a cuspidal parabolic subgroup of G and $P=M_{P} A_{P} N_{P}$ be a Levi decomposition of P. Take a discrete series representation D of M_{P} and a character ν of A_{P}. We mean by a generalized principal series representation an induced one $\operatorname{Ind}_{P}^{G} D \otimes \nu \otimes 1$. Then each IED with regular infinitesimal character is a linear combination of characters of generalized principal series representations induced from some cuspidal parabolic subgroups of G. Q.E.D.

Theorem 1.4 (T. Hirai [8, p. 284, p. 302]). (1) For an element ζ of $\mathfrak{B}(H ; \lambda)$, we can construct an extremal IED T $\boldsymbol{\zeta}$ which has the height $[H]$ and on H it naturally provides ζ (see [8, p. 272]).
(2) Conversely, any IED with eigenvalue λ can be written as a linear combination of IEDs which are of the form $\boldsymbol{T} \zeta(\zeta \in \mathfrak{F}(H ; \lambda))$ for some H 's.

Remark. We give in detail the method \boldsymbol{T} of constructing IED in the next section.

We assume the following throughout this paper.
Assumption. The infinitesimal character λ is regular.
Because of Theorem 1.3, we identify virtual characters which have infinitesimal character λ with IEDs on G with eigenvalue λ.

Let $\widetilde{W}_{H}(\lambda)$ be the set of $w \in W\left(\zeta_{C}\right)$ for which $\exp (w \lambda, X)(X \in \mathfrak{G})$ defines an analytic function on H_{0}, the identity component of H. Let L be the kernel of the map exp: $\mathfrak{G} \rightarrow H_{0}$. Then $\widetilde{W}_{H}(\lambda)=\left\{w \in W\left(\mathfrak{h}_{c}\right) \mid\langle w \lambda, L\rangle \subset 2 \pi \sqrt{-1} \boldsymbol{Z}\right\}$, where
\langle,$\rangle is the pairing of \mathfrak{h}_{\mathscr{C}}^{*} \times \mathfrak{h}_{c}$. Put

$$
L_{\lambda}=\sum_{w \in \tilde{W}_{H}(\lambda)} w^{-1} L, \quad W_{H}(\lambda)=\left\{w \in W\left(\mathfrak{h}_{c}\right) \mid w L_{\lambda}=L_{\lambda}\right\} .
$$

Let $W\left(H_{i}\right)=\left\{\tilde{w} \mid w \in W_{G}\left(H_{i}\right)\right\}$, where $\left\{H_{i} \mid 0 \leqq i \leqq l\right\}$ is a set of representatives of connected components of H under the conjugation of $W_{G}(H)$. We get the following proposition.

Proposition 1.5. (1) The set $\widetilde{W}_{H}(\lambda)$ is invariant under the left multiplication of $W\left(H_{i}\right)$.
(2) The set $\widetilde{W}_{H}(\lambda)$ is invariant under the right multiplication of $W_{H}(\lambda)$. Moreover, the group $W_{H}(\lambda)$ is the largest subgroup of $W\left(\mathfrak{h}_{c}\right)$ which leaves $\widetilde{W}_{H}(\lambda)$ invariant under the right multiplication.

Proof. (1) Let $\sigma \in W\left(H_{i}\right)$ and $w \in \widetilde{W}_{H}(\lambda)$. Since L is the kernel of the map exp:h $\rightarrow H_{0}, \sigma$ preserves L. So, we have $\langle\sigma w \lambda, L\rangle=\left\langle w \lambda, \sigma^{-1} L\right\rangle=\langle w \lambda, L\rangle$ $\subset 2 \pi \sqrt{-1} Z$. This means $\sigma w \in \widetilde{W}_{H}(\lambda)$.
(2) Note that $W_{H}(\lambda)$ forms a subgroup of $W\left(\mathfrak{h}_{C}\right)$. Let $w \in \widetilde{W}_{H}(\lambda)$ and $\sigma \in W_{H}(\lambda)$. Since $L_{\lambda} \supset w^{-1} L$, we get $L_{\lambda}=\sigma^{-1} L_{\lambda} \supset \sigma^{-1} w^{-1} L$. By the definition of L_{λ}, we see that

$$
\left\langle\lambda, L_{\lambda}\right\rangle=\left\langle\lambda, \sum_{w \in \tilde{W}_{H^{\prime}}(\lambda)} w^{-1} L\right\rangle=\sum_{w \in \tilde{W}_{H^{(}}(\lambda)}\langle w \lambda, L\rangle \subset 2 \pi \sqrt{-1} Z .
$$

Therefore we have $\langle w \boldsymbol{\sigma} \lambda, L\rangle=\left\langle\lambda, \boldsymbol{\sigma}^{-1} w^{-1} L\right\rangle \subset\left\langle\lambda, L_{\lambda}\right\rangle \subset 2 \pi \sqrt{-1} \boldsymbol{Z}$. This means $w \sigma \in \widetilde{W}_{H}(\lambda)$.

Conversely, let $\sigma \in W\left(\mathfrak{h}_{C}\right)$ be an element such that $\widetilde{W}_{H}(\lambda) \sigma^{-1}=\widetilde{W}_{H}(\lambda)$. Then we get

$$
\boldsymbol{\sigma} L_{\lambda}=\sum_{w \in \tilde{W}_{H}(\lambda)} \boldsymbol{\sigma}\left(w^{-1} L\right)=\sum_{w \in \tilde{W}_{H}(\lambda)}\left(w \sigma^{-1}\right)^{-1} L=\sum_{w^{\prime} \in \tilde{W}_{H^{\prime}}(\lambda)} w^{\prime-1} L=L_{\lambda} .
$$

Hence $\sigma \in W_{H}(\lambda)$. Q.E.D.
For each connected component H_{i}, take an element $a_{i} \in H_{i}$. Then we have

$$
a_{i}^{-1}\left(s a_{i}\right) \in H_{0} \quad \text { for } \quad s \in W_{G}\left(H_{i}\right) .
$$

Therefore we can write $a_{i}^{-1}\left(s a_{i}\right)=\exp B_{s}$ for some $B_{s} \in \mathfrak{h}$.
Assumption on λ. We assume that we can choose $\left\{a_{i} \mid a_{i} \in H_{i}, 0 \leqq i \leqq l\right\}$ which satisfies the following condition. For any $t_{1}, t_{2} \in \widetilde{W}_{H}(\lambda)$,

$$
\exp \left(t_{1} \lambda, B_{s}\right)=\exp \left(t_{2} \lambda, B_{s}\right) \quad\left(s \in W_{G}\left(H_{i}\right)\right)
$$

Hereafter we fix these $\left\{a_{i} \mid 0 \leqq i \leqq l\right\}$ and write

$$
\xi^{i}(s)=\exp \left(t \lambda, B_{s}\right) \quad\left(s \in W_{G}\left(H_{i}\right)\right),
$$

which does not depend on $t \in \widetilde{W}_{H}(\lambda)$ by assumption. We have the following
lemma.
Lemma 1.6. (1) If $G=S L(n, \boldsymbol{R}), S p(2 n, \boldsymbol{R})$ or $S O_{0}(p, q)(p+q=2 n)$, then we can always choose $\left\{a_{i}\right\}$ which satisfies $a_{i}=s a_{i}$ for any $s \in W_{G}\left(H_{i}\right)$. So, in these cases, the assumption is trivially satisfied for any λ.
(2) If all the Cartan subgroups in G are connected, we can choose $a_{0}=e$ (the unit of G) and the assumption is satisfied.
(3) In particular, if G is a complex semisimple Lie group, then the assumption is satisfied for any λ.

Remark. For any G, there always exists a lattice in \mathfrak{b}_{C}^{*} whose elements satisfy the above assumption. See also remark to the corollary to Theorem 4.3,

Proposition 1.7 ([8, p. 319]). The space $\mathfrak{V}(H ; \lambda)$ has a base consisting of the element $\left\{\zeta_{i, t}\right\}$ of the following form. Take a complete system of representatives $\{t\} \subset \widetilde{W}_{H}(\lambda)$ for a left coset space $W\left(H_{i}\right) \backslash \widetilde{W}_{H}(\lambda)$. For $0 \leqq i \leqq l$ and t, we put

$$
\begin{aligned}
& \zeta_{i, t}\left(w a_{i} \exp X\right)=\varepsilon\left(w, a_{i}\right) \sum_{s \in W} \sum_{G}\left(H i_{i}\right) \\
& \varepsilon\left(s, a_{i}\right) \xi^{i}(s) \exp (t \lambda, s X) \\
&\left(w \in W_{G}(H), X \in \mathfrak{G}\right),
\end{aligned}
$$

and put $\zeta_{i, t}$ zero outside the $W_{G}(H)$-orbit of H_{i}.
Remark. The formula listed in Proposition 1.7 is the corrected version of the formula (7.20) in [8].

