J. Math. Soc. Japan
Vol. 38, No. 1, 1986

Enumerating embeddings of homologically
(k—1)-connected #-manifolds in
Euclidean (2n—Fk)-space

Dedicated to Professor Nobuo Shimada on his 60th birthday

By Tsutomu YASUI

(Received Oct. 1, 1984)

§1. Introduction.

Throughout this paper, an n-manifold and an embedding mean a closed
connected differentiable manifold of dimension n and a differentiable embedding,
respectively. Let [MCR™] denote the set of isotopy classes of embeddings of
M in Euclidean m-space R™. In (cf. [6]), Haefliger has proved the following
theorem :

THEOREM (Haefliger). If k<(n—4)/2 and if M is an orientable homologically
k-connected n-manifold, then [MC R*"*] is equivalent to Hy.«(M; Z) or Hyii(M; Z5)
according as n—~k is odd or even.

Here a space X is called homologically k-connected if it satisfies the condition
ﬁi(M ; Z)=0 for /<k. A k-connected path connected space is clearly homologi-
cally k-connected.

The purpose of this paper is to prove the following theorem, which is an
extension of the above theorem:

MAIN THEOREM. If 2=k=(n-—-4)/2 and if M is a homologically (k—1)-
connected n-manifold whose (n—k)-th normal Stiefel-Whitney class vanishes, then
the set [MC R*"~*] is given as follows:

(i) i2f k=2 and M is not a spin manifold, then

[MCR**]=H""*M; Z,) n=0(4),
=H""M; Z)XZ, n=24),
=H"%M; Z)x H*~M; Z,) n=1), w,=0,

=H"M; Z)XH"M; Z)XZ, ~ n=1(4), w,=0, or n=3(4);
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(ii) 7f k=3 or M is a spin manifold, then

[MCR*-*]=H""*"(M; Z,) n—k=0(4),
=H"*YM; Z)XH"*M; Z,)

XH"™YM; Z,)/Sq*p.H" **(M; Z) n—k=14),

=H"*Y(M; Z)X H""*(M; Z9)/Sq*H**-*(M; Z5) n—hk=2(4),

=H"*Y(M; Z)x H"*M; Z5)
XH"*M; Z5)/(Sg'H"*"{(M; Z,)+Sg*0.H"*"NM; Z))  n—k=3(4).

In this theorem, the (n—k#)-th normal Stiefel-Whitney class W,-; of an
orientable n-manifold M is defined by @y~ Or BeWrp-r-1€H" ¥(M; Z) according
as n—£k is even or odd, where i; is the 7-th mod 2 normal Stiefel-Whitney class
of M and B, is the Bockstein operator, and moreover W,-» is the unique
obstruction to embedding a homologically (2—1)-connected n-manifold in R2"-*
by the theorem in [5, §1.3] (cf. [6, Theorem (2.3)]).

The remainder of this paper is organized as follows: In §2, we shall state
a method of computing [MC R*"-*] of a homologically (£—1)-connected n-mani-
fold M (Theorem 2.5). In §3, we state the cohomology group of the reduced
symmetric product M* (=(MxM—4AM)/Z,) of M (Theorem 3.3), postponing the
proof till §5, the last section. §4 is devoted to proving the main theorem.

§2. The method of computing [MC R*"-*].

We begin this section by explaining notations. Let X2 be the product XXX
of a space X and let 4X be the diagonal in X% The cyclic group of order 2,
Z,, acts on X? via the map f: X*—>X? defined by #(x, y)=(v, x). Then 4X is
the fixed point set of this action. The quotient space '

X*=(X*—4X)/Z,

is called the reduced symmetric product of X. Here the projection p:X*—4X
—X* is a double covering, whose classifying map we denote by

& X*—s P,
For a fibration #: E—~B and a map f:Y—B, let
YXgE —>Y and Y, E; f]

be the pull-back of = along f and the homotopy set of liftings of f to E.
Notice that the sphere bundle 7 : S*X;,S™—P> is homotopically equivalent

to the natural inclusion P™—P= of the real projective m-space P™. Hence we

regard them as identical. Using the above notations, we deduce the following
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theorem from Haefliger’s theorem [4, Théoréme 1’] (cf. Yasui [18, §1]):
THEOREM 2.1 (Haefliger). For an n-manifold M, there is a bijection
[MCR*>-*]=[M*, Ptn-k-1, £] if kZ<(n—4)/2.

