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Introduction.

Let $G$ be a connected semisimple Lie group with finite centre and $\mathfrak{g}$ its Lie
algebra. We call $G$ acceptable if there exists a connected complex Lie group
$G_{c}$ with Lie algebra $\mathfrak{g}_{C}=\mathfrak{g}\otimes_{R}C$ which has the following two properties. (1)

The canonical injection from $\mathfrak{g}$ into $\mathfrak{g}_{c}$ can be lifted up to a homomorphism of
$G$ into $G_{c}$ . (2) For a Cartan subalgebra $\mathfrak{h}_{c}$ of $\mathfrak{g}_{C}$ , let $\rho$ be half the sum of
positive roots of $(\mathfrak{g}_{C}, \mathfrak{h}_{c})$ . Then $\xi_{\rho}(\exp X)=\exp(\rho(X))(X\in \mathfrak{h}_{c})$ defines a character
of $H_{C}$ into $c*$ .

We assume that $G$ is acceptable throughout this paper.
For an irreducible quasi-simple representation $\pi$ of $G$ , we can associate $\pi$

with an infinitesimal character $\lambda\in \mathfrak{h}_{c}^{*}$ , where $\mathfrak{h}_{c}^{*}$ is the complex dual of a Cartan
subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ . Also a distribution character $\Theta(\pi)$ of an irreducible quasi-
simple representation $\pi$ can be defined. We call $\Theta(\pi)$ an irreducible character
of $\pi$ which has an infinitesimal character $\lambda$ . Let $V(\lambda)$ be the virtual character
module of $G$ whose element has an infinitesimal character $\lambda$ .

In many papers, representations of the Weyl group $W=W(\mathfrak{h}_{c})$ on the space
$V(\lambda)$ are considered under the assumption that $\lambda$ is regular and integral for $G_{c}$ ,
$i$ . $e.,$

$\lambda$ is regular and is a differential of a character of $H_{C}$ . G. Lustig and
D. Vogan [15] considered W-module structure of $V(\lambda)$ , using so-called “ Springer
representations “. G. Zuckerman [12] also defined a representation of $W$ on
$V(\lambda)$ , taking advantage of tensor products with finite dimensional representations
of $G$ . After his work, D. Barbasch and D. Vogan [1] restated his definition of
the representation of $W$ by means of “ coherent continuation “ and determined
the W-module structure in the case that $G$ is a connected reductive group with
all the Cartan subgroups connected and that $G$ has a compact Cartan subgroup.
On the other hand, representations of the Weyl group $W$ on the space of so-called
Goldie rank polynomials are considered by A. Joseph [10], D. R. King [11] and
others. It seems that these representations on the space of Goldie rank poly-
nomials or the character polynomials can be realized as subrepresentations of
the representation on a virtual character module V $(\lambda)$ .
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If $\lambda$ is not integral for $G_{C}$ , the above definitions of representations of the Weyl
group $W$ do not work. But similar representations on $V(\lambda)$ are not defined, so
far as we know. In this paper, we assume $\lambda$ to be regular and define repre-
sentations of “ integral Weyl grouPs for $\lambda$

“ as explained below. If $\lambda$ is not
integral for $G_{C}$ , the full Weyl group $W$ cannot act on $V(\lambda)$ . So we choose a
certain subgroup $W_{H}(\lambda)$ of $W\cong W(\mathfrak{h}_{c})$ for each Cartan subgroup $H$ of $G$ and
also choose a suitable subspace $V_{H}(\lambda)$ of $V(\lambda)$ . We can define $W_{H}(\lambda)$ -module
structure of $V_{H}(\lambda)$ , using the results of T. Hirai [6, 7, 8]. We believe $W_{H}(\lambda)$

is the most natural among the subgroups of $W$ which act on $V(\lambda)$ , and call it
an integral Weyl group for $\lambda$ . In the case that $\lambda$ is regular and integral for
$G_{C}$ , our representations are canonically identified with Zuckerman’s one. Roughly
speaking, this is a consequence of the fact that Zuckerman’s representation and
Hirai’s method $T$ are “ commutative ” (see Theorem 4.3). Since we know the
precise structure of the space of invariant eigendistributions (IEDs) due to
T. Hirai, we can clarify the $W_{H}(\lambda)$ -module structure of $V_{H}(\lambda)$ (Theorem 5.1). If $\lambda$

is regular and integral for $G_{C}$ , a generalization of the result in [1] is obtained
as a corollary of Theorem 5.1 (Theorem 5.2).

We remark here that the results in this paper remain valid for a connected
reductive group whose semisimple part has finite centre.

We now describe the contents of this paper, explaining each section briefly.
In \S \S 1 and 2, we state some main results of T. Hirai [6, 7, 8] about IEDs on $G$

for the sake of self-containedness. In \S 1, we clarify the structure of $V(\lambda)$ and
define $W_{H}(\lambda)$ for each Cartan subgroup $H$ of G. \S 2 is devoted to explaining Hirai’s
method $T$ constructing IEDs. The definition of representations of the integral
Weyl groups $W_{H}(\lambda)$ on $V_{H}(\lambda)$ is given in \S 3 (Definition 3.1). This definition
looks very natural and when $\lambda$ is integral for $G_{C}$ , it is essentially the same as
Zuckerman’s definition (Corollary to Theorem 4.3). We prove this in \S 4. In
\S 5, we clarify the $W_{H}(\lambda)$ -module structure of $V_{H}(\lambda)$ (Theorem 5.1). If $\lambda$ is
integral for $G_{C}$ , we get a generalization of the result in [1] without any addi-
tional assumption on $G$ (Theorem 5.2). In the last section \S 6, we describe
some interesting examples for the groups $U(n, 1)$ and $SL(2, R)$ .

Main results of this paper have been reported in [17].

The author thanks Prof. T. Hirai for his kind encouragements and useful
discussions. Without his suggestions, this work would not have been completed.

\S 1. Preliminaries on virtual character modules.

1.1. Basic definitions. Let $G$ be a connected semisimple Lie group with
finite centre and $\mathfrak{g}$ its Lie algebra. We always denote the Lie algebra of a
Lie group $H$ by corresponding German small letter $\mathfrak{h}$ , and its complexification
by $\mathfrak{h}_{C}$ . We call $G$ acceptable if there exists a complex Lie group $G_{C}$ with Lie
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algebra $\mathfrak{g}_{C}$ which has the following two properties. (1) The canonical injection
from $\mathfrak{g}$ into $\mathfrak{g}_{C}$ can be lifted up to a homomorphism $j$ of $G$ into $G_{C}$ . (2) For a
Cartan subalgebra $\mathfrak{h}_{C}$ of $\mathfrak{g}_{C}$ , let $\rho$ be half the sum of positive roots of $(\mathfrak{g}_{C}, \mathfrak{h}_{C})$ .
Then $\xi_{\rho}=\exp\rho$ is a well-defined character of $H_{C}=\exp \mathfrak{h}_{c}$ into $c*$ . We assume
$G$ acceptable throughout this paper and fix a group $G_{C}$ in the following.

Choose a Cartan subgroup $H$ of $G$ . By $H_{C}$ we denote the analytic sub-
group of $G_{C}$ corresponding to $\mathfrak{h}_{c}$ . Let $\Delta=\Delta(\mathfrak{g}_{C}, \mathfrak{h}_{c})$ be the root system and
$W=W(\mathfrak{h}_{C})$ the Weyl group of $(\mathfrak{g}_{C}, \mathfrak{h}_{c})$ . We fix an order on $\Delta$ and write $\Delta^{+}$ for
the set of positive roots with respect to this order and $\Pi$ for the simple system
in $\Delta^{+}$ . Moreover, we define real roots $\Delta^{R}$ and imaginary roots $\Delta^{I}$ as follows.

$\Delta^{R}=$ { $\alpha\in\Delta|\alpha$ takes real values on $\mathfrak{h}$ },

$\Delta^{I}=$ { $\alpha\in\Delta|\alpha$ takes purely imaginary values on $\mathfrak{h}$ }.

Here we give a brief survey of admissible representations and give some
definitions. Let $G=KAN$ be an Iwasawa decomposition, where $K$ is a maximal
compact subgroup of $G$ .

DEFINITION 1.1. If $(\mathfrak{g}_{C}, K)$ -module $V$ satisfies the following conditions $0$ ) $-3$),

we call $V$ admissible.
$0)$ Every vector $v\in V$ is K-smooth and generates a finite dimensional K-

stable subspace.
1) The representation of $f\subset \mathfrak{g}_{C}$ and the differential of that of $K$ are com-

patible, $i$ . $e.$ ,

$\lim_{tarrow 0}\frac{1}{t}(\exp(tX)v-v)=Xv$ for $v\in V,$ $X\in f$ .

2) The adjoint representation of $K$ on $\mathfrak{g}_{C}$ is compatible with $(\mathfrak{g}_{C}, K)$-module
structure, 1. $e.$ ,

$(Ad(k)X)v=k^{-1}(X(kv))$ for $k\in K,$ $X\in \mathfrak{g}_{C},$ $v\in V$ .
3) The multiplicity of any irreducible representation of $K$ in $V$ is finite.
Let $\pi$ be a quasi-simple irreducible representation of $G$ on a Hilbert space

$\mathfrak{H}$ and $\mathfrak{H}_{K}$ the space of K-finite vectors. Any element of $\mathfrak{H}_{K}$ is differentiable
and $\mathfrak{H}_{K}$ forms a $\mathfrak{g}_{C}$-invariant space. Thus we get the differential $(d\pi, \mathfrak{H}_{K})$ of the
representation $\pi$ and $(d\pi, \mathfrak{H}_{K})$ is an irreducible admissible $(\mathfrak{g}_{C}, K)$-module.
Conversely, if an irreducible admissible $(\mathfrak{g}_{C}, K)$-module $V$ is given, there exists
a quasi-simple irreducible representation $\pi$ of $G$ on a Hilbert space $\mathfrak{H}$ such that
$(d\pi, \mathfrak{H}_{K})$ is isomorphic to $V$ (see, for example, [13]). If two irreducible quasi-
simple representations $(\pi_{1}, \mathfrak{H}_{1})$ and $(\pi_{2}, \mathfrak{H}_{2})$ give equivalent $(\mathfrak{g}_{C}, K)$-modules, then
we have $\Theta(\pi_{1})=\Theta(\pi_{2})$ , where $\Theta(\pi_{i})(i=1,2)$ is the distribution character of $\pi_{i}$ .
As we consider the virtual character module, we identify irreducible quasi-
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simple representations of $G$ with irreducible admissible representations of $(\mathfrak{g}_{C}, K)$

and sometimes we say irreducible admissible representations of $G$ instead of
$(\mathfrak{g}_{C}, K)$ .