Put $V_{H}(\lambda)=\boldsymbol{T}(\mathfrak{F}(H ; \lambda))$. Then by the above proposition, we get a basis $\left\{\boldsymbol{T} \zeta_{i, t} \mid 0 \leqq i \leqq l, t \in W\left(H_{i}\right) \backslash \widetilde{W}_{H}(\lambda)\right\} \quad$ of $\quad V_{H}(\lambda)$. Moreover, since $V(\lambda)=$ $\sum_{[H] \in \operatorname{Car}(G)}^{\oplus} V_{H}(\lambda)$ by Theorem 1.4, we get a basis of $V(\lambda)$. This canonical basis plays an important role in the following sections.

§ 2. Hirai's method T.

In this section we describe Hirai's method \boldsymbol{T} in detail for later use. For simplicity we assume λ regular, but the argument here is valid too in the case that λ is singular. Notations and terms without explanations are refered to [8].

As is mentioned in former sections, $V(\lambda)$ is the space of all the IEDs on G with eigenvalue λ. Harish-Chandra [5] proved any IED Θ on G coincides essentially with a locally summable function on G which is analytic on the open dense subset G^{\prime} of all the regular elements in G. Because G^{\prime} is open dense in G and any element in G^{\prime} is contained in a Cartan subgroup of G, Θ is determined by the values on Cartan subgroups $\{H \mid[H] \in \operatorname{Car}(G)\}$. Put

$$
\begin{aligned}
& D^{H}(h)=\xi_{\rho}(h) \prod_{\alpha \in \Delta^{+}}\left(1-\xi_{\alpha}(h)^{-1}\right) \quad(h \in H), \\
& D_{R}^{H}(h)=\prod_{\alpha \in J_{R}^{+}}\left(1-\xi_{\alpha}(h)^{-1}\right) \quad(h \in H) .
\end{aligned}
$$

For a given IED Θ on G and a Cartan subgroup H of G, we put

$$
\begin{aligned}
& C_{H}(\Theta)(h)=D^{H}(h) \Theta(h) \quad\left(h \in H^{\prime}=H \cap G^{\prime}\right), \\
& C_{H}^{\prime}(\Theta)(h)=\varepsilon_{R}^{H}(h) D^{H}(h) \Theta(h) \quad\left(h \in H^{\prime}\right),
\end{aligned}
$$

where $\varepsilon_{R}^{H}(h)=\operatorname{sgn}\left(D_{R}^{H}(h)\right)\left(h \in H^{\prime}(\boldsymbol{R})\right)$.
Theorem 3.1 ([7]). Let Θ be an IED on G with eigenvalue λ. If Θ has a height $[H] \in \operatorname{Car}(G)$, then $C_{H}^{\prime}(\Theta)$ can be extended to an analytic function on the whole group H. Moreover, it belongs to $\mathfrak{B}(H ; \lambda)$.

Hirai's method \boldsymbol{T} is the method to construct an extremal IED from an element ζ of $\mathfrak{B}(H ; \lambda)$. This is done by induction on the order of $\operatorname{Car}(G)$ and has two different steps \boldsymbol{R} and \boldsymbol{S}. Roughly speaking, the step \boldsymbol{R} corresponds to boundary conditions to be satisfied by IEDs, and the step \boldsymbol{S} corresponds to Weyl group symmetricity which assures the invariance of IEDs. As is mentioned above, an IED Θ is determined by the system of functions $C_{H}(\Theta)$ ($[H] \in \operatorname{Car}(G)$). So, in order to give an IED $\boldsymbol{T} \zeta$ for $\zeta \in \mathfrak{B}(H ; \lambda)$, it is sufficient to give functions $C_{H}(\boldsymbol{T} \zeta)$ for every $[H] \in \operatorname{Car}(G)$. T. Hirai studied what is necessary and sufficient for the system of functions $C_{H}(\Theta)([H] \in \operatorname{Car}(G))$ obtained from an IED Θ through the series of his works $[6,7,8]$ and actually gave necessary and sufficient conditions. Using his results one can verify that constructed functions $C_{H}(\boldsymbol{T} \boldsymbol{\zeta})([H] \in \operatorname{Car}(G))$ really determine an IED $\boldsymbol{T} \boldsymbol{\zeta}$.

Let us explain the construction in detail. Take an element $\zeta \in \mathfrak{B}(H ; \lambda)$. We put

$$
\begin{array}{ll}
C_{H}(\boldsymbol{T} \zeta)=\varepsilon_{R}^{H} \cdot \zeta & \text { for } H \text { itself, } \\
C_{J}(\boldsymbol{T} \zeta) \equiv 0 & \text { for }[J] \text { 寺 }[H] .
\end{array}
$$

Let A be a Cartan subgroup of G and assume that we have already constructed $C_{B}(\boldsymbol{T} \boldsymbol{\zeta})$ for [B]>[A]. Let A_{1} be a connected component of A and F a connected component of $A_{1}^{\prime}(\boldsymbol{R})=A_{1} \cap A^{\prime}(\boldsymbol{R})$. Denote by $\Sigma=\Sigma\left(A_{1}\right)$ the set of all real roots $\alpha \in \Delta\left(\mathfrak{g}_{c}, a_{C}\right)$ for which $\xi_{\alpha}(h)>0$ on A_{1}. Then Σ is a root system of a certain real semisimple Lie algebra. Let $S=S\left(A_{1}\right)$ be the subgroup of $W_{G}\left(A_{1}\right)$ generated by $\left.\omega_{\alpha}\right|_{A_{1}}(\alpha \in \Sigma)$, where ω_{α} is the conjugation by an element $g_{\alpha}=$ $\exp \pi\left(X_{\alpha}^{\prime}-X_{-\alpha}^{\prime}\right) / 2 \in K$. We put $\left.\omega_{\alpha}\right|_{A_{1}}=s_{\alpha}$. Let $P(F)$ be the set of $\alpha \in \Sigma$ for which $\xi_{\alpha}(F)>1$. Then $P(F)$ is the set of all the positive roots of Σ with respect to a certain order of roots. Let $\Pi=\Pi(F)=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be the simple system in $P(F)$.
(I) Step R. Denote by \mathfrak{b}^{m} a Cartan subalgebra obtained from \mathfrak{a} by the Cayley transform $\nu_{\alpha_{m}}=\nu_{m}$ with respect to the real root $\alpha_{m}(1 \leqq m \leqq r)$. By assumption, the functions $C_{B m}(\boldsymbol{T} \zeta)$ have been already determined. We write C_{m} instead of $C_{B m}(\boldsymbol{T} \zeta)$ for brevity.

Recall the notations about Cayley transforms ν_{m} in $\S 1$. We put

$$
\begin{aligned}
& \Sigma_{m}=\left\{h \in A \mid \xi_{\alpha_{m}}(h)=1\right\}, \\
& \Sigma_{m}^{\prime}=\left\{h \in \Sigma_{m} \mid \xi_{\alpha}(h) \neq 1 \text { for any root } \alpha \neq \pm \alpha_{m}\right\} .
\end{aligned}
$$

Then for $a \in \sum_{m}^{\prime} \cap A_{1}$ and $X \in \mathfrak{a}$, we put

$$
\left(\boldsymbol{R}_{\alpha_{m}} C_{m}\right)(a \exp X)=C_{m}\left(a \exp \nu_{m} X\right) .
$$

Here $\nu_{m} X$ may not be contained in \mathfrak{b}^{m}, but C_{m} is locally a linear combination of the functions of the form $\exp \mu(X)\left(\mu \in\left(b_{c}^{m}\right) *\right)$, so $C_{m}\left(a \exp \nu_{m} X\right)$ has natural meaning.
(II) Step \boldsymbol{S}. For a function f on A_{1} and $s \in S$, we define $s f$ as $(s f)(h)=$ $f\left(s^{-1} h\right)\left(h \in A_{1}\right)$. For each $s_{m}=s_{\alpha_{m}}(1 \leqq m \leqq r)$, we put

$$
P_{s_{m}}=\left(1-s_{m}\right)\left(\boldsymbol{R}_{\alpha_{m}} C_{m}\right) .
$$

Each element $s \in S$ can be written in the form $s=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ (see, for example, [3]]. Then we put

$$
P_{s}=P_{s_{i_{1}}}+s_{i_{1}} P_{s_{i_{2}}}+\cdots+s_{i_{1}} s_{i_{2}} \cdots s_{i_{k-1}} P_{s_{i_{k}}} .
$$

It can be proved that P_{s} is independent of a choice of expressions for $s \in S$. Finally we put

$$
Q=\boldsymbol{S}\left(P_{s_{1}}, P_{s_{2}}, \cdots, P_{s_{r}}\right)=\frac{1}{|S|} \sum_{s \in S} P_{s} .
$$

Denote by $E_{A_{1}}$ the union of $w A_{1}$ over $w \in W_{G}(A)$. Define $C_{A}(\boldsymbol{T} \zeta)$ on $E_{A_{1}} \cap A^{\prime}(\boldsymbol{R})$ by

$$
C_{A}(\boldsymbol{T} \zeta)(w h)=\operatorname{det}(w) Q(h) \quad\left(w \in W_{G}(A), h \in F\right) .
$$

Let A_{1}, A_{2}, \cdots be a complete system of representatives of connected components of A under the conjugation of $W_{G}(A)$. Then A is the disjoint union of $E_{A_{1}}, E_{A_{2}}, \cdots$. Repeating the same argument for every A_{i}, we get $C_{A}(\boldsymbol{T} \zeta)$ on the whole A.