For any abelian group G and a homomorphism ¢ : x,(P*)=Z,—Aut(G), let
G4 be the sheaf over P>, locally isomorphic to G, defined by ¢, i.e., the local
system associated with @¢. This homomorphism ¢ gives an action of Z, on
(K(G, m), *). Hence we have a fibration ’

g : Lg(G, m)=S*Xz,K(G, m) —> P~

with fiber K (G, m) and a canonical cross section s. It has been established (see,
for example, G. W. Whitehead [17, Chap. VI, (6.13)]) that there exists a unique
fundamental class ¢ H™(L4(G, m), P*; ¢*G4), whose restriction to K(G, m) is
the ordinary one (¢ is equal to 4d(sg, 1) up to sign in [17]), and that given
£ : X— P>, the correspondence f— f*: leads to a bijection
[X, Ly(G, m); £]1=H™X; £*Gy).

Further, if £ has a lifting ¥ to P2*-*-!, then there is a bijection

[X, PPr=F-tX e Lg(G, m); 21=[X, Ly(G, m); %]
by [8, Theorem 3.1] and hence we have a bijection

(2.2) [X, Pkt po Lg(G, m); X]=H™(X; £*Gy).

Let
G =Tan-p-145(S2"F-1).

Since the sphere bundle = : P?"-*-'—P= is the one associated with (2n—Rk)y, 7
being the universal real line bundle over P=, the action of =x,(P~)=Z, on G; is
given by the homomorphism

¢ Zy(={1, a}) —> Aut(G))
defined by
Pla)(x)=(—1)"""Fx for x=G;

and moreover the sheaf (G,), is given by

G; if & is even,
G;[u] if & is odd,

where G,[u] is the sheaf over P, locally isomorphic to G;, twisted by u(+0)
=H'(P>; Zy,)=Z,. For &:M*—>P>, let

(G)p=]

G; if & is even,

(2.3) GFE*(GJ')F{ G,[v] (v=&%u)  if k is odd,
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and let
Ds 2 H(M*; Z) —> H(M*; Z5),
Be 1 H\(M*; Z,) —> HY(M*; Z)

be the ordinary reduction mod 2 and Bockstein operator or the ones twisted by
v according as k is even or odd. Then

_ [ S¢* if £ is even,
(2.4) '0252_{ Sq¢*+v  if k is odd,

by [2], [14]. With the above notations, we shall prove

THEOREM 2.5. Let 2=k=(n—4)/2 and let M be a homologically (k—1)-
connected n-manifold. If M can be embedded in R*"~*, then there exists a bijection

[MCR*-*F]=H?"-*-YM*: Z)xCoker O
where

o=(Sq+(*" Y. - HmR AR 2) s B Z0),

In order to prove this, it is sufficient, by [Theorem 2.1, to show that

[M*, per-k-1. gl—pen-k-1( N+ 7y Coker @ .

Let P=P?*-*-! and let n’: P’—P be the pull-back of = : P—»P> along =. If M
can be embedded in R?*~%, then & has a lifting & : M*—P by the first half of
[4, Théoréme 1’] and so

(2.6) [M*, P’; §1=[M* P; &]
by [8, Theorem 3.1]. Since = :P—P= is the sphere bundle associated with

(2n—Pk)y, the Postnikov tower of n’: P’—P is given as follows:

l

E .
p.
hy /| ks
P/——'—> Ej ——"‘*—)PXP‘”L(’,;(G]', 2n——k+])
!
Lk

E, ——— PXK(Z,, 2n—Fk+2)

a

PxmLy(Z, 2n—h—1)=E, ———> PxK(Zy 2n—k+1)

!
P2n~k—1:P
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where h; is a (2n—k—14j)-equivalence, p;: E;,—E; is a P-principal fibration
with classifying map %; in the category TP of P-sectioned spaces and maps.
By [10, Part 1V, Theorem 1], for &:M*—P, p;:E;,,—F; induces an exact
sequence

(Qpk)s _ ' )
> [M*, PXpLy(Gj, 2n—hk—1+j); §']1 —> [M*, Ejpy; §']
(b)s (ks ,
——> [M*, E;; &1 ———> [M*, PXpoLy(Gj, 2n—k+j); §']

(j=D),

where Qpk; is the map of loops associated with k; in TP. With the help of
2.2), this is converted into the exact sequence

(2pk;)s _ (Pi)a
o ———> HE k(M G) ——> [M*, Ejuy; 8] ——> [M*; E;; §']
(R3)s

T Hzn-k-i—j(lw*; Qj) (]‘21)!
where
[M*, E,; &1=H*~*"(M*; Z).