Let $V$ be an irreducible $(\mathfrak{g}_{C}, K)$ -module. An element of the centre $\mathfrak{Z}$ of
$U(\mathfrak{g}_{C})$ acts as a scalar operator on $V$ , so we can define $\lambda\in Hom_{alg}(\mathfrak{Z}, C)$ by the
following equation

$zv=\lambda(z)v$ $(z\in \mathfrak{Z}, v\in V)$ .

We call this $\lambda$ the infinitesimal character of $V$ .
Put $\mathfrak{n}^{+}=\Sigma_{\alpha\in\Delta}+\mathfrak{g}_{\alpha}$ and $\mathfrak{n}^{-}=\sum_{\alpha\in\Delta}+\mathfrak{g}_{-\alpha}$ , where $\mathfrak{g}_{\alpha}$ is the root space of $\alpha$ . Then

by Poincar\’e-Birkhoff-Witt theorem,

$U(\mathfrak{g}_{C})=U(\mathfrak{h}_{c})\oplus(\mathfrak{n}^{+}U(\mathfrak{g}_{C})+U(\mathfrak{g}_{C})\mathfrak{n}^{-})$ .

Let $\eta$ be the projection from $U(\mathfrak{g}_{C})$ to $U(\mathfrak{h}_{c})$ with respect to the above decom-
position. Since $\mathfrak{h}_{c}$ is abelian, we can canonically identify $U(\mathfrak{h}_{c})$ with $S(\mathfrak{h}_{c})$ , the
symmetric algebra of $\mathfrak{h}_{c}$ . We define a linear map $\Gamma_{\rho}$ : $U(\mathfrak{h}_{c})arrow U(\mathfrak{h}_{c})$ by

$\Gamma_{\rho}f(\lambda)=f(\lambda-\rho)$ for $\lambda\in \mathfrak{h}_{c}^{*}$ ,

where we consider $f\in U(\mathfrak{h}_{c})$ as a polynomial function on $\mathfrak{h}_{c}^{*},$
$i$ . $e.$ , an element

of $S(\mathfrak{h}_{c})$ .

THEOREM 1.2 ([18, p. 168]). (1) The centre of $U(\mathfrak{g}_{C})$ is isomorPhic to $U(\mathfrak{h}_{c})^{W}$

as an algebra. An isomorphism between $\mathfrak{Z}$ and $U(\mathfrak{h}_{C})^{W}$ is given by $\Gamma_{\rho}\circ\eta$ : $\mathfrak{Z}arrow$

$U(\mathfrak{h}_{C})^{W}$ .
(2) The set of algebra homomorPhisms from $\mathfrak{Z}$ to $C$ and the set of equivalence

classes of $\mathfrak{h}_{c}^{*}$ with W-action can be identified by $\Gamma_{\rho}\circ\eta$ , so-called Harish-Chandra
maP:

$Hom_{alg}(\mathfrak{Z}, C)\cong Hom_{alg}(U(\mathfrak{h}_{c})^{W}, C)\cong \mathfrak{h}_{c}^{*}/W$ .
By the above theorem, we consider $\lambda$ as an element of $\mathfrak{h}_{c}^{*}$ . Assume that $V$

is irreducible and has infinitesimal character $\lambda$ . Denote the distribution character
of $V$ by $\Theta(V)$ . Then $\Theta(V)$ can be expressed on a Cartan subgroup $H$ as follows.
Define the subset $H’(R)$ of $H$ and the function $D(h)$ on $H$ as

$H’(R)=$ { $h\in H|\xi_{\alpha}(h)\neq 1$ for any $\alpha\in\Delta^{R}$},

$D(h)= \xi_{\rho}(h)\prod_{\alpha\in\Delta^{+}}(1-\xi_{-\alpha}(/\tau))$
$(h\in H)$ ,

where $\xi_{\alpha}$ is a character of $H$ defined by the equation $Ad(h)X_{\alpha}=\xi_{\alpha}(h)X_{\alpha}(X_{\alpha}$ is
a non-zero root vector for $\alpha$). For $h\exp X\in H’(R)(h\in H, X\in \mathfrak{h})$ , we have

$\Theta(V)$ ( $h$ exp $X$ ) $= \frac{1}{D(h\exp X)}\sum_{s\in W}c(V, s;h)$ exp $s\lambda(X)$ ,
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where $c(V, s;h)$ is a locally constant function on $H’(R)$ . Of course the function
$c(V, s;h)$ depends on the Cartan subgroup $H$ and the order of $\Delta$ . In the next
subsection 1.2, we write $\Theta(V)$ more explicitly after T. Hirai in the case that
$\lambda$ is regular.

Let Car $(G)$ be the set of conjugacy classes of Cartan subgroups of $G$ under
inner automorphisms of $G$ . We define a natural order on Car $(G)$ as follows.
Take $[A]\in Car(G)$ , where $[A]$ means the conjugacy class of a Cartan subgroup
$A$ . For $\alpha\in\Delta^{R}=\Delta^{R}(\mathfrak{g}_{c}, \mathfrak{a}_{C})$ , let $H_{\alpha}$ be the element of $\mathfrak{a}_{C}$ for which $\alpha(X)=$

$B(H_{\alpha}, X)$ , where $B(, )$ denotes the Killing form on $\mathfrak{g}_{C}$ . Take root vectors $X_{a}$ ,
$X_{-\alpha}$ from $\mathfrak{g}_{C}$ in such a way that $[X_{\alpha}, X_{-a}]=H_{a}$ , and we put

$H_{\alpha}’= \frac{2}{|\alpha|^{2}}H_{\alpha}$ , $X_{\pm\alpha}’= \frac{\sqrt{2}}{|\alpha|}X_{\pm\alpha}$ .

Let $\nu=\nu_{\alpha}$ be the automorphism of $\mathfrak{g}_{C}$ defined by

$\nu=\nu_{\alpha}=\exp\{-\sqrt{-1}\frac{\pi}{4}ad(X_{\alpha}’+X_{-\alpha}’)\}$ ,

so-called Cayley transform with respect to $\alpha$ . Then $\mathfrak{b}=\nu(\mathfrak{a}_{C})\cap \mathfrak{g}$ is a Cartan
subalgebra of $\mathfrak{g}$ not conjugate to $\mathfrak{a}$ under any automorphism of $\mathfrak{g}$ , and $\beta=\nu(\alpha)$

is a singular imaginary root (see [7, p. 31]) of $\mathfrak{b}$ . We have

$\mathfrak{a}=\sigma_{\alpha}+RH_{\alpha}’$ , $\mathfrak{b}=\sigma_{\alpha}+RH_{\beta}’$ ,

where $\sigma_{\alpha}$ is the hyperplane of $\mathfrak{a}$ defined by $\alpha=0$ and

$H_{\beta}’=\nu(H_{\alpha}’)=\sqrt{-1}(X_{\alpha}’-X_{-a}’)$ .

This relation between $\mathfrak{a}$ and $\mathfrak{b}$ is denoted by $(\mathfrak{a}, \alpha)arrow(\mathfrak{b}, \beta)$ or simply by $\mathfrak{a}arrow \mathfrak{b}$ .
We introduce the order $<$ in Car $(G)$ by defining $[A]<[B]$ when $\mathfrak{a}arrow \mathfrak{b}$ for an
appropriate choice of representative $B$ of $[B]$ , and extend it transitively.

Let $V(\lambda)$ be the virtual character module of admissible representations of $G$

which have an infinitesimal character $\lambda$ . Here, we mean by a virtual character
a complex linear combination of irreducible characters. An element of $V(\lambda)$ can
be naturally considered to be an invariant eigendistribution (IED) on $G$ with
eigenvalue $\lambda$ . We say a virtual character or an IED $\Theta\in V(\lambda)$ has a height
$[H]\in Car(G)$ if $\Theta|_{H}\not\equiv 0$ and $\Theta|_{J}\equiv 0$ for any $[J]\in Car(G)$ such that $[J]>[H]$ .
We call $\Theta$ extremal if $\Theta$ has the unique height.

1.2. The structure of virtual character modules. We quote the results
of T. Hirai [8] in this subsection. Let $H$ be a Cartan subgroup of $G$ . Let $S(\mathfrak{h}_{C})$

be the symmetric algebra of $\mathfrak{h}_{c}$ and $I(\mathfrak{h}_{C})=S(\mathfrak{h}_{C})^{W}$ the space of Weyl group
invariant elements in $S(\mathfrak{h}_{C})$ . For any subset $B$ of $G$ and a subgroup $D$ of $G$ ,
we write $W_{D}(B)=N_{D}(B)/Z_{D}(B)$ , where $N_{D}(B)$ denotes the normalizer of $B$ in
$D$ and $Z_{D}(B)$ the centralizer.
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We denote by $\mathfrak{B}(H;\lambda)$ the set of analytic functions $\zeta$ on $H$ satisfying the
conditions (1) and (2).

(1) $\zeta$ is an eigenfunction of $I(\mathfrak{h}_{C})$ with eigenvalue $\lambda$ , where we identify
canonically elements of $I(\mathfrak{h}_{c})$ with differential operators of constant coefficients
on $H$.

(2) $\zeta$ is $\epsilon$-symmetric under $W_{G}(H),$ $i$ . $e.$ ,

$\zeta(wh)=\epsilon(w, h)\zeta(h)$ $(h\in H, w\in W_{G}(H))$ ,

where $\epsilon(w, h)$ is locally constant in $h$ and is defined as follows. An element
$w\in W_{G}(H)$ naturally induces an element $\tilde{w}$ of $W(\mathfrak{h}_{c})$ . Let $N_{I}(\tilde{w})$ be the number
of imaginary roots $\alpha>0$ for which $\tilde{w}^{-1}\alpha<0$ , and $S_{R}(\tilde{w})$ the set of real roots
$\alpha>0$ for which $\tilde{w}^{-1}\alpha<0$ . We put for $h\in H$ and $w\in W_{G}(H)$ ,

(1.1) $\epsilon(w, h)=(-1)^{(N_{I}\tilde{w})}$
$\prod_{a\in S_{R}(w)}$. $sgn(\xi_{\dot{w}^{-1\alpha}}(h))$ .