Thus we can define $C_{H}(\boldsymbol{T} \zeta)([H] \in \operatorname{Car}(G))$ inductively. We see that they altogether define an $\operatorname{IED} \boldsymbol{T} \zeta(\zeta \in \mathfrak{B}(H ; \lambda))$ by Hirai's argument.

§ 3. Definition of representations of $W_{H}(\lambda)$.

In this section, we define a representation of $W_{H}(\lambda)$ on $V_{H}(\lambda)$ for each $[H] \in \operatorname{Car}(G)$. We assume λ regular and keep the notations in $\S 1$.

At first we consider a representation \mathcal{R} of $W_{H}(\lambda)$ on $\mathfrak{F}(H ; \lambda)$. Take $[H] \in \operatorname{Car}(G)$ and let $\left\{H_{i} \mid 0 \leqq i \leqq l\right\}$ be representatives of connected components of H under the conjugation of $W_{G}(H)$. Then $\mathfrak{B}(H ; \lambda)$ is spanned by the set $\left\{\zeta_{i, t} \mid 0 \leqq i \leqq l, t \in \widetilde{W}_{H}(\lambda)\right\}$, where

$$
\begin{aligned}
& \zeta_{i, t}\left(w a_{i} \exp X\right)=\varepsilon\left(w, a_{i}\right) \sum_{s \in W_{G}\left(H_{i}\right)} \varepsilon\left(s, a_{i}\right) \xi^{i}(s) \exp (t \lambda, s X) \\
&\left(w \in W_{G}(H), X \in \mathfrak{h}\right),
\end{aligned}
$$

and $\zeta_{i, t}$ is zero outside the $W_{G}(H)$-orbit of H_{i}. We define the representation \mathcal{R} of $W_{H}(\lambda)$ on $\mathfrak{B}(H ; \lambda)$ by

$$
\mathcal{R}_{u} \zeta_{i, t}=\zeta_{i, t u-1} \quad \text { for } \quad u \in W_{H}(\lambda) .
$$

By the assumption in 1.2 and Proposition 1.5, this is well-defined.
Definition 3.1. We define a representation τ of integral Weyl group $W_{H}(\lambda)$ on $V_{H}(\lambda)$ as follows. For $\zeta \in \mathfrak{B}(H ; \lambda)$ and $u \in W_{H}(\lambda)$, put

$$
\tau_{u}(\boldsymbol{T} \zeta)=\boldsymbol{T}\left(\mathscr{R}_{u} \zeta\right) .
$$

We say λ is integral for G_{C} if λ is a differential of a character of H_{C}.
Lemma 3.2. If λ is integral. for $G_{C}, \widetilde{W}_{H}(\lambda)=W_{H}(\lambda)=W\left(\mathfrak{h}_{C}\right)$.
Proof. By assumption, $\exp \lambda(X)\left(X \in \mathfrak{h}_{c}\right)$ is a character of H_{c}. Then, for any $w \in W\left(\mathfrak{h}_{C}\right), \exp w \lambda(X)=\exp \lambda\left(w^{-1} X\right)(X \in \mathfrak{h})$ is well-defined on H_{0}. This proves $\widetilde{W}_{H}(\lambda)=W\left(\mathfrak{h}_{C}\right)$. Since $W_{H}(\lambda)$ is the largest subgroup of $W\left(\mathfrak{h}_{C}\right)$ which leaves $\widetilde{W}_{H}(\lambda)$ invariant under the right multiplication Proposition 1.5), we have $W_{H}(\lambda)=W\left(\mathfrak{h}_{C}\right)$. Q.E.D.

By the above lemma, if λ is integral for G_{c}, we can consider $W\left(\mathfrak{h}_{c}\right)$-module structure of $V_{H}(\lambda)$. Since $V(\lambda)=\Sigma_{[H] \in \operatorname{Car}(G)}^{\oplus} V_{H}(\lambda)$, these $W\left(h_{C}\right)$-module structures of $V_{H}(\lambda)$'s naturally induce W-module structure of $V(\lambda)$. Here we identify all the Weyl groups $W\left(\mathfrak{h}_{c}\right)$'s by Cayley transforms and denote it by W. For integral λ, many people considered W-module structures of $V(\lambda)$. Among others, G. Zuckerman [12] defined W-module structure of $V(\lambda)$, using tensor products with finite dimensional representations of G. We show that his representation essentially coincides with ours in the next section $\S 4$. Then it is very likely that we can use the method of tensor products with finite dimensional representations for studying the W-module structure of $V(\lambda)$ (cf. [19]).

Lemma 3.3. Let $\lambda_{1}, \lambda_{2} \in \mathfrak{h}_{c}^{*}$ be regular. If $\lambda_{1}-\lambda_{2}$ is integral for G_{C}, then $\widetilde{W}_{H}\left(\lambda_{1}\right)=\widetilde{W}_{H}\left(\lambda_{2}\right)$ and $W_{H}\left(\lambda_{1}\right)=W_{H}\left(\lambda_{2}\right)$.

Proof. Take $w \in \widetilde{W}_{H}\left(\lambda_{2}\right)$. Both $\exp w\left(\lambda_{1}-\lambda_{2}\right)(X)$ and $\exp w \lambda_{2}(X)$ are welldefined characters of H_{0}, we see $\exp w \lambda_{1}(X)=\exp w \lambda_{2}(X) \exp w\left(\lambda_{1}-\lambda_{2}\right)(X)$ is well-defined, i. e., $w \in \widetilde{W}_{H}\left(\lambda_{1}\right)$. The converse inclusion can be similarly proved. Since $W_{H}\left(\lambda_{i}\right)(i=1,2)$ is the largest subgroup which leaves $\widetilde{W}_{H}\left(\lambda_{i}\right)$ invariant under the right multiplication, we have $W_{H}\left(\lambda_{1}\right)=W_{H}\left(\lambda_{2}\right)$. Q.E.D.

Lemma 3.4. For regular $\lambda \in \mathfrak{h}_{c}^{*}$, put $I(\lambda)=\left\{w \in W \mid w \lambda-\lambda\right.$ is integral for $\left.G_{c}\right\}$. Then, for $t \in \widetilde{W}_{H}(\lambda), W_{H}(\lambda)$ contains $t I(\lambda) t^{-1}$. In particular, if the unit e of W is contained in $\widetilde{W}_{H}(\lambda)$, then $W_{H}(\lambda)$ contains $I(\lambda)$.

Proof. Clearly $I(\lambda)$ is a group. Considering, if necessary, $\widetilde{W}_{H}(t \lambda)$ instead of $\widetilde{W}_{H}(\lambda)$, we may assume that $e \in \widetilde{W}_{H}(\lambda)$ and $t=e$. Take $\sigma \in I(\lambda)$. Since $\sigma \lambda-\lambda$ is integral for G_{C}, we have $\widetilde{W}_{H}(\sigma \lambda)=\widetilde{W}_{H}(\lambda)$ by Lemma 3.3. This means $\exp w \lambda(X)(X \in \mathfrak{h})$ is well-defined on H_{0} if and only if $\exp w \sigma \lambda(X)(X \in \mathfrak{h})$ is so. Therefore σ leaves $\widetilde{W}_{H}(\lambda)$ invariant from the right and we have $\sigma \in W_{H}(\lambda)$.
Q.E.D.

These two lemmas give us a method to calculate $W_{H}(\lambda)$ explicitly and show us $W_{H}(\lambda)$ contains large subgroups of $W\left(\mathfrak{h}_{C}\right)$.

§4. Relation to Zuckerman's representation.

In this section, we describe the relation between our representation τ and Zuckerman's one. So, we put some assumptions on G in addition to those in the former sections, after Zuckerman.