Now it has been shown by Haefliger and Hirsch [7, p. 237] that if M is a
homologically (2—1)-connected n-manifold (£=2), then

Hen-k=ti(M ;G )=H2 =4 (M*; Gyo)=0  for j=2.

We know, on the other hand, that £z, induces an operation (Sq2+(2n; k vz),bg,
i.e.
(Qpk1)y : [M*, QpE,; §] —> [M*, Qp(PXK(Z,, 2n—k+1)); §']
I
i i

O=(Sg+(*"5 FYt)pe « H=A0%; 2) > HEn-r MR 2,

because (k,); corresponds to (Sg*+4-w,((2n—£k)y))p.. From the above argument,
it is clear that there exists a short exact sequence

0 —> H2*(M*; Z,)/ImO —> [M*, P’; &'] —> Her-k-Y(M*; Z) —> 0.
This, together with [Theorem 21 and completes the proof of

§3. The cohomology of M*,

The mod 2 cohomology of M* has been studied by Bausum [1], Haefliger
[3], Thomas [16], Yasui [19], Yo and others. The notations used here
are the same as those explained in (most of them are the same as in [16,
§2]). Let MeH™(M; Z,) be the generator, i.e.
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HYM; Zy)=Z <M,
and let
o=1+4t* 1 HXM?*; Z,) — H¥M?*; Z,).
LeEmMA 3.1. Assume that M is a homologically (k—1)-connected n-manifold
(k=2). Then
(i) HM*; Z,)=0 if i>2n—Fk,
(i) H*MM*; Z)={pa(MQx) | x€H""*(M; Z,)} (=H""MM; Z,)),
(iii) H*"=*-Y(M*; Z,)
={o*'Qx* | xeH"*(M: Z,)} (=H""YM; Z,))

+How*"' Qx| xeH " *(M; Z)} (=H" Y (M; Zy)),

(iv) H*"~F-(M*; Z,)
={pu*@x*) | x&H"*(M; Zy)} (=H"*"Y(M; Z,)

+{ow* Q%) | xeH""¥M; Zo)} (=H"*M; Z,))

+{ow**Qx%) | xeH"*~¥M; Z,)} (=H""**M; Z,))

+{poc(x®y) | x, yeH"*(M; Z,), x+y}]
where the term in the square brackets [ ] is present only when k=2.

PROOF. (i), (ii) are given by Thomas [16, Proposition 2.9]. By [19, Prop-
osition 2.6], there are two relations:
| puHRx)=pUARx)+u*"@(Sg'x))  if xcH"*M; Z,),
p(u* 2 Qx%)=p(U(1Qx)+u*@(Sq'x)*+u* *Q((Sg*+w»)x)*)
if xeH" *¥M; Z,).

Moreover U(1®x) is expressed in the form
(%) UlRx)=a(MRx)+x'Qx", dimx’, dimx”<n.
Applying [16, Proposition 2.9], we can prove (iii), (iv) immediately.

The actions of veH'(M*; Z,) and the square operation Sg* (=1, 2) on
H*M*; Z,) are given by Thomas [16, Corollary 2.10] and Bausum [1, Lemmas
11 and 24] as follows:

LEMMA 3.2. There are the following velations in H*(M*; Z,):
(1) vpo(x@y)=0, ve(u'Qx*)=pu*"'Qx?%;
(ii) ¢f x€eH"(M; Z,), then

G+r)ow'Qx? i>0,

S'p(w'@xt)={ ro(u@x%)+00(Sgx@x) =0 ;
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("3 )o@+ p(w (S >0,
qup(ui®x2): .
(2)p(u2®x2)+p(l@(Sqlx)2)+po(Sq2x®x) i=0.