THEOREM 1.3. If $\lambda$ is regular, $V(\lambda)$ is equal to the space of all the IEDs on
$G$ with eigenvalue $\lambda$ .

PROOF. This theorem is actually known. Here, we give a sketch of the
proof. It is obvious that $V(\lambda)$ is contained in the space of IEDs with eigenvalue
$\lambda$ . Let $P$ be a cuspidal parabolic subgroup of $G$ and $P=M_{P}A_{P}N_{P}$ be a Levi
decomposition of $P$. Take a discrete series representation $D$ of $M_{P}$ and a
character $\nu$ of $A_{P}$. We mean by a generalized principal series representation
an induced one $Ind_{P}^{G}D\otimes\nu\otimes 1$ . Then each IED with regular infinitesimal character
is a linear combination of characters of generalized principal series representa-
tions induced from some cuspidal parabolic subgroups of $G$ . Q. E. D.

THEOREM 1.4 (T. Hirai [8, p. 284, p. 302]). (1) For an element $\zeta$ of $\mathfrak{B}(H;\lambda)$ ,
we can construct an extremal IED $T\zeta$ which has the height $[H]$ and on $H$ it
naturally $pro\nu ides\zeta$ (see [8, p. 272]).

(2) Conversely, any IED with eigenvalue $\lambda$ can be written as a linear com-
bination of IEDs which are of the form $T\zeta(\zeta\in \mathfrak{B}(H;\lambda))$ for some $H’ s$.

REMARK. We give in detail the method $T$ of constructing IED in the next
section.

We assume the following throughout this paper.

ASSUMPTION. The infinitesimal character $\lambda$ is regular.

Because of Theorem 1.3, we identify virtual characters which have infini-
tesimal character $\lambda$ with IEDs on $G$ with eigenvalue $\lambda$ .

Let $\pi_{H}(\lambda)$ be the set of $w\in W(\mathfrak{h}_{c})$ for which $\exp(w\lambda, X)(X\in \mathfrak{h})$ defines an
analytic function on $H_{0}$ , the identity component of $H$. Let $L$ be the kernel of
the map $exp:\mathfrak{h}arrow H_{0}$ . Then $W_{H}(\lambda)=\{w\in W(\mathfrak{h}_{c})|\langle w\lambda, L\rangle\subset 2\pi\sqrt{-1}Z\}$ , where
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$\langle, \rangle$ is the pairing of $\mathfrak{h}_{c}^{*}\cross \mathfrak{h}_{C}$ . Put

$L_{\lambda}=\Sigma w^{-1}Lw\in\uparrow r_{H^{(\lambda)}}$

$W_{H}(\lambda)=\{w\in W(\mathfrak{h}_{C})|wL_{\lambda}=L_{\lambda}\}$ .

Let $W(H_{i})=\{\tilde{w}|w\in W_{G}(H_{i})\}$ , where $\{H_{i}|0\leqq i\leqq l\}$ is a set of representatives
of connected components of $H$ under the conjugation of $W_{G}(H)$ . We get the
following proposition.

PROPOSITION 1.5. (1) The set $\tilde{W}_{H}(\lambda)$ is invariant under the left multiplica-
tion of $W(H_{i})$ .

(2) The set $\tilde{W}_{H}(\lambda)$ is invariant under the right multiplication of $W_{H}(\lambda)$ .
Moreover, the group $W_{H}(\lambda)$ is the largest subgroup of $W(\mathfrak{h}_{C})$ which leaves $\tilde{W}_{H}(\lambda)$

invariant under the right multiplication.
PROOF. (1) Let $\sigma\in W(H_{i})$ and $w\in ffl_{H(\lambda)}$ . Since $L$ is the kernel of the

map $exp;\mathfrak{h}arrow H_{0},$ $\sigma$ preserves $L$ . So, we have $\langle\sigma w\lambda, L\rangle=\langle w\lambda, \sigma^{-1}L\rangle=\langle w\lambda, L\rangle$

$\subset 2\pi\sqrt{-1}Z$ . This means $\sigma w\in\tilde{W}_{H}(\lambda)$ .
(2) Note that $W_{H}(\lambda)$ forms a subgroup of $W(\mathfrak{h}_{C})$ . Let $w\in\tilde{W}_{H}(\lambda)$ and

$\sigma\in W_{H}(\lambda)$ . Since $L_{\lambda}\supset w^{-1}L$ , we get $L_{\lambda}=\sigma^{-1}L_{\lambda}\supset\sigma^{-1}w^{-1}L$ . By the definition
of $L_{\lambda}$ , we see that

$\langle\lambda, L_{\lambda}\rangle=\langle\lambda, \sum_{w\in\tilde{W}_{H}(\lambda)} w^{-1}L\rangle=\sum_{w\in\dot{W}_{H}(\lambda)}\langle w\lambda, L\rangle\subset 2\pi\sqrt{-1}Z$ .

Therefore we have $\langle w\sigma\lambda, L\rangle=\langle\lambda, \sigma^{-1}w^{-1}L\rangle\subset\langle\lambda, L_{\lambda}\rangle\subset 2\pi\sqrt{-1}Z$ . This means
$w\sigma\in\tilde{W}_{H}(\lambda)$ .

Conversely, let $\sigma\in W(\mathfrak{h}_{C})$ be an element such that $\tilde{W}_{H}(\lambda)\sigma^{-1}=\tilde{W}_{H}(\lambda)$ . Then
we get

$\sigma L_{\lambda}=$

$\sum_{w\in\dot{W}_{H}(\lambda)}$

$\sigma(w^{-1}L)=$
$\sum_{w\in\tilde{W}_{H}(\lambda)}$ $(w \sigma^{-1})^{-1}L=\sum_{w’\in\dot{W}_{H}(\lambda)}w^{\prime-1}L=L_{\lambda}$

.

Hence $\sigma\in W_{H}(\lambda)$ . Q. E. D.
For each connected component $H_{i}$ , take an element $a_{i}\in H_{i}$ . Then we have

$a_{i}^{-1}(sa_{i})\in H_{0}$ for $s\in W_{G}(H_{i})$ .
Therefore we can write $a_{i}^{-1}(sa_{i})=\exp B_{s}$ for some $B_{s}\in \mathfrak{h}$ .

ASSUMPTION ON $\lambda$ . We assume that we can choose $\{a_{i}|a_{i}\in H_{i}, 0\leqq i\leqq l\}$

which satisfies the following condition. For any $t_{1},$
$t_{2}\in\tilde{W}_{H}(\lambda)$ ,

$\exp(t_{1}\lambda, B_{s})=\exp(t_{2}\lambda, B_{s})$ $(s\in W_{G}(H_{i}))$ .
Hereafter we fix these $\{a_{i}|0\leqq i\leqq l\}$ and write

$\xi^{i}(s)=\exp(t\lambda, B_{s})$ $(s\in W_{G}(H_{i}))$ ,

which does not depend on $t\in\tilde{W}_{H}(\lambda)$ by assumption. We have the following
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lemma.

LEMMA 1.6. (1) If $G=SL(n, R)$ , $sp(2n, R)$ or $SO_{0}(p, q)(P+q=2n)$ , then
we can always choose $\{a_{i}\}$ which satisfies $a_{i}=sa_{i}$ for any $s\in W_{G}(H_{i})$ . So, $in$

these cases, the assumption is trivially satisfied for any $\lambda$ .
(2) If all the Cartan subgroups in $G$ are connected, we can choose $a_{0}=e$ (the

unit of $G$ ) and the assumption is satisfied.
(3) In particular, if $G$ is a complex semixmPle Lie group, then the assump-

tion is satisfied for any $\lambda$ .
REMARK. For any $G$ , there always exists a lattice in $\mathfrak{h}_{c}^{*}$ whose elements

satisfy the above assumption. See also remark to the corollary to Theorem 4.3.

PROPOSITION 1.7 ([8, p. 319]). The space $\mathfrak{V}(H;\lambda)$ has a base conszsting of
the element $\{\zeta_{i.t}\}$ of the following form. Take a compleie system of representa-
tives $\{t\}\subset\pi_{H(\lambda)}$ for a left coset space $W(H_{i})\backslash \tilde{W}_{H}(\lambda)$ . For $0\leqq i\leqq l$ and $t$ , we Put

$\zeta_{i,t}$ ( $wa_{i}$ exp $X$ ) $=\epsilon(w, a_{i})$
$\sum_{s\in W_{G}(H_{i})}$

$\epsilon(s, a_{i})\xi^{i}(s)\exp(t\lambda, sX)$

$(w\in W_{G}(H), X\in \mathfrak{h})$ ,

and Put $\zeta_{i,t}$ zero outstde the $W_{G}(H)$ -orbit of $H_{i}$ .

REMARK. The formula listed in Proposition 1.7 is the corrected version of
the formula (7.20) in [8].

Put $V_{H}(\lambda)=T(\mathfrak{V}(H;\lambda))$ . Then by the above proposition, we get a basis
$\{T\zeta_{i,t}|0\leqq t\leqq l, t\in W(H_{i})\backslash \hat{W}_{H}(\lambda)\}$ of $V_{H}(\lambda)$ . Moreover, since $V(\lambda)=$

$\Sigma_{[H]\in Car(G)}^{\oplus}V_{H}(\lambda)$ by Theorem 1.4, we get a basis of $V(\lambda)$ . This canonical basis
plays an important role in the following sections.

\S 2. Hirai’s method $T$.
In this section we describe Hirai’s method $T$ in detail for later use. For

simplicity we assume $\lambda$ regular, but the argument here is valid too in the case
that $\lambda$ is singular. Notations and terms without explanations are refered to [8].