Let G be a connected semisimple linear Lie group. We suppose that there are simply connected complex Lie group G_{c} with Lie algebra g_{c} and the natural injection $j: G \hookrightarrow G_{c}$. Let λ be a differential of a character of a Cartan subgroup H_{C} of G_{c}. We assume that λ is regular and satisfies the assumption in 1.2. Then by Lemma 3.2, we have $\widetilde{W}_{H}(\lambda)=W_{H}(\lambda)=W\left(\mathfrak{h}_{C}\right)$ for any Cartan subgroup H of G under the above assumptions on G. We write W for $W\left(\mathfrak{h}_{c}\right)$ and identify it with $W\left(\mathfrak{h}_{c}^{\prime}\right)$ for another Cartan subalgebra \mathfrak{h}^{\prime} by Cayley transforms. Thus we have the representation of W on the virtual character module $V(\lambda)=\Sigma^{\oplus} V_{H}(\lambda)$.

Now we define another representation \mathcal{L} of W on $V(\lambda)$ after G. Zuckerman [12]. Let Θ be a virtual character in $V(\lambda)$. Then we can write it on a Cartan subgroup H of G as

$$
\Theta(h)=\frac{1}{D(h)} \sum_{s \in W} c(\Theta, s ; h) \xi_{s i}(h) \quad\left(h \in H^{\prime}\right),
$$

where $c(\Theta, s ; h)$ is a locally constant function on $H^{\prime}(\boldsymbol{R})$ and $\xi_{s i}$'s are welldefined characters of H (cf. 1.1). Then we define $\mathscr{L}_{\sigma} \Theta(\sigma \in W)$ by the equation below.

$$
\begin{equation*}
\mathscr{Z}_{\sigma} \Theta(h)=\frac{1}{D(h)} \sum_{s \in W} c(\Theta, s ; h) \xi_{s \sigma-1 \lambda}(h) \quad\left(h \in H^{\prime}\right) . \tag{4.1}
\end{equation*}
$$

The system of functions $\mathscr{Z}_{\sigma} \Theta$ on every H in G determines again a virtual character in $V(\lambda)$. This is proved by Zuckerman [12], using tensor products with finite dimensional representations of G. Thus we get a representation \mathcal{Z} of W on $V(\lambda)$.

We want to show the two representations τ and \mathscr{L} of W are equivalent by giving an intertwining operator explicitly. Before doing this we prepare a technical lemma.

Lemma 4.1. Any $\zeta \in \mathfrak{B}(H ; \lambda)$ can be written as

$$
\begin{equation*}
\zeta(h)=\sum_{w \in W} c_{w}(h) \xi_{w \lambda}(h), \tag{4.2}
\end{equation*}
$$

for certain locally constant functions $c_{w}(w \in W)$ on H.
Proof. Indeed, $\zeta_{i, t}\left(0 \leqq i \leqq l, t \in W\left(H_{i}\right) \backslash W\right)$ in Proposition 1.7 can be written as

$$
\begin{aligned}
\zeta_{i, t}\left(w a_{i} \exp X\right)=\varepsilon\left(w, a_{i}\right)_{s \in W_{G}\left(H_{i}\right)} \sum_{i} \varepsilon\left(s, a_{i}\right) \xi^{i}(s) & \exp (t \lambda, s X) \\
& \left(w \in W_{G}(H), X \in \mathfrak{h}\right) .
\end{aligned}
$$

At first we assume that $w=e$. Then we have

$$
\begin{aligned}
\zeta_{i, t}\left(a_{i} \exp X\right) & =\sum_{s \in W_{G}\left(H_{i}\right)} \varepsilon\left(s, a_{i}\right) \xi^{i}(s) \exp \left(s^{-1} t \lambda, X\right) \\
& =\sum_{s \in W_{G}\left(H_{i}\right)} \varepsilon\left(s, a_{i}\right) \xi^{i}(s) \frac{\exp \left(s^{-1} t \lambda, X\right)}{\xi_{s-1 t \lambda}\left(a_{i} \exp X\right)} \xi_{s-1 t \lambda}\left(a_{i} \exp X\right) \\
& =\sum_{s \in W_{G}\left(H_{i}\right)} \varepsilon\left(s, a_{i}\right) \frac{1}{\xi_{t \lambda}\left(a_{i}\right)} \frac{\exp \left(s^{-1} t \lambda, X\right)}{\xi_{s-1 t \lambda}(\exp X)} \xi_{s-1 t \lambda}\left(a_{i} \exp X\right)
\end{aligned}
$$

Obviously, we have $\exp \left(s^{-1} t \lambda, X\right)=\xi_{s-1 t \lambda}(\exp X)$. Therefore

$$
\begin{equation*}
\zeta_{i, t}\left(a_{i} \exp X\right)=\frac{1}{\xi_{t \lambda}\left(a_{i}\right)} \sum_{s \in W_{G}\left(H_{i}\right)} \varepsilon\left(s, a_{i}\right) \xi_{s-1 t \lambda}\left(a_{i} \exp X\right) . \tag{4.3}
\end{equation*}
$$

Let $\left\{w_{j} \mid 1 \leqq j \leqq k\right\}$ be a complete system of representatives of a left coset space $W\left(H_{i}\right) \backslash W_{G}(H)$. Then we define $\eta_{i, t}$ as

$$
\eta_{i, t}(h)=\sum_{s \in W\left(H H_{i}\right) w_{j}} \varepsilon\left(s, a_{i}\right) \xi_{s-1 t \lambda}(h) \quad \text { for } \quad h \in w_{j}^{-1} H_{i} .
$$

If $h=w_{j}^{-1} a_{i} \exp X(X \in \mathfrak{h})$, then

$$
\begin{aligned}
\eta_{i, t}(h) & =\sum_{s \in W\left(H H_{i}\right) w} \varepsilon\left(s, a_{i}\right) \xi_{s-1 t \lambda}\left(w_{j}^{-1} a_{i} \exp X\right) \\
& =\sum_{\sigma \in W\left(H_{i}\right)} \varepsilon\left(\sigma w_{j}, a_{i}\right) \xi_{\left(\sigma w_{j}\right)-1 t \lambda}\left(w_{j}^{-1} a_{i} \exp X\right) \\
& =\varepsilon\left(w_{j}, a_{i}\right) \sum_{\sigma \in W\left(H_{i}\right)} \varepsilon\left(\sigma, a_{i}\right) \xi_{w_{j}^{-1} \sigma^{-1} t \lambda}\left(w_{j}^{-1} a_{i} \exp X\right) \\
& =\xi_{t \lambda}\left(a_{i}\right) \zeta_{i, t}\left(w_{j}^{-1} a_{i} \exp X\right)=\xi_{t \lambda}\left(a_{i}\right) \zeta_{i, t}(h) .
\end{aligned}
$$

The fourth equality follows from (4.3) and ε-symmetricity of $\zeta_{i, t}$. Since $\left\{\zeta_{i, t}\right\}$ forms a basis of $\mathfrak{B}(H ; \lambda)$, $\left\{\boldsymbol{\eta}_{i, t}\right\}$ also forms a basis of $\mathfrak{B}(H ; \lambda)$. Now it is clear that any element $\zeta \in \mathfrak{V}(H ; \lambda)$ can be written as in (4.2), Q.E.D.

Definition 4.2. Let $\zeta \in \mathfrak{V}(H ; \lambda)$ and write it as (4.2). Then we define a representation \mathcal{L} of W on $\mathfrak{B}(H ; \lambda)$ as follows.

$$
\left(\mathcal{L}_{s} \zeta\right)(h)=\sum_{w \in W} c_{w}(h) \boldsymbol{\xi}_{w s-1 \lambda}(h) .
$$

Let \mathcal{C} be a linear map of $\mathfrak{F}(H ; \lambda)$ into itself given by

$$
\mathcal{C}\left(\zeta_{i, t}\right)=\eta_{i, t} .
$$

Then clearly $\mathcal{C} \mathscr{R}_{s}=\mathcal{L}_{s} \mathcal{C}(s \in W)$ holds. This means the representations \mathscr{R} and \mathcal{L} are equivalent. Remark that \mathcal{C} is a diagonal operator with respect to the basis $\left\{\zeta_{i, t}\right\}$. Indeed it is of the form $\mathcal{C}=\operatorname{diag}\left(\xi_{t \lambda}\left(a_{i}\right) ; 0 \leqq i \leqq l, t \in W\left(H_{i}\right) \backslash W\right)$.

In order to show that the representation τ and \mathscr{Z} are equivalent, it is sufficient to show the next theorem.

Theorem 4.3. Hirai's method \boldsymbol{T} intertwines \mathcal{Z} and \mathcal{L}, i.e., for any $s \in W$ and $\zeta \in \mathfrak{B}(H ; \lambda)$,

$$
\boldsymbol{T}\left(\mathcal{L}_{s} \zeta\right)=\mathscr{Z}_{s}(\boldsymbol{T} \zeta) .
$$

By this theorem, the representations \mathcal{L} and \mathscr{L} are equivalent. So we have on $V_{H}(\lambda), \tau \cong \mathcal{R} \cong \mathcal{L} \cong \mathcal{Z}$. The first equivalence follows from the definition of τ.