For a homologically (£—1)-connected n-manifold M (k=2), the cohomology
groups Hi(M*; Z) for 2n—k—2=<i<2n—Fk are given in the following theorem,
postponing the proof till §5:

THEOREM 3.3. Assume that M is a homologically (k—1)-connected n-manifold
(k=2). Then

H™*M; Z, if n—k is even,

. 2n-k . o~
(i) H (M*,Z)—{ H™*M; Z) if n—Fk is odd;

(it) H= M 2= Z::% §§)—1—H"”’(M; Zy) Z]J: ki oid:
(i) pH*™ *-¥M*; Z)
={pu**Qx?) | x€H"*(M; Z)} +{p(u**Q@x* | xcH" **(M; Z,)}
+{poc(x®y) | x, yeH"*M; Z;), x+y}] if n—*Fk is even,
={p(u*@x% | x&eH"*YM; Z)} +{p0(0:2QM) | xe H"**(M; Z)}
+[{oo(x@) | x, yeH"*M; Z,), x#y}] if n—Fk is odd,

where the terms in the square brackets | 7 are present only when k=2.
§4. Proof of the main theorem.

In this section, let M be a homologically (k£-—1)-connected n-manifold (£=2).
If its (n—k)-th normal Stiefel-Whitney class vanishes, then M can be embedded
in Euclidean (2n—£k)-space by Haefliger [5, § 1] and there is a bijection

[Mc R?*-*]=H*-*-Y(M*; Z)XCoker®
where

6=(Sq+(*"] F Vo Vas « H=R MR 2) —> HEm (0¥ 2

by [Theorem 2.5l Since H2»-*-1(M*; Z) is given in [Theorem 3.3(ii), we shall
concentrate on calculating Coker®. Notice that there are an isomorphism

4.1) X: H"¥M; Z,) —> H**(M*; Z,)  (Ux)=pc(MQRx)),

and equalities

4.2) p(u*Rx2)=p(U(1Qx))=pa(MRx) for xeH"*M; Z,),
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which follow from [19, Proposition 2.6] and (%) in § 3.
Case I: n—Fkiseven. See [Theorem 3.3(ii) for the group p,H*"~*~*M*; Z).
If xeH™**M; Z,), then

(Sq2+(2n2_k)v2)p(u“2®x2)
=((5)+("5 F))otur @+ ptut Sg) by Lemma 32

2n—~k
=((5)+(""5 7))ot @ Sgr+wr,
because there are two relations
o(u* @+ Ut QS x) - u B((Sq - wa)x))=0,
p(uFR(Sq*x)*)=0,

which are easily proved by using [19, (2.5) and Proposition 2.6]. Therefore, by
(4.2), we have

(4.3) (Sq2+(2”2" k)vg)p(u’”z@xz)

=200 (M&(Sq*+ws)x) for xeH*3¥M; Z,),
where

2_{0 for n—k=004),
L1 for n—k=2(4).

Similarly, we have a relation

wd (e ot

=(1—-2poc(MR3x)+[po(wx@x)] for x€H" *(M; Z,).

Moreover the relation

4.5) (Sq2+(2n;k)vz)pa(x®y)=po(wzx®y+w2y®x>
for x, yeH"*M; Z,) with x+y
follows from Therefore, if #=3 or w,=0, then
ImO={1-2ps(MQx)|xcH"*M; Z,)} + {Apa(MQSq*x) | x e H"~*-* (M ; Z,)}

and so

- 0 fOI‘ n_kEO (4),
4.6) COkCl‘@:’{ Hr*(M; ZZ)/quHn—k—2(M; Z,) for n—k=24),
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by [(4.I), (4.2). Next, consider the case =2 and w,#0. In general, for a simply
connected n-manifold M with non-trivial second Stiefel-Whitney class w,, the
group H™*M; Z,) can be expressed, by using Poincaré duality, in the form

|

{M if =1,

n-2 . — ) = .
(4'7) H (M) ZZ)_ 151,'2§GZ2<Z1’> ’ wZ"l 0 if 2§i§(l

Then a simple calculation yields that
> Zpa(MRz)) it n—2=0(4),
Im@=

2sisa

H2=3(M*; Z,) if n—2=2(4),
and hence

([ Zy if k=2, w,#0 and n=2(4),
4.8) Coker@={ (" ¢ b=2, 0,0 and n=0(4),

by [4.1). Thus we deduce the main theorem in case n—#% is even, from (4.6),
and Theorems B.3 ().