As is mentioned in former sections, $V(\lambda)$ is the space of all the IEDs on $G$

with eigenvalue $\lambda$ . Harish-Chandra [5] proved any IED $\Theta$ on $G$ coincides
essentially with a locally summable function on $G$ which is analytic on the open
dense subset $G’$ of all the regular elements in $G$ . Because $G’$ is open dense in
$G$ and any element in $G’$ is contained in a Cartan subgroup of $G,$ $\Theta$ is deter-
mined by the values on Cartan subgroups $\{H|[H]\in Car(G)\}$ . Put

$D^{H}(h)= \xi_{\rho}(h)\prod_{\alpha\in\Delta^{+}}(1-\xi_{\alpha}(h)^{-1})$
$(h\in H)$ ,

$D_{R}^{H}(h)= \prod_{\alpha\in\Delta_{R}^{+}}(1-\xi_{\alpha}(h)^{-1})$
$(h\in H)$ .
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For a given IED $\Theta$ on $G$ and a Cartan subgroup $H$ of $G$ , we put

$C_{H}(\Theta)(h)=D^{H}(h)\Theta(h)$ $(h\in H’=H\cap G’)$ ,

$C_{H}’(\Theta)(h)=\epsilon_{R}^{H}(h)D^{H}(h)\Theta(h)$ $(h\in H’)$ ,

where $\epsilon_{R}^{H}(h)=sgn(D_{R}^{H}(h))(h\in H’(R))$ .

THEOREM 3.1 ([7]). Let $\Theta$ be an IED on $G$ with eigenvalue $\lambda$ . If $\Theta$ has a
height $[H]\in Car(G)$ , then $C_{H}’(\Theta)$ can be extended to an analytic function on the
whole group H. Moreover, it belongs to $\mathfrak{B}(H;\lambda)$ .

Hirai’s method $T$ is the method to construct an extremal IED from an ele-
ment $\zeta$ of $\mathfrak{V}(H;\lambda)$ . This is done by induction on the order of Car $(G)$ and has
two different steps $R$ and $S$. Roughly speaking, the step $R$ corresponds to
boundary conditions to be satisfied by IEDs, and the step $S$ corresponds to Weyl
group symmetricity which assures the invariance of IEDs. As is mentioned
above, an IED $\Theta$ is determined by the system of functions $C_{H}(\Theta)([H]\in Car(G))$ .
So, in order to give an IED $T\zeta$ for $\zeta\in \mathfrak{V}(H;\lambda)$ , it is sufficient to give functions
$C_{H}(T\zeta)$ for every $[H]\in Car(G)$ . T. Hirai studied what is necessary and suffi-
cient for the system of functions $C_{H}(\Theta)([H]\in Car(G))$ obtained from an IED $\Theta$

through the series of his works [6, 7, 8] and actually gave necessary and suffi-
cient conditions. Using his results one can verify that constructed functions
$C_{H}(T\zeta)([H]\in Car(G))$ really determine an IED $T\zeta$ .

Let us explain the construction in detail. Take an element $\zeta\in \mathfrak{B}(H;\lambda)$ . We
put

$C_{H}(T\zeta)=\epsilon_{R}^{H}\cdot\zeta$ for $H$ itself,

$C_{J}(T\zeta)\equiv 0$ for $[J]\not\leqq[H]$ .

Let $A$ be a Cartan subgroup of $G$ and assume that we have already constructed
$C_{B}(T\zeta)$ for $[B]>[A]$ . Let $A_{1}$ be a connected component of $A$ and $F$ a con-
nected component of $A_{1}’(R)=A_{1}\cap A’(R)$ . Denote by $\Sigma=\Sigma(A_{1})$ the set of all
real roots $\alpha\in\Delta(\mathfrak{g}_{C}, \mathfrak{a}_{C})$ for which $\xi_{\alpha}(h)>0$ on $A_{1}$ . Then $\Sigma$ is a root system of
a certain real semisimple Lie algebra. Let $S=S(A_{1})$ be the subgroup of $W_{G}(A_{1})$

generated by $\omega_{\alpha}|_{A_{1}}(\alpha\in\Sigma)$ , where $\omega_{\alpha}$ is the conjugation by an element $g_{\alpha}=$

exp $\pi(X_{\alpha}’-X_{-\alpha}’)/2\in K$. We put $\omega_{\alpha}|_{A_{1}}=s_{\alpha}$ . Let $P(F)$ be the set of $\alpha\in\Sigma$ for
which $\xi_{\alpha}(F)>1$ . Then $P(F)$ is the set of all the positive roots of $\Sigma$ with respect
to a certain order of roots. Let $\Pi_{=}\Pi(F)=\{\alpha_{1}, \cdots , \alpha_{r}\}$ be the simple system
in $P(F)$ .

(I) Step $R$ . Denote by $\mathfrak{b}^{m}$ a Cartan subalgebra obtained from $\mathfrak{a}$ by tbe
Cayley transform $\nu_{\alpha_{m}}=\nu_{m}$ with respect to the real root $\alpha_{m}(1\leqq m\leqq r)$ . By
assumption, the functions $C_{Bm}(T\zeta)$ have been already determined. We write
$C_{m}$ instead of $C_{B^{m}}(T\zeta)$ for brevity.

Recall the notations about Cayley transforms $\nu_{m}$ in \S 1. We put
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$\Sigma_{m}=\{h\in A|\xi_{\alpha_{m}}(h)=1\}$ ,

$\Sigma_{m}’=$ { $h\in\Sigma_{m}|\xi_{\alpha}(h)\neq 1$ for any root $\alpha\neq\pm\alpha_{m}$ }.

Then for $a\in\Sigma_{m}’\cap A_{1}$ and $X\in a$ , we put

$(R_{\alpha_{m}}C_{m})$ ( $a$ exp $X$ ) $=C_{m}$ ( $a$ exp $\nu_{m}X$).

Here $\nu_{m}X$ may not be contained in $\mathfrak{b}^{m}$ , but $C_{m}$ is locally a linear combination
of the functions of the form $\exp\mu(X)(\mu\in(\mathfrak{b}_{c}^{m})^{*})$ , so $C_{m}(a\exp\nu_{m}X)$ has natural
meaning.

(II) Step $S$. For a function $f$ on $A_{1}$ and $s\in S$ , we define $sf$ as $(sf)(h)=$

$f(s^{-1}h)(h\in A_{1})$ . For each $s_{m}=s_{\alpha_{m}}(1\leqq m\leqq r)$ , we put

$P_{s_{m}}=(1-s_{m})(R_{\alpha_{m}}C_{m})$ .
Each element $s\in S$ can be written in the form $s=s_{i_{1}}s_{i_{2}}\cdots s_{i_{k}}$ (see, for example,
[3]). Then we put

$P_{s}=P_{s_{i_{1}}}+s_{i_{1}}P_{s_{i_{2}}}+\cdots+s_{i_{1}}s_{i_{2}}\cdots s_{i_{k-1}}P_{s_{t_{k}}}$ .

It can be proved that $P_{s}$ is independent of a choice of expressions for $s\in S$ .
Finally we put

$Q=S(P_{s_{1}}, P_{s_{2}}, \cdots P_{s_{r}})=\frac{1}{|S|}\sum_{s\in S}P_{s}$ .

Denote by $E_{A_{1}}$ the union of $wA_{1}$ over $w\in W_{G}(A)$ . Define $C_{A}(T\zeta)$ on $E_{A_{1}}\cap A’(R)$

by
$C_{A}(T\zeta)(wh)=\det(w)Q(h)$ $(w\in W_{G}(A), h\in F)$ .

Let $A_{1},$ $A_{2},$ $\cdots$ be a complete system of representatives of connected com-
ponents of $A$ under the conjugation of $W_{G}(A)$ . Then $A$ is the disjoint union of
$E_{A_{1}},$ $E_{A_{2}},$ $\cdots$ Repeating the same argument for every $A_{i}$ , we get $C_{A}(T\zeta)$ on
the whole $A$ .

Thus we can define $C_{H}(T\zeta)([H]\in Car(G))$ inductively. We see that they
altogether define an IED $T\zeta(\zeta\in \mathfrak{B}(H;\lambda))$ by Hirai’s argument.

\S 3. Definition of representations of $W_{H}(\lambda)$ .
In this section, we define a representation of $W_{H}(\lambda)$ on $V_{H}(\lambda)$ for each

$[H]\in Car(G)$ . We assume $\lambda$ regular and keep the notations in \S 1.
At first we consider a representatIon $\mathcal{R}$ of $W_{H}(\lambda)$ on $\mathfrak{V}(H;\lambda)$ . Take

$[H]\in Car(G)$ and let $\{H_{i}|0\leqq i\leqq l\}$ be representatives of connected components
of $H$ under the conjugation of $W_{G}(H)$ . Then $\mathfrak{V}(H;\lambda)$ is spanned by the set
$\{\zeta_{i,t}|0\leqq i\leqq l, t\in\hat{W}_{H}(\lambda)\}$ , where
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$\zeta_{i.t}$ ( $wa_{i}$ exp $X$ ) $=\epsilon(w, a_{i})$
$\sum_{s\in W_{G}(H_{i)}}$

$\epsilon(s, a_{i})\xi^{i}(s)\exp(t\lambda, sX)$

$(w\in W_{G}(H), X\in \mathfrak{h})$ ,

and $\zeta_{i,t}$ is zero outside the $W_{G}(H)$ -orbit of $H_{i}$ . We define the representation $\mathcal{R}$

of $W_{H}(\lambda)$ on $\mathfrak{B}(H;\lambda)$ by

$\mathcal{R}_{u}\zeta_{i.t}=\zeta_{i,tu-1}$ for $u\in W_{H}(\lambda)$ .

By the assumption in 1.2 and Proposition 1.5, this is well-defined.

DEFINITION 3.1. We define a representation $\tau$ of integral Weyl group $W_{H}(\lambda)$

on $V_{H}(\lambda)$ as follows. For $\zeta\in \mathfrak{B}(H;\lambda)$ and $u\in W_{H}(\lambda)$ , put

$\tau_{u}(T\zeta)=T(\mathcal{R}_{u}\zeta)$ .
We say $\lambda$ is integral for $G_{C}$ if $\lambda$ is a differential of a character of $H_{c}$ .

LEMMA 3.2. If $\lambda$ is integral. for $G_{C},\tilde{W}_{H}(\lambda)=W_{H}(\lambda)=W(\mathfrak{h}_{C})$ .
PROOF. By assumption, exp $\lambda(X)(X\in \mathfrak{h}_{C})$ is a character of $H_{C}$ . Then, for

any $w\in W(\mathfrak{h}_{c})$ , $\exp w\lambda(X)=\exp\lambda(w^{-1}X)$ $(X\in \mathfrak{h})$ is well-defined on $H_{0}$ . This
proves $\tilde{W}_{H}(\lambda)=W(\mathfrak{h}_{C})$ . Since $W_{H}(\lambda)$ is the largest subgroup of $W(\mathfrak{h}_{C})$ which
leaves $\tilde{W}_{H}(\lambda)$ invariant under the right multiplication (Proposition 1.5), we have
$W_{H}(\lambda)=W(\mathfrak{h}_{C})$ . Q. E. D.