Corollary. Representations τ and \mathcal{Z} of W on $V(\lambda)$ are equivalent. An intertwining operator is given by $\boldsymbol{T} \cdot \mathcal{C} \circ \boldsymbol{T}^{-1}$.

Remark. We can also treat $\lambda \in \mathfrak{h}_{C}^{*}$ which satisfies the following condition $(*)$ instead of that in 1.2. In this case, we define an action τ^{\prime} of $W_{H}(\lambda)$ slightly different from τ.
(*) Each $\xi_{t \lambda}\left(t \in \widetilde{W}_{H}(\lambda)\right)$ on H_{0} can be extended to the whole H in such a way that

$$
\xi_{s t \lambda}(s h)=\xi_{t \lambda}(h) \quad \text { for } \quad s \in W_{G}(H) .
$$

Here we naturally define τ^{\prime} by

$$
\boldsymbol{\tau}_{s}^{\prime}(\boldsymbol{T} \zeta)=\boldsymbol{T}\left(\mathcal{L}_{s} \zeta\right) \quad\left(s \in W_{H}(\boldsymbol{\lambda}), \zeta \in \mathfrak{B}(H ; \boldsymbol{\lambda})\right),
$$

with the same formulas for ζ and $\mathcal{L}_{s} \zeta$ as in Definition 4.2,
If λ is integral for G_{C}, the above assumption (*) is satisfied. Moreover, the representation τ^{\prime} is also equivalent to \mathcal{Z}.

Proof of the theorem. We use the notations in $\S_{\S}^{!} 2$. For an IED $\Theta \in V(\lambda)$ and any Cartan subgroup J of G, we can write

$$
C_{J}(\Theta)(h)=\sum_{w \in W} c_{w}(h) \boldsymbol{\xi}_{w \lambda}(h) \quad\left(h \in J^{\prime}(\boldsymbol{R})\right),
$$

where $c_{w}(h)$ are locally constant functions on $J^{\prime}(\boldsymbol{R})$. Then we define $\mathcal{C}_{s}^{\prime} C_{J}(\Theta)$ ($s \in W$) by

$$
\mathcal{L}_{s}^{\prime} C_{J}(\Theta)(h)=\sum_{w \in W} c_{w}(h) \xi_{w s-1 \lambda}(h) \quad\left(h \in J^{\prime}(\boldsymbol{R})\right) .
$$

We show that for any Cartan subgroup J of G,

$$
\begin{equation*}
C_{J}\left(\boldsymbol{T}\left(\mathcal{L}_{s} \zeta\right)\right)=\mathcal{L}_{s}^{\prime} C_{J}(\boldsymbol{T} \zeta) \quad(s \in W) \tag{4.4}
\end{equation*}
$$

by induction with respect to the order on $\operatorname{Car}(G)$. If we can establish (4.4), then by the definition of \mathcal{L}, we have for any $[J] \in \operatorname{Car}(G)$,

$$
C_{J}\left(\boldsymbol{T}\left(\mathcal{L}_{s} \zeta\right)\right)=\mathcal{L}_{s}^{\prime} C_{J}(\boldsymbol{T} \zeta)=C_{J}\left(\mathscr{L}_{s}(\boldsymbol{T} \zeta)\right) \quad(s \in W),
$$

and this proves the theorem. So let us prove (4.4).
For $[J]=[H]$, (4.4) is trivially valid. For $J=H$, the unique height of $\boldsymbol{T} \boldsymbol{\zeta}$ $(\zeta \in \mathfrak{B}(H ; \lambda))$, we have

$$
\begin{equation*}
C_{H}\left(\boldsymbol{T} \mathcal{L}_{s} \zeta\right)=\mathcal{L}_{s}^{\prime} C_{H}(\boldsymbol{T} \zeta) \quad(s \in W), \tag{4.5}
\end{equation*}
$$

by the definition of \boldsymbol{T}. The equation (4.5) shows (4.4) is valid for $J=H$. So we assume that (4.4) is valid for $[J]>[A]$ and prove it for [A]. Let $\left\{B^{m} \mid 1 \leqq m \leqq r\right\}$ be Cartan subgroups given in connection with A in $\S 2$. By the induction hypothesis we have

$$
C_{B^{m}}\left(\boldsymbol{T}\left(\mathcal{C}_{s} \zeta\right)\right)=\mathcal{C}_{s}^{\prime} C_{B}^{m}(\boldsymbol{T} \zeta) \quad(s \in W)
$$

Recall that \boldsymbol{T} has main two steps \boldsymbol{R} and \boldsymbol{S}. By the definition of \boldsymbol{T},

$$
C_{\boldsymbol{A}}\left(\boldsymbol{T}\left(\mathcal{L}_{3} \zeta\right)\right)=\boldsymbol{S} \cdot \boldsymbol{R}\left(C_{B}^{m}\left(\boldsymbol{T}\left(\mathcal{L}_{3} \zeta\right)\right) \mid 1 \leqq m \leqq r\right) .
$$

Therefore it is sufficient to show that

$$
\begin{align*}
\boldsymbol{S} \cdot \boldsymbol{R}\left(\mathcal{C}_{s}^{\prime} C_{B}^{m}(\boldsymbol{T} \zeta) \mid 1 \leqq m \leqq r\right) & =\mathcal{C}_{B}^{\prime}\left(\boldsymbol{S} \cdot \boldsymbol{R}\left(C_{B^{m}}(\boldsymbol{T} \zeta) \mid 1 \leqq m \leqq r\right)\right) \tag{4.6}\\
& \left(=\mathcal{C}_{3}^{\prime} C_{A}(\boldsymbol{T} \zeta)\right) \quad(s \in W) .
\end{align*}
$$

We write $C_{m}(\boldsymbol{T} \zeta)$ instead of $C_{B^{m}}(\boldsymbol{T} \zeta)$ for brevity.
(I) Step \boldsymbol{R}. We express $C_{m}(\boldsymbol{T} \boldsymbol{\zeta})$ as

$$
C_{m}(\boldsymbol{T} \zeta)(h)=\sum_{w \in W} c_{w}^{m}(h) \boldsymbol{\xi}_{w \lambda}(h) \quad\left(h \in\left(B^{m}\right)^{\prime}(\boldsymbol{R})\right),
$$

where $c_{w}^{m}(h)$ is a locally constant function on $\left(B^{m}\right)^{\prime}(\boldsymbol{R})$. Since by the definition of \mathcal{L}_{s}^{\prime},

$$
\mathcal{L}_{s}^{\prime} C_{m}(\boldsymbol{T} \zeta)(h)=\sum_{w \in W} c_{w}^{m}(h) \boldsymbol{\xi}_{w s-1 \lambda}(h) \quad\left(h \in\left(B^{m}\right)^{\prime}(\boldsymbol{R})\right),
$$

we have for $h=a \exp X\left(a \in \Sigma_{m}^{\prime}\right.$ and $X \in \mathfrak{a}$ sufficiently small),

$$
\begin{aligned}
\boldsymbol{R}_{\alpha_{m}}\left(\mathcal{L}_{s}^{\prime} C_{m}(\boldsymbol{T} \zeta)\right)(h) & =\sum_{w \in W} c_{w}^{m}(a) \boldsymbol{\xi}_{w s^{-1 \lambda}}\left(a \exp \nu_{m} X\right) \\
& =\sum_{w \in W} c_{w}^{m}(a) \boldsymbol{\xi}_{t_{\nu_{m}}\left(w s^{-1} \lambda\right)}(a \exp X) \\
& =\sum_{w \in W} c_{w}^{m}(a) \boldsymbol{\xi}_{w s^{-1} \lambda}(h)
\end{aligned}
$$

Here we identify $w s^{-1} \lambda \in\left(\mathfrak{b}_{c}^{m}\right)^{*}$ with $w s^{-1} \lambda \in\left(\mathfrak{a}_{C}\right)^{*}$ by Cayley transform ν_{m}. Thus we have proved

$$
\begin{equation*}
\boldsymbol{R}_{\alpha_{m}}\left(\mathcal{L}_{s}^{\prime} C_{m}(\boldsymbol{T} \boldsymbol{\zeta})\right)=f_{s}^{\prime} \boldsymbol{R}_{\alpha_{m}}\left(C_{m}(\boldsymbol{T} \zeta)\right) \quad(s \in W) \tag{4.7}
\end{equation*}
$$