Case 1I: n—Fk is odd. See also (iti) for the group
o H?*" *-*(M*; Z). In the same way as in the case when n—#k is even, we
have the following relations :

2n—~Fk 0 f —k=1@4),
(Sq2+( nz )UZ)p(uk®x2):‘u‘oo'(]\/f®sqlx), #::{1 fgi: Z——kE3E4§,

if xeH"*\M; Z,);
4.9)

(Sq2+(2n2_k>vz)PG(M®pzx)=pG(M®qupzx) if xeH"*%M;2);

(qu+(2nz_ Voot @)=po(wer@ytuay®x) it x, yEH"HM; Zy).

If w,=0, then and the above relations (4.9) lead at once to the relation

Sq*p.H" **M; Z) for n—k=134),

@10) mO={ Sq*0sH™*(M; Z)+S¢H™*-\(M; Z))  for n—k=3(4).

If w,+0, it is easily verified, in the same way as in the case when n—Fk is
even, that the subgroup of Im@ determined by the last relation of (4.9) is equal
t0 Xosisa Z2:{p0(M®z;)>. On the other hand, the following relations hold:

w2Sq?0:x=5¢*Sq?p:x=S¢°Sq* p.x=0  for xeH"*M; Z),
weSqrx =Sq (wex )+ (Sq*ws)x =wsx for xeH"3*M; Z,).

Therefore, it is shown immediately that po(M®z,)€Im® if and only if n—2=
3(4) and w,#0, and hence
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0 if n=1{) and w;=0,

(4.11) Coker@_%{ Z, if n=1(4), w,=0, or if n=34).

Thus (4.10), together with Theorems B.3(ii), deduce the main theorem
in case n—£& is odd.

§5. Proof of Theorem 3.3.

Throughout this section, we assume that M is a homologically (k—1)-
connected n-manifold (£#=2) and we compute H?"-*-{(M*; Z) for 0<i<2, where
Z=Z7 or Z[v] according as % is even or odd.

Case I: n—Fk is even. First we consider the odd torsion subgroup of
Her-%-i(M*. 7) for :=0, 1. Considering the cohomology spectral sequence (cf.
[11, Theorem 1.1]) for a fibration M*—A4AM—S*X 5 (M*—A4M)—P=, which is

> 3 .
homotopically equivalent to M 2 AMEM *— P>, we see that the odd torsion sub-
group of H®"-*-i(M*; Z) is isomorphic, by p*, to that of

{xeH™F (M2 —AM; Z) | trx=(—1)"x} =H"-*-(M*—AM; Z)-D"*",

Since M is orientable, there is a short exact sequence

1%
0— H'M; 2) _in) H4{(M?: Z) — H""WY{(M*—4M; Z) — 0,
where
. (x)=U(1QRx) for xeHYM; Z),

UeH™"M?; Z) is called the Thom class or the diagonal cohomology class of M,
e. g. by [12], and { is the natural inclusion.. Therefore, 1* induces an isomorphism

(Hzn-k—i(Mz; Z)/¢1Hn-k-i(M; Z))(—I)M'gHzn—k—i(Mz_AM; Z)('l)n".

Here ¢, H™ *-{(M; Z)CH*"~*-{(M?; Z)"-™" by [15, p. 305]. On the other hand,
it is easily verified that H**~*-{(M?; Z)-V"* is isomorphic to H* *-{(M; Z) for
¢=0, 1. Therefore, H**~*-{(M*—A4M; Z)"-V"** has no odd torsion subgroup and
hence

(5.1) HEn-k-i(M*: Z) has no odd torsion for /=0, 1.

In order to study H?*"-*-i(M*; Z), consider the Bockstein exact sequence

2
associated with 0—Z2 LZ %z 2—0,

P2

2 X2
(0.2) o> HU(M*; Z)) iHi(M*; Z) —> HXM*; Z) —> HXM*; Z5) — --.

By using the relations in and we have the following relations :
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DeBep0(x®y)=0 if k=2 and x, yeH""*(M; Z,),
D2Be0(u'@xt)=p(u'*'Qx?)
for (7, dimx)=(k—1, n—Fk), (k, n—k—1), (k—3, n—Fk), (k+1, n—k—2).

These relations, (4.2), (5.1) and the exact sequence (5.2), together with
3.1, lead to in case n—#k is even.