By the above lemma, if $\lambda$ is integral for $G_{c}$ , we can consider $W(\mathfrak{h}_{C})$ -module
structure of $V_{H}(\lambda)$ . Since $V( \lambda)=\sum_{CH1\in Car(G)}^{\oplus}V_{H}(\lambda)$ , these $W(\mathfrak{h}_{C})$ -module structures
of $V_{H}(\lambda)s$ naturally induce W-module structure of $V(\lambda)$ . Here we identify all
the Weyl groups $W(\mathfrak{h}_{C})s$ by Cayley transforms and denote it by $W$ . For integral
$\lambda$ , many people considered W-module structures of $V(\lambda)$ . Among others,

G. Zuckerman [12] defined W-module structure of $V(\lambda)$ , using tensor products
with finite dimensional representations of $G$ . We show that his representation
essentially coincides with ours in the next section \S 4. Then it is very likely
that we can use the method of tensor products with finite dimensional repre-
sentations for studying the W-module structure of $V(\lambda)$ (cf. [19]).

LEMMA 3.3. Let $\lambda_{1},$ $\lambda_{2}\in \mathfrak{h}_{c}^{*}$ be regular. If $\lambda_{1}-\lambda_{2}$ is integral for $G_{c}$ , then
$\pi_{H(\lambda_{1})=}\pi_{H(\lambda_{Z})}$ and $W_{H}(\lambda_{1})=W_{H}(\lambda_{2})$ .

PROOF. Take $w\in\pi_{H(\lambda_{2})}$ . Both exp $w(\lambda_{1}-\lambda_{2})(X)$ and exp $w\lambda_{2}(X)$ are well-
defined characters of $H_{0}$ , we see $\exp w\lambda_{1}(X)=\exp w\lambda_{2}(X)\exp w(\lambda_{1}-\lambda_{2})(X)$ is
well-defined, $i$ . $e.,$

$w\in\tilde{W}_{H}(\lambda_{1})$ . The converse inclusion can be similarly proved.
Since $W_{H}(\lambda_{i})(i=1,2)$ is the largest subgroup which leaves $\tilde{W}_{H}(\lambda_{i})$ invariant
under the right multiplication, we have $W_{H}(\lambda_{1})=W_{H}(\lambda_{2})$ . Q. E. D.

LEMMA 3.4. For regular $\lambda\in \mathfrak{h}_{C}^{*}$ , put $I(\lambda)=$ { $w\in W|w\lambda-\lambda$ is integral for $G_{C}$ }.
Then, for $t\in\tilde{W}_{H}(\lambda),$ $W_{H}(\lambda)$ contains $tI(\lambda)t^{-1}$ . In particular, if the unit $e$ of $W$ is
contained in $\tilde{W}_{H}(\lambda)$ , then $W_{H}(\lambda)$ contains $I(\lambda)$ .
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PROOF. Clearly $I(\lambda)$ is a group. Considering, if necessary, $\tilde{W}_{H}(t\lambda)$ instead
of $\tilde{W}_{H}(\lambda)$ , we may assume that $e\in\tilde{W}_{H}(\lambda)$ and $t=e$ . Take $\sigma\in I(\lambda)$ . Since $\sigma\lambda-\lambda$

is integral for $G_{C}$ , we have $\pi_{H(\sigma\lambda)=\tilde{W}_{H}(\lambda)}$ by Lemma 3.3. This means
exp $w\lambda(X)(X\in \mathfrak{h})$ is well-defined on $H_{0}$ if and only if exp $w\sigma\lambda(X)(X\in \mathfrak{h})$ is so.
Therefore $\sigma$ leaves $\tilde{W}_{H}(\lambda)$ invariant from the right and we have $\sigma\in W_{H}(\lambda)$ .

Q. E. D.
These two lemmas give us a method to calculate $W_{H}(\lambda)$ explicitly and show

us $W_{H}(\lambda)$ contains large subgroups of $W(\mathfrak{h}_{c})$ .

\S 4. Relation to Zuckerman’s representation.

In this section, we describe the relation between our representation $\tau$ and
Zuckerman’s one. So, we put some assumptions on $G$ in addition to those in
the former sections, after Zuckerman.

Let $G$ be a connected semisimple linear Lie group. We suppose that there
are simply connected complex Lie group $G_{C}$ with Lie algebra $\mathfrak{g}_{C}$ and the natural
injection $j:G\subset,$ $G_{c}$ . Let $\lambda$ be a differential of a character of a Cartan subgroup
$H_{c}$ of $G_{C}$ . We assume that $\lambda$ is regular and satisfies the assumption in 1.2.
Then by Lemma 3.2, we have $\tilde{W}_{H}(\lambda)=W_{H}(\lambda)=W(\mathfrak{h}_{c})$ for any Cartan subgroup
$H$ of $G$ under the above assumptions on $G$ . We write $W$ for $W(\mathfrak{h}_{C})$ and identify
it with $W(\mathfrak{h}_{c}’)$ for another Cartan subalgebra $\mathfrak{h}’$ by Cayley transforms. Thus we
have the representation of $W$ on the virtual character module $V( \lambda)=\sum^{\oplus}V_{H}(\lambda)$ .

Now we define another representation $\mathcal{Z}$ of $W$ on V $(\lambda)$ after G. Zuckerman
[12]. Let $\Theta$ be a virtual character in $V(\lambda)$ . Then we can write it on a Cartan
subgroup $H$ of $G$ as

$\Theta(h)=\frac{1}{D(h)}\sum_{s\in W}c(\Theta, s;h)\xi_{s\lambda}(h)$ $(h\in H’)$ ,

where $c(\Theta, s;h)$ is a locally constant function on $H’(R)$ and $\xi_{s\lambda}’ s$ are well-
defined characters of $H$ (cf. 1.1). Then we define $\mathcal{Z}_{\sigma}\Theta(\sigma\in W)$ by the equation
below.

(4. 1) $\mathcal{Z}_{\sigma}\Theta(h)=\frac{1}{D(h)}\sum_{s\in W}c(\Theta, s ; h)\xi_{s\sigma-1\lambda}(h)$ $(h\in H’)$ .

The system of functions $\mathcal{Z}_{\sigma}\Theta$ on every $H$ in $G$ determines again a virtual
character in $V(\lambda)$ . This is proved by Zuckerman [12], using tensor products

with finite dimensional representations of $G$ . Thus we get a representation $\mathcal{Z}$

of $W$ on $V(\lambda)$ .
We want to show the two representations $\tau$ and $\mathcal{Z}$ of $W$ are equivalent by

giving an intertwining operator explicitly. Before doing this we prepare a tech-
nical lemma.
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LEMMA 4.1. Any $\zeta\in \mathfrak{V}(H;\lambda)$ can be written as
(4.2)

$\zeta(h)=\sum_{w\in W}c_{w}(h)\xi_{w\lambda}(h)$ ,

for certain locally constant functions $c_{w}(w\in W)$ on $H$.
PROOF. Indeed, $\zeta_{i,t}(0\leqq i\leqq l, t\in W(H_{i})\backslash W)$ in Proposition 1.7 can be written

as
$\zeta_{i,t}$ ( $wa_{i}$ exp $X$ ) $=\epsilon(w, a_{i})$

$\sum_{s\in W_{G}(H_{i})}$
$\epsilon(s, a_{i})\xi^{i}(s)\exp(t\lambda, sX)$

$(w\in W_{G}(H), X\in \mathfrak{h})$ .
At first we assume that $w=e$ . Then we have

$\zeta_{i.t}$ ( $a_{i}$ exp $X$ ) $=$
$\sum_{s\in W_{G}(H_{i})}$

$\epsilon(s, a_{i})\xi^{i}(s)\exp(s^{-1}t\lambda, X)$

$=$
$\sum_{s\in W_{G}(H_{i})}$

$\epsilon$ ( $s$ , a $i$ ) $\xi^{i}(s)\frac{\exp(s^{-1}t\lambda,X)}{\xi_{s^{-1}t\lambda}(a_{i}\exp X)}\xi_{s- 1_{t\lambda}}$ (a $i$ exp $X$ )

$=$
$\sum_{s\in W_{G}(H_{i})}$

$\epsilon(s, a_{i})\frac{1}{\xi_{t\lambda}(a_{i})}\frac{\exp(s^{-1}t\lambda,X)}{\xi_{s-1t\lambda}(\exp X)}\xi_{s- 1t\lambda}$ ( $a_{i}$ exp $X$).

Obviously, we have $\exp(s^{-1}t\lambda, X)=\xi_{s- 1t\lambda}(\exp X)$ . Therefore

(4.3) $\zeta_{i.t}$ ( $a_{i}$ exp $X$ ) $= \frac{1}{\xi_{t\lambda}(a_{i})}\sum_{s\in W_{G}(H_{i})}\epsilon$ ( $s$ , a $i$ ) $\xi_{S}- 1t\lambda$ (a $i$ exp $X$).

Let $\{w_{j}|1\leqq]\leqq k\}$ be a complete system of representatives of a left coset space
$W(H_{i})\backslash W_{G}(H)$ . Then we define $\eta_{i,t}$ as

$\eta_{i.t}(h)=\sum_{s\in W(H_{i})w_{j}}\epsilon(s, a_{i})\xi_{st\lambda}-1(h)$ for $h\in w_{j}^{-1}H_{i}$ .