(II) Step \boldsymbol{S}. By (4.7) it holds

$$
\begin{aligned}
\boldsymbol{S} \cdot \boldsymbol{R}\left(\mathcal{L}_{s}^{\prime} C_{m}(\boldsymbol{T} \zeta) \mid 1 \leqq m \leqq r\right) & =\boldsymbol{S}\left(\boldsymbol{R}_{\alpha_{m}}\left(\mathcal{C}_{s}^{\prime} C_{m}(\boldsymbol{T} \zeta)\right) \mid 1 \leqq m \leqq r\right) \\
& =\boldsymbol{S}\left(\mathcal{C}_{s}^{\prime} \boldsymbol{R}_{\alpha_{m}}\left(C_{m}(\boldsymbol{T} \zeta)\right) \mid 1 \leqq m \leqq r\right) .
\end{aligned}
$$

Put

$$
\begin{array}{ll}
P_{s_{m}}=\left(1-s_{m}\right) \boldsymbol{R}_{\alpha_{m}}\left(C_{m}(\boldsymbol{T} \zeta)\right) & (1 \leqq m \leqq r) \\
P_{s_{m}}^{\prime}=\left(1-s_{m}\right)\left(\mathcal{L}_{s}^{\prime} \boldsymbol{R}_{\alpha_{m}}\left(C_{m}(\boldsymbol{T} \zeta)\right)\right) & (1 \leqq m \leqq r) .
\end{array}
$$

By the definition of $S, S\left(P_{s_{1}}, \cdots, P_{s_{r}}\right)$ can be written as

$$
\begin{aligned}
\boldsymbol{S}\left(P_{s_{1}}, \cdots, P_{s_{r}}\right) & =\frac{1}{|S|} \sum_{\sigma \in S} P_{\sigma} \\
& =\sum_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sigma\left(\boldsymbol{R}_{\alpha_{m}}\left(C_{m}(\boldsymbol{T} \zeta)\right)\right)
\end{aligned}
$$

where P_{σ} is defined as in $\S 2$, and $\left\{q_{m, \sigma}\right\}$ are some rational numbers. Since

$$
\begin{aligned}
\boldsymbol{\sigma}\left(\boldsymbol{R}_{\alpha_{m}} C_{m}(\boldsymbol{T} \zeta)\right)(h) & =\boldsymbol{R}_{\alpha_{m}} C_{m}(\boldsymbol{T} \zeta)\left(\sigma^{-1} h\right) \\
& =\sum_{w \in W} c_{w}^{m}\left(\sigma^{-1} h\right) \xi_{w \lambda}\left(\boldsymbol{\sigma}^{-1} h\right) \\
& =\sum_{w \in W} c_{w}^{m}\left(\sigma^{-1} h\right) \xi_{\sigma w \lambda}(h) \quad\left(h \in A^{\prime}(\boldsymbol{R})\right),
\end{aligned}
$$

we get

$$
\begin{align*}
& \mathcal{L}_{s}^{\prime}\left(\boldsymbol{S} \cdot \boldsymbol{R}\left(C_{m}(\boldsymbol{T} \zeta) \mid 1 \leqq m \leqq r\right)\right)(h) \tag{4.8}\\
& \quad=\mathcal{L}_{s}^{\prime}\left({ }_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sum_{w \in W} c_{w}^{m}\left(\sigma^{-1} h\right) \boldsymbol{\xi}_{\sigma w \lambda}(h)\right) \\
& \quad=\sum_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sum_{w \in W} c_{w}^{m}\left(\sigma^{-1} h\right) \xi_{\sigma w s^{-1}}(h) \quad\left(h \in A^{\prime}(\boldsymbol{R})\right) .
\end{align*}
$$

On the other hand, by similar calculations, we have

$$
\begin{align*}
& \boldsymbol{S}\left(P_{s_{1}}^{\prime}, \cdots, P_{s_{r}}^{\prime}\right)(h)=\frac{1}{|S|} \sum_{\sigma \in S} P_{\sigma}^{\prime}(h) \tag{4.9}\\
& \quad=\sum_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sigma\left(\mathcal{L}_{s}^{\prime} \boldsymbol{R}_{\alpha_{m}} C_{m}(\boldsymbol{T} \zeta)\right)(h)
\end{align*}
$$

$$
\begin{aligned}
& =\sum_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sigma\left(\sum_{w \in W} c_{w}^{m}(h) \xi_{w s-1 \lambda}(h)\right) \\
& ={ }_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sum_{w \in W} c_{w}^{m}\left(\sigma^{-1} h\right) \xi_{w s-1 \lambda}\left(\sigma^{-1} h\right) \\
& =\sum_{1 \leq m \leq r} \sum_{\sigma \in S} q_{m, \sigma} \sum_{w \in W} c_{w}^{m}\left(\sigma^{-1} h\right) \xi_{\sigma w s-1 \lambda}(h) .
\end{aligned}
$$

Therefore we get

$$
\begin{aligned}
& \boldsymbol{S} \cdot \boldsymbol{R}\left(\mathcal{L}_{s}^{\prime} C_{m}(\boldsymbol{T} \zeta) \mid 1 \leqq m \leqq r\right)=\boldsymbol{S}\left(P_{s_{1}}^{\prime}, \cdots, P_{s_{r}}^{\prime}\right) \\
& \quad=\mathcal{L}_{s}^{\prime}\left(\boldsymbol{S} \cdot \boldsymbol{R}\left(C_{m}(\boldsymbol{T} \zeta) \mid 1 \leqq m \leqq r\right)\right)
\end{aligned}
$$

combining (4.8) and (4.9), This proves (4.6) and thus the proof is completed.
Q.E.D.

§ 5. Decompositions of the representations on $V(\lambda)$.

In this section, we assume again that G is a connected semisimple Lie group which is acceptable and has finite centre. Let λ be a regular infinitesimal character. For any Cartan subgroup H of G, we constructed the representation τ of $W_{H}(\lambda)$ on $V_{H}(\lambda)$ in $\S 3$. Here we will give a canonical decomposition of τ which clarifies the structure of τ. We keep to the notations in $\S \S 1$ and 3 .

Let H be a Cartan subgroup of G and $\left\{H_{i} \mid 0 \leqq i \leqq l\right\}$ be a complete system of representatives of connected components of H under the action of $W_{G}(H)$. Let H_{0} be the identity component of H. We denote the kernel of the map $\exp : \mathfrak{h} \rightarrow H_{0}$ by L. Then we defined $\widetilde{W}_{H}(\lambda)$ as $\widetilde{W}_{H}(\lambda)=\left\{w \in W\left(\mathfrak{h}_{C}\right) \mid\langle w \lambda, L\rangle\right.$ $\subset 2 \pi \sqrt{-1} \boldsymbol{Z}\}$, where we consider λ as a dominant element of \mathfrak{h}_{c}^{*}. By Proposition $1.5, \widetilde{W}_{H}(\lambda)$ is invariant by $W\left(H_{i}\right)$ under the left multiplication and is also invariant by the integral Weyl group $W_{H}(\lambda)$ under the right multiplication. Therefore we can consider a double coset space $W\left(H_{i}\right) \backslash \widetilde{W}_{H}(\lambda) / W_{H}(\lambda)$. Let $\Gamma \subset \widetilde{W}_{H}(\lambda)$ be a complete system of representatives of a coset space $W\left(H_{i}\right) \backslash \widetilde{W}_{H}(\lambda) / W_{H}(\lambda)$, and put

$$
\begin{array}{ll}
W^{(i, \gamma)}=W_{H}(\lambda) \cap \gamma^{-1} W\left(H_{i}\right) \gamma & (\gamma \in \Gamma), \\
\varepsilon^{(i, \gamma)}(w)=\varepsilon\left(\gamma w \gamma^{-1}, a_{i}\right) \xi^{i}\left(\gamma w \gamma^{-1}\right) & \left(a_{i} \in H_{i}, w \in W^{(i, \gamma)}\right),
\end{array}
$$

where $\varepsilon(w, h)\left(w \in W_{G}(H), h \in H\right)$ is defined as (1.1). Then $\varepsilon^{(i, \gamma)}$ is a character of the group $W^{(i, \gamma)}$.

THEOREM 5.1. The representation τ of $W_{H}(\lambda)$ on $V_{H}(\lambda)$ given in Definition 3.1 is decomposed into a direct sum of subrepresentations as follows:

$$
V_{H}(\lambda) \cong \sum_{i=0}^{i} \oplus \sum_{\gamma \in \Gamma}^{\oplus} \operatorname{Ind}\left(\varepsilon^{(i, \gamma)} ; W^{(i, \gamma)} \uparrow W_{H}(\lambda)\right)
$$

u here $\operatorname{Ind}(\varepsilon ; A \uparrow B)=\operatorname{Ind}_{A}^{B} \varepsilon$.