Case Il: n—Fk is odd. The group Z, acts on SM, the tangent sphere bundle
over M, via the antipodal map on each fibre S*-. Let

PM=SM/Z,, (A*M, AM)=(M*/Z,, AM/Z,),

i 2 M= A2M—AMcC(A2M, AM),
and let
7 PM—> M*

be the embedding such that j*v is the first Stiefel-Whitney class of the double
covering SM—PM. We write j*v as veHY(PM; Z,) if no confusion can arise.
Then there exists a long exact sequence, cf. [19, Lemma 1.3],

(5.3
: o *o o
o= HYPM; Z) —> HY(A°M, AM; Z) —> H'(M*; Z) —> HY(PM; Z) — ---.
The cohomology of PM has been given by Rigdon [13, §9] as follows:

LEMMA 5.4 (Rigdon). Assume that M is a homologically (k—1)-connected
n-manifold (k=2) and that n—*k is odd. Then

. e o]0 if kis even,
() MM D={ gz mermaryy i b s odd;
{Bo(v"=2x+v"-k-2Sg*x) | x e H""*(M; Z,)}
(ii) H2"*-Y(PM; Z)z[ +Z{Bo(v™ 2 M) if kis even,
{B(v™2x) | xeH™*(M; Z,)} if kisodd;
{Bv™*x)|x € H™ *-Y(M; Z,)} if kis even,
(iii) Hzn—k-z(PM; Z):{ {Bz(vn‘zx-**v"'k'squ“x)lxEH"'k'l(M; Zg)}
+Z o Balv™ 2 M) if kis odd.

In the above lemma, and also from now on, j, denotes the Bockstein
operator twisted by v.
The cohomology of (A2M, AM) has been investigated by Larmore [9].

LEMMA 5.5 (Larmore). Assume that M is a homologically (k—1)-connected
n-manifold (k=2) and that n—*k is odd. Then
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H"*M; Z)+Z{Bo™ ¥ AM)y if k is even,
H»¥M; Z) if k is odd;

H*Y(M; Z) if kis even.
H" M5 Z)+Z o oo™ 2 AM)>  if & is odd;

(iii) ¥p H*™ **A*M, AM; Z)={pa(pxQ@M)|x c H" **(M; Z)}
+Hpoo(x@y) | x, yeH"*(M; Z,), x+y}],

where the term in the square brackets is present only when k=2.

(i) H™ *A°M, AM; Z)z{

(i) He - AM, AM; Z)z{

ProOF. The cohomology groups H®*"~*-*(A2M, AM; Z) for /=0, 1, 2 are
given directly by [9, Theorem 20]. Their i*p,-images are easily obtained by
using the relations

(5.6) owix)=vi*'Ax, X AxAy)=pa(xQy)+po(x yR1)
in [18, Lemma 1.5], [19, Lemma 3.3] and the two congruences modImJd
g2 (Ax)= A(psBrx) if xeH*M; Z,),
6:B:d(x, pry)=p:4(Brx, y)  if x€HXM; Z,), yeH*M; Z),
which are easily proved.

REMARK. The author has proved this lemma in the same way as he proved

the propositions in [18, §5], i.e., by using the results on pp. 908-915 in [9].
He thinks that the expression “r is a power of 2 or” in 1(iv), I (v) of [9,
Theorem 207 should be omitted.

Using the first relation of and the relation
j*p(u’@xz):OS;qu”q'iSqix if xeHYM; Z,),
in [16, § 2], we have the following relations:
520 3 FM)=0(w " * M)=v" ¥ AM=0  if k is odd,
0B,(v" ¥ 2 M)=B,(v" *~* AM) if & is even,
532(v"“k‘3M):ﬁg(v”‘k‘z/IM) if £ is odd,
J*Bap(u**@x?)

__{ B 2x+v™-2-%Sq* x) if 2 is even and dimx=n—E&,

Ba(v™%x) if £ is odd and dimx=n—%,
7*B0(u* ' Qx%)
M{ B:(v™%x) if 2 is even and dimx=n—k—1,
T B ok 3Sg k) if # is odd and dimx=n—Fk—1.
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On considering the exact sequence (5.3), it follows, from Lemmas b.4, 6.5 and
the above relations, that j*: H**~*~{M#*; Z)—Im * is a split epimorphism for
i=1, 2. Further, the relation

D282 ' Qx*)=p(u*@x*  for xeH"*(M; Z,)

follows from [Cemma 3l2. Hence, the theorem is established in case n— £ is odd.

[20]

[21]
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