If $h=w_{j}^{-1}a_{i}$ exp $X(X\in \mathfrak{h})$ , then

$\eta_{i,t}(h)=\sum_{s\in W(H_{i})w_{j}}\epsilon(s, a_{i})\xi_{s^{-1}t\lambda}$
( $w_{j}^{-1}a_{i}$ exp $X$ )

$=$ $\Sigma$
$\epsilon(\sigma w_{j}, a_{t})\xi_{(\sigma w_{j)}}-1t\lambda$ ( $w_{J}^{-1}a_{i}$ exp $X$ )

$\sigma\in W(H_{i})$

$=\epsilon(w_{j}, a_{i})$
$\sum_{\sigma\in W(H_{i})}$ $\epsilon(\sigma, a_{i})\xi_{w_{j}^{-1_{\sigma^{-1}t\lambda}}}$ ( $w_{j}^{-1}a_{i}$ exp $X$ )

$=\xi_{t\lambda}(a_{i})\zeta_{i,t}$ ( $w_{j}^{-1}a_{t}$ exp $X$ ) $=\xi_{t2}(a_{i})\zeta_{i,t}(h)$ .
The fourth equality follows from (4.3) and $\epsilon$ -symmetricity of $\zeta_{i.t}$ . Since $\{\zeta_{i,t}\}$

forms a basis of $\mathfrak{V}(H;\lambda),$ $\{\eta_{i,t}\}$ also forms a basis of $\mathfrak{V}(H;\lambda)$ . Now it is clear
that any element $\zeta\in \mathfrak{B}(H;\lambda)$ can be written as in (4.2). Q. E. D.

DEFINITION 4.2. Let $\zeta\in \mathfrak{V}(H;\lambda)$ and write it as (4.2). Then we define a
representation $\mathcal{L}$ of $W$ on $\mathfrak{B}(H;\lambda)$ as follows.

$( \mathcal{L}_{s}\zeta)(h)=\sum_{w\in W}c_{w}(h)\xi_{ws-1\lambda}(h)$ .
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Let $C$ be a linear map of $\mathfrak{V}(H;\lambda)$ into itself given by

$C(\zeta_{i,t})=\eta_{i.t}$ .

Then clearly $C\mathcal{R}_{s}=X_{s}C(s\in W)$ holds. This means the representations $\mathcal{R}$ and
$X$ are equivalent. Remark that $C$ is a diagonal operator with respect to the
basis $\{\zeta_{i.t}\}$ . Indeed it is of the form $C=diag(\xi_{t\lambda}(a_{i});0\leqq i\leqq l, t\in W(H_{i})\backslash W)$ .

In order to show that the representation $\tau$ and $\mathcal{Z}$ are equivalent, it is suffi-
cient to show the next theorem.

THEOREM 4.3. Hirai’s method $T$ intertwines $\mathcal{Z}$ and $\mathcal{L},$
$i$ . $e.$ , for any $s\in W$

and $\zeta\in \mathfrak{V}(H;\lambda)$ ,
$T(X_{s}\zeta)=\mathcal{Z}_{s}(T\zeta)$ .

By this theorem, the representations $\mathcal{L}$ and $\mathcal{Z}$ are equivalent. So we have
on $V_{H}(\lambda),$ $\tau\cong \mathcal{R}\cong X\cong \mathcal{Z}$ . The first equivalence follows from the definition of $\tau$.

$V_{II}(\lambda)arrow \mathfrak{B}(H;\lambda)T\simrightarrow^{\sim}\mathfrak{B}(H_{j}\lambda)arrow V_{H}(\lambda)T\sim$

$\downarrow\tau$

$\sim$

$\downarrow \mathcal{R}$
$C\sim$ $X\downarrow$

$\sim$

$\mathcal{Z}\downarrow$

$V_{JI}(\lambda)arrow \mathfrak{V}(H;\lambda)TC\sim \mathfrak{B}(H;\lambda)arrow^{T}V_{H}(\lambda)$

COROLLARY. Representati0ns $\tau$ and $\mathcal{Z}$ of $W$ on $V(\lambda)$ are equivalent. $An$

intertwining operat0r is given by $T\circ C\circ T^{-1}$ .
REMARK. We can also treat $\lambda\in \mathfrak{h}_{c}^{*}$ which satisfies the following condition

$(*)$ instead of that in 1.2. In this case, we define an action $\tau’$ of $W_{H}(\lambda)$ slightly
different from $\tau$ .

$(*)$ Each $\xi_{t\lambda}(r\in\tilde{W}_{H}(\lambda))$ on $H_{0}$ can be extended to the whole $H$ in such a
way that

$\xi_{st\lambda}(sh)=\xi_{t\lambda}(h)$ for $s\in W_{G}(H)$ .
Here we naturally define $\tau’$ by

$\tau_{s}’(T\zeta)=T(\mathcal{L}_{s}\zeta)$ $(s\in W_{H}(\lambda), \zeta\in \mathfrak{V}(H;\lambda))$ ,

with the same formulas for $\zeta$ and $\mathcal{L}_{s}\zeta$ as in Definition 4.2.
If $\lambda$ is integral for $G_{C}$ , the above assumption $(*)$ is satisfied. Moreover,

the representation $\tau’$ is also equivalent to $\mathcal{Z}$ .
PROOF OF THE THEOREM. We use the notations in $\S^{l}2\sim$ . For an IED $\Theta\in V(\lambda)$

and any Cartan subgroup $J$ of $G$ , we can write
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$C_{J}( \Theta)(h)=\sum_{w\in W}c_{w}(h)\xi_{w\lambda}(h)$ $(h\in J’(R))$ ,

where $c_{w}(h)$ are locally constant functions on $J’(R)$ . Then we define $X_{S}’C_{J}(\Theta)$

$(s\in W)$ by
$X_{*}’C_{J}( \Theta)(h)=\sum_{w\in W}c_{w}(h)\xi_{ws-1\lambda}(h)$ $(h\in J’(R))$ .

We show that for any Cartan subgroup $J$ of $G$ ,

(4.4) $C_{J}(T(X_{*}\zeta))=X;C_{J}(T\zeta)$ $(s\in W)$ ,

by induction with respect to the order on Car$(G)$ . If we can establish (4.4),

then by the definition of $\mathcal{Z}$ , we have for any $[J]\in Car(G)$ ,

$C_{J}(T(X_{\epsilon}\zeta))=\mathcal{L}_{l}’C_{J}(T\zeta)=C_{J}(\mathcal{Z}_{s}(T\zeta))$ $(s\in W)$ ,

and this proves the theorem. So let us prove (4.4).

For $[J]H],$ $(4.4)$ is trivially valid. For $J=H$, the unique height of $T\zeta$

$(\zeta\in \mathfrak{B}(H;\lambda))$ , we have

(4.5) $C_{H}(T\mathcal{L}_{s}\zeta)=X’C_{H}(T\zeta)$ $(s\in W)$ ,

by the definition of $T$ . The equation (4.5) shows (4.4) is valid for $J=H$. So
we assume that (4.4) is valid for $[J]>[A]$ and prove it for $[A]$ . Let
$\{B^{m}|1\leqq m\leqq r\}$ be Cartan subgroups given in connection with $A$ in \S 2. By the
induction hypothesis we have

$C_{B^{m}}(T(X_{s}\zeta))=X;C_{B^{m}}(T\zeta)$ $(s\in W)$ .
Recall that $T$ has main two steps $R$ and $S$. By the definition of $T$,

$C_{A}(T(\mathcal{L}_{s}\zeta))=s_{\circ}R(C_{B^{m}}(T(\mathcal{L}.\zeta))|1\leqq m\leqq r)$ .
Therefore it is sufficient to show that

(4.6) $S\circ R(\mathcal{L}_{l}’C_{B^{m}}(T\zeta)|1\leqq m\leqq r)=\mathcal{L}_{l}’(S\circ R(C_{B^{m}}(T\zeta)|1\leqq m\leqq r))$

$(=X_{1}’C_{A}(T\zeta))$ $(s\in W)$ .
We write $C_{m}(T\zeta)$ instead of $C_{B}^{m}(T\zeta)$ for brevity.

(I) Step $R$. We express $C_{m}(T\zeta)$ as

$C_{m}(T \zeta)(h)=\sum_{w\in W}c_{w}^{m}(h)\xi_{w\lambda}(h)$ $(h\in(B^{m})’(R))$ ,

where $c_{w}^{m}(h)$ is a locally constant function on $(B^{m})’(R)$ . Since by the dePnition
of $X_{*}’$ ,

$X_{*}’C_{m}(T \zeta)(h)=\sum_{w\in W}c_{w}^{m}(h)\xi_{w\iota-1\lambda}(h)$ $(h\in(B^{m})’(R))$ ,

we have for $h=a$ expX ( $a\in\Sigma_{m}’$ and $X\in \mathfrak{a}$ sufficiently small),
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$R_{\alpha_{m}}( \mathcal{L}_{\ell}’C_{m}(T\zeta))(h)=\sum_{w\in W}c_{w}^{m}(a)\xi_{ws-1\lambda}(a\exp\nu_{m}X)$

$= \sum_{w\in W}c_{w}^{m}(a)\xi_{t_{\nu_{m^{(ws^{-1}\lambda)}}}}(a\exp X)$

$= \sum_{w\in W}c_{w}^{m}(a)\xi_{ws-1\lambda}(h)$ .

Here we identify $ws^{-1}\lambda\in(\mathfrak{b}_{C}^{m})^{*}$ with $ws^{-1}\lambda\in(\mathfrak{a}_{C})^{*}$ by Cayley transform $\nu_{m}$ . Thus
we have proved

(4.7) $R_{a_{m}}(\mathcal{L}:C_{m}(T\zeta))=X:R_{a_{m}}(C_{m}(T\zeta))$ $(s\in W)$ .
(II) Step $S$. By (4.7) it holds

$s_{\circ}R(\mathcal{L}_{l}’C_{m}(T\zeta)|1\leqq m\leqq r)=S(R_{\alpha_{m}}(X_{l}’C_{m}(T\zeta))|1\leqq m\leqq r)$

$=S(\mathcal{L}_{s}’R_{a_{m}}(C_{m}(T\zeta))|1\leqq m\leqq r)$ .
Put

$P_{\iota_{m}}=(1-s_{m})R_{a_{m}}(C_{m}(T\zeta))$ $(1\leqq m\leqq r)$

$P_{s_{m}}’=(1-s_{m})(\mathcal{L}_{l}’R_{a_{m}}(C_{m}(T\zeta)))$ $(1\leqq m\leqq r)$ .
By the definition of $S,$ $S(P_{s_{1}}, \cdots , P_{s_{r}})$ can be written as

$S(P_{s_{1}}, \cdots P_{s})=\frac{1}{|S|}\sum_{{}^{t}\sigma\in S}P_{\sigma}$

$= \sum_{1\leq m\leq r}$ $\sum_{\sigma\in S}q_{m.\sigma}\sigma(R_{a_{m}}(C_{m}(T\zeta)))$ ,

where $P_{\sigma}$ is defined as in \S 2, and $\{q_{m.\sigma}\}$ are some rational numbers. Since

$\sigma(R_{\alpha_{m}}C_{m}(T\zeta))(h)=R_{a_{m}}C_{m}(T\zeta)(\sigma^{-1}h)$

$= \sum_{w\in W}c_{w}^{m}(\sigma^{-1}h)\xi_{w\lambda}(\sigma^{-1}h)$

$= \sum_{w\in W}c_{w}^{m}(\sigma^{-1}h)\xi_{\sigma w\lambda}(h)$ $(h\in A’(R))$ ,

we get

(4.8) $\mathcal{L}_{l}’(s_{Q}R(C_{m}(T\zeta)|1\leqq m\leqq r))(h)$

$=X_{l}’( \sum_{1\leq mr} \sum_{\sigma\in S}q_{m.\sigma}\sum_{w\in W}c_{w}^{m}(\sigma^{-1}h)\xi_{\sigma w\lambda}(h))$

$= \sum_{1\leq m\leq r}$ $\sum_{\sigma\in S}q_{m.\sigma}\sum_{w\in W}c_{w}^{m}(\sigma^{-1}h)\xi_{\sigma ws-1\lambda}(h)$ $(h\in A’(R))$ .