Proof. Since τ and \mathcal{R} are equivalent by definition, we decompose the representation \mathcal{R} of $W_{H}(\lambda)$ on $\mathfrak{B}(H ; \lambda)$. For $0 \leqq i \leqq l$ and $t \in \widetilde{W}_{H}(\lambda)$ we put

$$
\begin{aligned}
& \zeta_{i, t}\left(w a_{i} \exp X\right)=\varepsilon\left(w, a_{i}\right) \sum_{s \in W_{G}\left(H_{i}\right)} \varepsilon\left(s, a_{i}\right) \xi^{i}(s) \exp (t \lambda, s X) \\
& \quad\left(w \in W_{G}(H), X \in \mathfrak{G}\right) .
\end{aligned}
$$

We denote by $\mathfrak{B}^{i}(H ; \lambda)$ a subspace of $\mathfrak{F}(H ; \lambda)$ spanned by the elements $\left\{\zeta_{i, t} \mid\right.$ $\left.t \in \widetilde{W}_{H}(\lambda)\right\}$ for a fixed $i(0 \leqq i \leqq l)$. Then by the definition of \mathscr{R}, $\mathfrak{B}^{i}(H ; \lambda)$ is clearly an invariant subspace of $\mathfrak{B}(H ; \lambda)$ under $W_{H}(\lambda)$. Moreover as $W_{H}(\lambda)-$ modules,

$$
\begin{equation*}
\mathfrak{B}(H ; \lambda)=\sum_{i=0}^{\mathfrak{i}} \oplus \mathfrak{B}^{i}(H ; \lambda) . \tag{5.1}
\end{equation*}
$$

So it is sufficient to see that how a $W_{H}(\lambda)$-module $\mathfrak{B}^{i}(H ; \lambda)$ is decomposed into a direct sum of submodules. For a fixed $i(0 \leqq i \leqq l)$, we write $\zeta_{t}\left(t \in \widetilde{W}_{H}(\lambda)\right)$ instead of $\zeta_{i, t}$. We denote by $\mathfrak{B}^{(i, r)}(H ; \lambda)(\gamma \in \Gamma)$ a subspace of $\mathfrak{B}^{i}(H ; \lambda)$ spanned by the elements $\left\{\zeta_{t} \mid t \in W\left(H_{i}\right) \gamma W_{H}(\lambda)\right\}$. Then clearly

$$
\begin{equation*}
\mathfrak{V}^{i}(H ; \lambda)=\sum_{r \in \Gamma}^{\oplus} \mathfrak{V}^{(i, r)}(H ; \lambda) \tag{5.2}
\end{equation*}
$$

gives a decomposition of the $W_{H}(\lambda)$-module $\mathfrak{B}^{i}(H ; \lambda)$. We show that

$$
\begin{equation*}
\mathfrak{F}^{(i, \gamma)}(H ; \lambda) \cong \operatorname{Ind}\left(\varepsilon^{(i, \gamma)} ; W^{(i, r)} \uparrow W_{H}(\lambda)\right) . \tag{5.3}
\end{equation*}
$$

We realize the representation Ind $\varepsilon^{(i, r)}$ as follows. The representation space E is given by

$$
E=\left\{f: W_{H}(\lambda) \rightarrow \boldsymbol{C} \mid f(w v)=\varepsilon^{(i, r)}\left(w^{-1}\right) f(v), w \in W^{(i, r)}, v \in W_{H}(\lambda)\right\},
$$

with the action of $W_{H}(\lambda)$ being the right translation. We define a linear map q from $\mathfrak{V}^{(i, \gamma)}(H ; \lambda)$ to E by

$$
\left(a y \zeta_{\sigma \gamma u}\right)(v)=\left\{\begin{array}{cl}
\varepsilon\left(\sigma, a_{i}\right) \xi^{i}(\sigma) \varepsilon^{(i, \gamma)}\left(u v^{-1}\right) & \text { if } u v^{-1} \in W^{(i, \gamma)}, \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\sigma \in W\left(H_{i}\right), \gamma \in \Gamma$ and $u, v \in W_{H}(\lambda)$. This linear map of gives equivalence of $\mathfrak{B}^{(i, r)}(H ; \lambda)$ and E. Indeed, for $w \in W^{(i, r)}$,

$$
\begin{aligned}
\left(q \zeta_{\sigma r u}\right)(w v) & =\varepsilon\left(\sigma, a_{i}\right) \xi^{i}(\sigma) \varepsilon^{(i, r)}\left(u v^{-1} w^{-1}\right) \\
& =\varepsilon^{(i, r)}\left(w^{-1}\right)\left(\varepsilon\left(\sigma, a_{i}\right) \xi^{i}(\sigma) \varepsilon^{(i, r)}\left(u v^{-1}\right)\right) \\
& =\varepsilon^{(i, r)}\left(w^{-1}\right)\left(a \zeta_{\sigma r u}\right)(v),
\end{aligned}
$$

if $u v^{-1} \in W^{(i, y)}$. This proves $9 \zeta_{\sigma r u}$ belongs to E. Recall that, for $s \in W_{H}(\lambda)$, we defined \mathcal{R}_{s} by $\mathcal{R}_{s} \zeta_{t}=\zeta_{t s-1}$. Therefore we have

$$
\begin{aligned}
\left(q \mathcal{R}_{s} \zeta_{\sigma \gamma u}\right)(v) & =\left(9 \zeta_{\sigma \gamma u s}-1\right)(v) \\
& =\varepsilon\left(\sigma, a_{i}\right) \xi^{i}(\sigma) \varepsilon^{(i, r)}\left(u s^{-1} v^{-1}\right) \\
& =\varepsilon\left(\sigma, a_{i}\right) \xi^{i}(\sigma) \varepsilon^{(i, r)}\left(u(v s)^{-1}\right)=\left(q_{i} \zeta_{\sigma \gamma u}\right)(v s),
\end{aligned}
$$

if $u s^{-1} v^{-1}$ belongs to $W^{(i, r)}$. This proves \mathscr{q} intertwines \mathcal{R} and the right translation. Since it is easy to see that q_{y} is an isomorphism, we have proved (5.3), Formulas (5.1), (5.2) and (5.3) prove the theorem. Q.E.D.

Let λ be integral for G_{C}, i.e., λ is a differential of a character of H_{C}. Then by Lemma 3.2 it holds that $\widetilde{W}_{H}(\lambda)=W_{H}(\lambda)=W\left(\mathscr{h}_{C}\right)$. As in $\S 4$, we identify all the $W\left(\mathfrak{h}_{c}\right)$'s by Cayley transforms and write it W. In this situation we get the representation τ of W on $V(\lambda)=\Sigma^{\oplus} V_{H}(\lambda)$.

Theorem 5.2. If λ is integral for G_{c}, W-module $V(\lambda)$ is decomposed as follows:

$$
V(\lambda) \cong \sum_{[H] \in \operatorname{Car}(G)}^{\oplus} \sum_{i=0}^{i} \operatorname{Ind}\left(\varepsilon_{i} ; W\left(H_{i}\right) \uparrow W\right) .
$$

Here $\left\{H_{i} \mid 0 \leqq i \leqq l\right\}$ is a complete system of representatives of connected components of H under the conjugation of $W_{G}(H)$, and ε_{i} is a character of $W\left(H_{i}\right)$ defined by $\varepsilon_{i}(w)=\varepsilon\left(w, a_{i}\right) \xi^{i}(w) \quad\left(w \in W\left(H_{i}\right), a_{i} \in H_{i}\right)$.

PRoof. Since $\widetilde{W}_{H}(\lambda)=W_{H}(\lambda) \cong W$, the coset space $W\left(H_{i}\right) \backslash \widetilde{W}_{H}(\lambda) / W_{H}(\lambda)$ consists of one element. So we can take $\Gamma=\{e\}$. Now, applying Theorem 5.1, we get Theorem 5.2 Q.E.D.

Theorem 5.2 is a generalization of a result of D. Barbasch and D. Vogan [1, Prop. 2.4].

§ 6. Examples.

6.1. Let $G=U(p, 1)(p \geqq 2)$. For classification of irreducible representations and their characters of $U(p, 1)$, see [9]. G has two conjugacy classes of Cartan subgroups, namely a class of a compact Cartan subgroup H and that of a maximal split one J. In this case, both H and J are connected. We give H and \mathfrak{h} as

$$
\begin{aligned}
& H=\left\{\operatorname{diag}\left(a_{1}, \cdots, a_{p+1}\right)\left|a_{i} \in \boldsymbol{C},\left|a_{i}\right|=1\right\},\right. \\
& \mathfrak{H}=\left\{\operatorname{diag}\left(\sqrt{-1} \phi_{1}, \cdots, \sqrt{-1} \phi_{p+1}\right) \mid \phi_{i} \in \boldsymbol{R}\right\},
\end{aligned}
$$

where $\operatorname{diag}\left(a_{1}, \cdots, a_{p+1}\right)$ denotes a diagonal matrix with diagonal elements a_{1}, \cdots, a_{p+1}. We consider $\lambda=\left(\lambda_{1}, \cdots, \lambda_{p+1}\right) \in \boldsymbol{C}^{p+1}$ as an element of \mathfrak{h}_{c}^{*} by

$$
\lambda\left(\operatorname{diag}\left(\sqrt{-1} \phi_{1}, \cdots, \sqrt{-1} \phi_{p+1}\right)\right)=\sum_{i=1}^{p+1} \sqrt{-1} \phi_{i} \lambda_{i} .
$$

Fix $\lambda \in \boldsymbol{Z}^{p+1}$. Then we have $\widetilde{W}_{H}(\lambda)=W_{H}(\lambda) \cong W$ (the full Weyl group).