On the other hand, by similar calculations, we have

(4.9) $S(P_{1}, \cdots P_{s_{r}}’)(h)=\frac{1}{|S|}\sum_{\sigma\in S}P_{\sigma}’(h)$

$= \sum_{1\leq m\leq r}$ $\sum_{\sigma\in S}q_{m.\sigma}\sigma(X_{l}’R_{a_{m}}C_{m}(T\zeta))(h)$
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$= \sum_{1\leq m\leq r}$ $\sum_{\sigma\in S}q_{m.\sigma}\sigma(\sum_{w\in W}c_{w}^{m}(h)\xi_{ws^{-1}\lambda}(h))$

$= \sum_{1SmSr}$ $\sum_{\sigma\in S}q_{m.\sigma}\sum_{w\in W}c_{w}^{m}(\sigma^{-1}h)\xi_{ws- 1\lambda}(\sigma^{-1}h)$

$= \sum_{1\leq m\leq r}$ $\sum_{\sigma\in S}q_{m.\sigma}\sum_{w\in W}c_{w}^{m}(\sigma^{-1}h)\xi_{\sigma ws-1\lambda}(h)$ .
Therefore we get

$S\circ R(\mathcal{L}_{1}’C_{m}(T\zeta)|1\leqq m\leqq r)=S(P_{\iota_{1}}’, \cdots , P_{\iota_{r}}’)$

$=\mathcal{L}_{*}’(S\circ R(C_{m}(T\zeta)|1\leqq m\leqq r))$ ,

combining (4.8) and (4.9). This proves (4.6) and thus the proof is completed.
Q. E. D.

\S 5. Decompositions of the representations on $V(\lambda)$ .
In this section, we assume again that $G$ is a connected semisimple Lie

group which is acceptable and has finite centre. Let $\lambda$ be a regular infinitesimal
character. For any Cartan subgroup $H$ of $G$ , we constructed the representation
$\tau$ of $W_{H}(\lambda)$ on $V_{H}(\lambda)$ in \S 3. Here we will give a canonical decomposition of $\tau$

which clarifies the structure of $\tau$ . We keep to the notations in \S \S 1 and 3.
Let $H$ be a Cartan subgroup of $G$ and $\{H_{i}|0\leqq i\leqq l\}$ be a complete system

of representatives of connected components of $H$ under the action of $W_{G}(H)$ .
Let $H_{0}$ be the identity component of $H$. We denote the kernel of the map
$exp:\mathfrak{h}arrow H_{0}$ by $L$ . Then we deflned $\tilde{W}_{H}(\lambda)$ as $\varpi_{H(\lambda)=}\{w\in W(\mathfrak{h}_{c})|\langle w\lambda, L\rangle$

$\subset 2\pi\sqrt{-1}Z\}$ , where we consider $\lambda$ as a dominant element of $\mathfrak{h}_{c}^{*}$ . By Proposi-
tion 1.5, $\pi_{H(\lambda)}$ is invariant by $W(H_{\ell})$ under the left multiplication and is also
invariant by the integral Weyl group $W_{H}(\lambda)$ under the right multiplication.
Therefore we can consider a double coset space $W(H_{i})\backslash \tilde{W}_{H}(\lambda)/W_{H}(\lambda)$ . Let
$\Gamma\subset\tilde{W}_{H}(\lambda)$ be a complete system of representatives of a coset space
$W(H_{i})\backslash \tilde{W}_{H}(\lambda)/W_{H}(\lambda)$ , and put

$W^{(i.\gamma)}=W_{H}(\lambda)\cap\gamma^{-1}W(H_{i})\gamma$ $(\gamma\in\Gamma)$ ,

$\epsilon^{(i.\gamma)}(w)=\epsilon(\gamma w\gamma^{-1}, a_{i})\xi^{i}(\gamma w\gamma^{-1})$ $(a_{i}\in H_{i}, w\in W^{(i.\gamma)})$ ,

where $\epsilon(w, h)(w\in W_{G}(H), h\in H)$ is defined as (1.1). Then $\epsilon^{(i.\gamma)}$ is a character
of the group $W^{(i.\gamma)}$ .

THEOREM 5.1. The representation $\tau$ of $W_{H}(\lambda)$ on $V_{H}(\lambda)$ given in Definition
3.1 is decomposed into a direct sum of subrepresentations as follows:

$V_{H}( \lambda)\cong\sum_{i=0}^{t}\oplus\sum_{\gamma\in\Gamma}\oplus Ind(\epsilon^{(\ell.\gamma)} ; W^{(i.\gamma)}\uparrow W_{H}(\lambda))$ ,

$ul_{1}$ere $Ind(\epsilon;A\uparrow B)=Ind_{A}^{B}\epsilon$ .
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PROOF. Since $\tau$ and $\mathcal{R}$ are equivalent by definition, we decompose the
representation $\mathcal{R}$ of $W_{H}(\lambda)$ on $\mathfrak{V}(H;\lambda)$ . For $0\leqq i\leqq l$ and $t\in W_{H}(\lambda)$ we put

$\zeta_{i.t}$ ( $wa_{i}$ exp $X$ ) $=\epsilon(w, a_{i})$ $\Sigma$ $\epsilon(s, a_{i})\xi^{i}(s)\exp(t\lambda, sX)$

$\iota\in W_{G}(H_{i})$

$(w\in W_{G}(H), X\in \mathfrak{h})$ .
We denote by $\mathfrak{V}^{i}(H;\lambda)$ a subspace of $\mathfrak{V}(H;\lambda)$ spanned by the elements $\{\zeta_{i.t}|$

$t\in\tilde{W}_{H}(\lambda)\}$ for a fixed $i(0\leqq i\leqq l)$ . Then by the definition of $\mathcal{R},$ $\mathfrak{V}^{i}(H;\lambda)$ is
clearly an invariant subspace of $\mathfrak{V}(H;\lambda)$ under $W_{H}(\lambda)$ . Moreover as $W_{H}(\lambda)-$

modules,

(5.1) $\mathfrak{V}(H;\lambda)=\sum_{i=0}^{t}\oplus \mathfrak{V}^{i}(H;\lambda)$ .

So it is sufficient to see that how a $W_{H}(\lambda)$-module $\mathfrak{V}^{i}(H;\lambda)$ is decomposed into
a direct sum of submodules. For a fixed $i(0\leqq i\leqq l)$ , we write $\zeta_{t}(t\in\tilde{W}_{H}(\lambda))$

instead of $\zeta_{i.t}$ . We denote by $\mathfrak{V}^{(i.\gamma)}(H;\lambda)(\gamma\in\Gamma)$ a subspace of $\mathfrak{V}^{i}(H;\lambda)$ spanned
by the elements $\{\zeta_{t}|t\in W(H_{i})\gamma W_{H}(\lambda)\}$ . Then clearly

(5.2)
$\mathfrak{V}^{i}(H;\lambda)=\sum_{\gamma\in\Gamma}\oplus \mathfrak{V}^{ti.\gamma)}(H;\lambda)$

gives a decomposition of the $W_{H}(\lambda)$-module $\mathfrak{V}^{i}(H;\lambda)$ . We show that

(5.3) $\mathfrak{V}^{(t.\gamma)}(H;\lambda)\cong Ind(\epsilon^{(i.\gamma)} ; W^{\langle i.\gamma)}\uparrow W_{H}(\lambda))$ .
We realize the representation Ind $\epsilon^{(i.\gamma)}$ as follows. The representation space $E$

is given by

$E=\{f:W_{H}(\lambda)arrow C|f(wv)=\epsilon^{(i.\gamma)}(w^{-1})f(v), w\in W^{(i,\gamma)}, v\in W_{H}(\lambda)\}$ ,

with the action of $W_{H}(\lambda)$ being the right translation. We define a linear map
$\Omega j$ from $\mathfrak{V}^{(i,\gamma)}(H;\lambda)$ to $E$ by

$(\mathcal{Y}\zeta_{\sigma\gamma u})(v)=\{\begin{array}{ll}\epsilon(\sigma, a_{i})\xi^{i}(\sigma)\epsilon^{(i.\gamma)}(uv^{-1}) if uv^{-1}\in W^{(i.\gamma)},0 otherwise,\end{array}$

where $\sigma\in W(H_{i}),$ $\gamma\in\Gamma$ and $u,$ $v\in W_{H}(\lambda)$ . This linear map $\mathcal{Y}$ gives equivalence
of $\mathfrak{V}^{(i.\gamma)}(H;\lambda)$ and $E$ . Indeed, for $w\in W^{(i.\gamma)}$ ,

$(\mathcal{Y}\zeta_{\sigma\gamma u})(wv)=\epsilon(\sigma, a_{i})\xi^{i}(\sigma)\epsilon^{(i.\gamma)}(uv^{-1}w^{-1})$

$=\epsilon^{(l.\gamma)}(w^{-1})(\epsilon(\sigma, a_{i})\xi^{i}(\sigma)\epsilon^{(i,\gamma)}(uv^{-1}))$

$=\epsilon^{(i.\gamma)}(w^{-1})(\mathcal{Y}\zeta_{\sigma\gamma u})(v)$ ,

if $uv^{-1}\in W^{(i,\gamma)}$ . This proves $\mathcal{Y}\zeta_{\sigma\gamma u}$ belongs to $E$ . Recall that, for $s\in W_{H}(\lambda)$ ,
we defined $\mathcal{R}_{s}$ by $\mathcal{R}_{s}\zeta_{t}=\zeta_{ts- 1}$ . Therefore we have
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$(\mathcal{Y}\mathcal{R}_{*}\zeta_{\sigma\gamma u})(v)=(\mathcal{Y}\zeta_{\sigma\gamma us-1})(v)$

$=\epsilon(\sigma, a_{i})\xi^{i}(\sigma)\epsilon^{(i.\gamma)}(us^{-1}v^{-1})$

$=\epsilon(\sigma, a_{i})\xi^{i}(\sigma)\epsilon^{(i.\gamma)}(u(vs)^{-1})=(\mathcal{Y}\zeta_{\sigma\gamma u})(vs)$ ,

if $us^{-1}v^{-1}$ belongs to $W^{ti,\gamma)}$ . This proves $\mathcal{Y}$ intertwines $\mathcal{R}$ and the right trans-
lation. Since it is easy to see that $\mathcal{Y}$ is an isomorphism, we have proved (5.3).
Formulas (5.1), (5.2) and (5.3) prove the theorem. Q. E. D.

Let $\lambda$ be integral for $G_{C},$ $i$ . $e.,$
$\lambda$ is a differential of a character of $H_{C}$ .

Then by Lemma 3.2 it holds that $ffl_{H}(\lambda)=W_{H}(\lambda)=W(\mathfrak{h}_{C})$ . As in \S 4, we identify
all the $W(\mathfrak{h}_{C})s$ by Cayley transforms and write it $W$. In this situation we get
the representation $\tau$ of $W$ on $V( \lambda)=\sum^{\oplus}V_{H}(\lambda)$ .

THEOREM 5.2. If $\lambda$ is integral for $G_{C}$ , W-module $V(\lambda)$ is decomposed as
follows;

$V(\lambda)\cong$
$\sum_{[H]\in Car(G)}^{\oplus}$

$\sum_{L}_{i=0}^{\oplus}^{t}Ind(\epsilon_{i} ; W(H_{i})\uparrow W)$ .

Here $\{H_{i}|0\leqq i\leqq l\}$ is a complete system of represmtatives of connected componmts
of $H$ under the conjugation of $W_{G}(H)$ , and $\epsilon_{i}$ is a character of $W(H_{i})$ defined by
$\epsilon_{i}(w)=\epsilon(w, a_{i})\xi^{i}(w)(w\in W(H_{i}), a_{i}\in H_{i})$ .

PROOF. Since $\overline{W}_{H}(\lambda)=W_{H}(\lambda)\cong W$ , the coset space $W(H_{i})\backslash \tilde{W}_{H}(\lambda)/W_{H}(\lambda)$ con-
sists of one element. So we can take $\Gamma=\{e\}$ . Now, applying Theorem 5.1,
we get Theorem 5.2. Q. E. D.

Theorem 5.2 is a generalization of a result of D. Barbasch and D. Vogan
[1, Prop. 2.4].

\S 6. ExamPles.
6.1. Let $G=U(P, 1)(p\geqq 2)$ . For classification of irreducible representations

and their characters of $U(P, 1)$ , see [9]. $G$ has two conjugacy classes of Cartan
subgroups, namely a class of a compact Cartan subgroup $H$ and that of a
maximal split one $J$. In this case, both $H$ and $J$ are connected. We give $H$

and $\mathfrak{h}$ as
$H=\{diag(a_{1}, \cdots , a_{p+1})|a_{i}\in C, |a_{i}|=1\}$ ,

$\mathfrak{h}=\{diag(\sqrt{-1}\phi_{1}, \cdots \sqrt{-1}\phi_{p+1})|\phi_{i}\in R\}$ ,

where diag $(a_{1}, \cdots , a_{p+1})$ denotes a diagonal matrix with diagonal elements
$a_{1},$

$\cdots$ $a_{p+1}$ . We consider $\lambda=(\lambda_{1}, \cdots , \lambda_{p+1})\in C^{p+1}$ as an element of $\mathfrak{h}_{c}^{*}$ by

$\lambda(diag(\sqrt{-1}\phi_{1}, \cdots \sqrt{-1}\phi_{p+1}))=^{p+1}\sum_{i=1}\sqrt{-1}\phi_{i}\lambda_{i}$ .

Fix $\lambda\in Z^{p+1}$ . Then we have $\tilde{W}_{H}(\lambda)=W_{H}(\lambda)\cong W$ (the full Weyl group).
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LEMMA 6.1. (1) $W_{G}(H)=$ {$permutations$ of $(\phi_{1},$ $\cdots$ , $\phi_{p})$ } $\cong \mathfrak{S}_{p}$ . (2) $W_{G}(J)=\{per-$

mutations of $(\phi_{1}, \cdots , \phi_{p-1})$ } $\cross$ { $permutations$ of $(\phi_{p}+\phi_{p+1},$ $\phi_{p}-\phi_{p+1})$ } $\cong \mathfrak{S}_{p-1}\cross \mathfrak{S}_{2}$ .
PROOF. This is given by direct calculations.

LEMMA 6.2. Let $\lambda\in Z^{p+1}$ be regular, $i.e.,$ $\lambda$ is not fixed by any permutation
of coor&nates. Then the Weyl group $W$ is isomorphc to $\mathfrak{S}_{p+1}$ , and as W-module
we have

$V_{H}(\lambda)\cong Ind(\det_{p} ; \mathfrak{S}_{p}\uparrow \mathfrak{S}_{p+1})\cong[1^{p+1}]\oplus[2\cdot 1^{p-1}]$ ,

$V_{J}(\lambda)\cong Ind(\det_{p-1}\otimes(trivia1);\mathfrak{S}_{p-1}\cross \mathfrak{S}_{2}\uparrow \mathfrak{S}_{p+1})$

$\cong[2\cdot 1^{p-1}]\oplus[3\cdot 1^{p-2}]$ ,

where $det_{p}$ is a me dimenstonal representation of $\mathfrak{S}_{p}$ which sends $\sigma\in \mathfrak{S}_{p}$ to
determinant of $\sigma$ .

For notations, see [14]. The irreducible representations corresponding to
Young tableaux $[1^{p+1}],$ $[2\cdot 1^{p-1}]$ and $[$3 $\cdot$ $1^{p-2}]$ are of dimension 1, $P$ and $p(P-1)/2$

respectively.
PROOF. Use Theorem 5.2 and we have the first equivalence for each $H$

and $J$. The second equivalences are given by direct calculations. Q. E. D.
It can be easily seen that the vector space $V_{J}(\lambda)$ has a basis consisting of

characters of all the principal series representations with infinitesimal character
$\lambda$ . However it’s not trivial to find out a basis of $V_{H}(\lambda)$ . We only show the
results here without calculations. For notations, see [9].

LEMMA 6.3. (1) $V_{H}(\lambda)$ has a basts $\{B^{i.i+1}(1\leqq i\leqq P), D^{0,p+1}\}$ , where

$B^{i.i+1}= \frac{(-1)^{i}}{2}\{(D^{0.i}+D^{0.i+1})+(-1)^{p}(D^{i.p+1}+D^{i+1.p+1})\}-\frac{(-1)^{p}}{p+1}D^{0.p+1}$ .

Moreover $\{B^{i.i+1}(1\leqq i\leqq P)\}$ generates the $p$-dimenstonal invariant space $[$2 $\cdot$ $1^{p- 1}]$

of $V_{H}(\lambda)$ and $D^{0.p+1}$ generates the one-dlemenszonal invariant space $[1^{p+1}]$ of $V_{H}(\lambda)$ .
(2) $V_{J}(\lambda)$ has a basts conststing of the chafacters of $pnn\alpha pal$ series rePresen-

tations and dim $V_{J}(\lambda)=p(p+1)/2$ .

6.2. Let $G=SL(2, R)$ . For classification of irreducible representations and
their characters of $SL(2, R)$ , see [2], [4], [7, p. 50]. $G$ has two conjugacy
classes of Cartan subgroups. Put

$K=\{(\begin{array}{ll}\cos\theta -\sin\theta\sin\theta \cos\theta\end{array})|\theta\in R\}$ ,

$J=A_{+}\cup A_{-}$ with $A_{\pm}=\{\pm(\begin{array}{ll}e^{t} 00 e^{-t}\end{array})|t\in R\}$ .

Then $K$ is a compact Cartan subgroup and $J$ is a maximal split one.
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LEMMA 6.4. (1) $K$ is connected and $W_{G}(K)=\{e\}$ . (2) $J$ has two connected
component $A_{+},$ $A_{-}$ and $W_{G}(A_{+})=W_{G}(A_{-})\cong \mathfrak{S}_{2}$ .

Let $\lambda\in f_{c}^{*}$ be a differential of a non-trivial character of $K$. Then we have

LEMMA 6.5. The Weyl group $W$ is isomorphic to $\mathfrak{S}_{2}$ and as W-module, $we$

have
$V_{K}(\lambda)\cong Ind(trivia1;\{e\}\uparrow \mathfrak{S}_{2})\cong(sgn)\oplus(trivia1)$ ,

$V_{J}(\lambda)\cong Ind(trivia1;\mathfrak{S}_{2}\uparrow \mathfrak{S}_{2})\oplus Ind(trivia1;\mathfrak{S}_{2}\uparrow \mathfrak{S}_{2})$

$\equiv 2(trivial)$ .
PROOF. Theorem 5.2 and direct calculations will show the results. Q. E. D.
As in the case of $U(p, 1)$ , $V_{J}(\lambda)$ has a basis consisting of characters of

principal series representations with infinitesimal character $\lambda$ . The invariant
space $V_{K}(\lambda)$ has a basis $\{D^{+}-D^{-}, F\}$ , where $D^{+}$ (respectively $D^{-}$ ) is the holo-
morphic (resp. anti-holomorphic) discrete series representation and $F$ is the
finite dimensional representation.

We can write down the similar results for the groups $SO_{0}(2n, 1)(n\geqq 1)$ .
However, it needs new notations to state them. Here, we only refer the
readers to [16].
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