LEMMA 6.1. (1) $W_{G}(H)=\left\{\right.$ permutations of $\left.\left(\phi_{1}, \cdots, \phi_{p}\right)\right\} \cong \Im_{p}$. (2) $W_{G}(J)=\{$ permutations of $\left.\left(\phi_{1}, \cdots, \phi_{p-1}\right)\right\} \times\left\{\right.$ permutations of $\left.\left(\phi_{p}+\phi_{p+1}, \phi_{p}-\phi_{p+1}\right)\right\} \cong \mathfrak{S}_{p-1} \times \mathfrak{S}_{2}$.

Proof. This is given by direct calculations.
Lemma 6.2. Let $\lambda \in \boldsymbol{Z}^{p+1}$ be regular, i.e., λ is not fixed by any permutation of coordinates. Then the Weyl group W is isomorphic to \Im_{p+1}, and as W-module we have

$$
\begin{aligned}
V_{H}(\lambda) & \cong \operatorname{Ind}\left(\operatorname{det}_{p} ; \Im_{p} \uparrow \Im_{p+1}\right) \cong\left[1^{p+1}\right] \oplus\left[2 \cdot 1^{p-1}\right] \\
V_{J}(\lambda) & \cong \operatorname{Ind}\left(\operatorname{det}_{p-1} \otimes(\text { trivial }) ; \mathfrak{S}_{p-1} \times \Im_{2} \uparrow \Im_{p+1}\right) \\
& \cong\left[2 \cdot 1^{p-1}\right] \oplus\left[3 \cdot 1^{p-2}\right]
\end{aligned}
$$

where det_{p} is a one dimensional representation of \mathbb{S}_{p} which sends $\sigma \in \mathbb{S}_{p}$ to determinant of $\boldsymbol{\sigma}$.

For notations, see [14]. The irreducible representations corresponding to Young tableaux $\left[1^{p+1}\right],\left[2 \cdot 1^{p-1}\right]$ and $\left[3 \cdot 1^{p-2}\right]$ are of dimension $1, p$ and $p(p-1) / 2$ respectively.

Proof. Use Theorem 5.2 and we have the first equivalence for each H and J. The second equivalences are given by direct calculations. Q.E.D.

It can be easily seen that the vector space $V_{J}(\lambda)$ has a basis consisting of characters of all the principal series representations with infinitesimal character λ. However it's not trivial to find out a basis of $V_{H}(\lambda)$. We only show the results here without calculations. For notations, see [9].

Lemma 6.3. (1) $V_{H}(\lambda)$ has a basis $\left\{B^{i, i+1}(1 \leqq i \leqq p), D^{0, p+1}\right\}$, where

$$
B^{i, i+1}=\frac{(-1)^{i}}{2}\left\{\left(D^{0, i}+D^{0, i+1}\right)+(-1)^{p}\left(D^{i, p+1}+D^{i+1, p+1}\right)\right\}-\frac{(-1)^{p}}{p+1} D^{0, p+1}
$$

Moreover $\left\{B^{i, i+1}(1 \leqq i \leqq p)\right\}$ generates the p-dimensional invariant space $\left[2 \cdot 1^{p-1}\right]$ of $V_{H}(\lambda)$ and $D^{0, p+1}$ generates the one-dimensional invariant space $\left[1^{p+1}\right]$ of $V_{H}(\lambda)$.
(2) $V_{J}(\lambda)$ has a basis consisting of the characters of principal series representations and $\operatorname{dim} V_{J}(\lambda)=p(p+1) / 2$.
6.2. Let $G=S L(2, \boldsymbol{R})$. For classification of irreducible representations and their characters of $S L(2, \boldsymbol{R})$, see [2], [4], [7, p. 50]. G has two conjugacy classes of Cartan subgroups. Put

$$
\begin{aligned}
& K=\left\{\left.\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in \boldsymbol{R}\right\} \\
& J=A_{+} \cup A_{-} \quad \text { with } \quad A_{ \pm}=\left\{\left. \pm\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) \right\rvert\, t \in \boldsymbol{R}\right\} .
\end{aligned}
$$

Then K is a compact Cartan subgroup and J is a maximal split one.

Lemma 6.4. (1) K is connected and $W_{G}(K)=\{e\}$. (2) J has two connected component A_{+}, A_{-}and $W_{G}\left(A_{+}\right)=W_{G}\left(A_{-}\right) \cong \Im_{2}$.

Let $\lambda \in \mathcal{l}_{C}^{*}$ be a differential of a non-trivial character of K. Then we have
Lemma 6.5. The Weyl group W is isomorphic to \mathfrak{S}_{2} and as W-module, we have

$$
\begin{aligned}
V_{K}(\lambda) & \cong \operatorname{Ind}\left(\text { trivial } ;\{e\} \uparrow \Im_{2}\right) \cong(\mathrm{sgn}) \oplus(\text { trivial }), \\
V_{J}(\lambda) & \cong \operatorname{Ind}\left(\text { trivial } ; \mathfrak{S}_{2} \uparrow \Im_{2}\right) \oplus \operatorname{Ind}\left(\text { trivial } ; \mathfrak{S}_{2} \uparrow \Im_{2}\right) \\
& \equiv 2(\text { trivial }) .
\end{aligned}
$$

Proof. Theorem 5.2 and direct calculations will show the results. Q.E.D.
As in the case of $U(p, 1), V_{J}(\lambda)$ has a basis consisting of characters of principal series representations with infinitesimal character λ. The invariant space $V_{K}(\lambda)$ has a basis $\left\{D^{+}-D^{-}, F\right\}$, where D^{+}(respectively D^{-}) is the holomorphic (resp. anti-holomorphic) discrete series representation and F is the finite dimensional representation.

We can write down the similar results for the groups $S O_{0}(2 n, 1)(n \geqq 1)$. However, it needs new notations to state them. Here, we only refer the readers to [16].

References

[1] D. Barbasch and D. Vogan, Weyl group representations and nilpotent orbits, in Representation theory of reductive groups, edited by C. Trombi, Birkhäuser, 1983.
[2] V. Bargman, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1947), 568-640.
[3] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Herman, Paris, 1968.
[4] I. M. Gel'fand, M. I. Graev and N. Ya. Vilenkin, Generalized functions, vol. 5, Academic Press, New York and London, 1966.
[5] Harish-Chandra, Invariant eigendistributions on semisimple Lie groups, Trans. Amer. Math. Soc., 119 (1965), 457-508.
[6] T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups I, Case of $S U(p, q)$, Japan. J. Math., 39 (1970), 1-68.
[7] T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups II, General theory for semisimple Lie groups, Japan. J. Math., New Series, 2 (1976), 27-89.
[8] T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups III, Methods of construction for semisimple Lie groups, Japan. J. Math., New Series, 2 (1976), 269-341.
[9] T. Hirai, Classification and the characters of irreducible representations of $\operatorname{SU}(p, 1)$, Proc. Japan Acad., 42 (1966), 907-912.
[10] A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra I, II, J. Algebra, 65 (1980), 269-283, 284-306.
[11] D. R. King, The character polynomial of the annihilator of an irreducible Harish Chandra module, Amer. J. Math., 103 (1981), 1195-1240.
[12] A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math., 116 (1982), 389-501.
[13] J. Lepowski, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc., 176 (1973), 1-44.
[14] D. E. Littlewood, The theory of group characters and matrix representations of groups, Oxford, 1950.
[15] G. Lustig and D. Vogan, Singularities of closures of K-orbits on flag manifolds, Invent. Math., 71 (1983), 265-379.
[16] K. Nishiyama, Decompositions of tensor products of infinite and finite dimensional representations of semisimple groups, J. Math. Kyoto Univ., 25 (1985), 1-20.
[17] K. Nishiyama, Representations of Weyl group and its subgroups on the virtual character modules, Proc. Japan Acad., 60 (1985), 193-196.
[18] G. Warner, Harmonic analysis on semisimple Lie groups I, Springer-Verlag, 1972.
[19] G. J. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math., 106 (1977), 295-308.

Kyo Nishiyama

Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606, Japan

