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Introduction.

As shown in our previous papers ([3], [4]), there are deep relations be-
tween the class fields over imaginary quadratic fields and cusp forms of weight
one of “neben typus” in Hecke’s sense. In this paper we study a similar prob-
lem for class fields over real quadratic fields which satisfy a condition due to
Shintani ([18]). The paper consists of five sections. In Section 1 we recall the
definition of Hecke’s indefinite modular forms of weight one which are associated
to real quadratic fields ([1], [2], [10]). In Section 2 we summarize certain
results of Shintani for the real quadratic problem which is transferable to the
imaginary quadratic situation ([13]). In Section 3 we apply the result of
Shintani to our problem and obtain the two representations for some dihedral
cusp forms of weight one by positive definite theta series and indefinite theta
series. Kac and Peterson in gave many examples of new identities for cusp
forms of weight one which arise from the Dedekind eta function. In Section
4 we shall reconstruct these examples from our point of view, by using the
results of Section 3. In the final section we establish the higher reciprocity
law for a defining equation of ray class fields over some real quadratic fields.

The authors would like to express their sincere thanks to Professor N.
Iwahori for informing them of the work of Kac and Peterson ([7]). Our work
has been particularly inspired by this work.

1. Hecke’s indefinite modular forms of weight one.

In this section we shall review the definition and basic properties of the
indefinite modular forms which were introduced by Hecke ([1], [2]).

Let F be a real quadratic field with discriminant D, and o the ring of all
integers in F. Let @ be a natural number and denote by u, the group of totally
positive units ¢ of oy such that e=1 mod Q+/D. Let a be an integral ideal of

op, and put
[Na)|=A.
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Then the Hecke modular form for the ideal a is defined by

9r; p, 0, Qv D)= GE (sgn p)g™ w1caen)
p&p

£=p mod aQvD
peop/ug, N (p) x>0

where k==+1, p<a, Im(r)>0 and g=e?*%, This is a holomorphic function of =
and satisfies

ar+b . D~ _, .. —
Si(?;:d'; o, a, QVD)Z(m>e”’”“°PP 14D (cr+d)9.(t; ap, a, Qv D)

for all (? g)el“o(QD) (11, [2].» Therefore 9. is the cusp form of weight

one for a certain congruence subgroup of level QD under the condition 3.70.
If in particular a=oz, we put

"9:E<T; 0 Qm>:8i(r; P, O,y Q'\/E)-

We are far from being able to judge whether 3. vanishes identically or not.

2. Ray class fields over real quadratic fields.

In his paper ([13]), Shintani presented a conjecture on the generation of
class fields over real quadratic fields in terms of the double gamma function
and gave a proof for the case transferable to the imaginary quadratic situation.
His conjecture is closely related to a general conjecture on the value of an
Artin L-function at s=1, which was discovered independently by Stark. This
section is based upon the work of Shintani ([13]) and we shall describe those
parts of it applicable to our problem in the following section.

Let there be given a real quadratic field F as described in Section 1. Let
T be a self conjugate integral ideal of or which satisfies the condition :

)] For any totally positive unit ¢ of 0y, e+1&1.

We denote by Hg(}) the narrow ray class group modulo § of F. Then, under
the condition (1), the group Hx(}) has a character X of the following type:

X((x))=sgnx or X((x))=sgnx’

for x—1ef, where x’ denotes the conjugate of x. We denote the Hecke L-
function of F attached to X by

Lg(s, 1)= HE”)X(C) 2 Na)*  (Res>1).
DS

1) For a general treatment of this function via the Weil representation, see and

[10].
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Then the [*factor in the functional equation of Lx(s, X) is of the form
s s-+1
r (7>F ( 2 )

He(Do={ceHp(): ¢'=c},

We put

and assume that
(2) LH#(D) : He(Do]1=2.

Let Kx(}) denote the maximal narrow ray class field over F corresponding to
Hy(T) and ¢ denote the Artin canonical isomorphism given by class field theory.
Let L be the subfield of o(Hx(}),)-fixed elements of Kg(f). Then, under the
assumption (2), L is a composition of F with a suitable imaginary quadratic
field 2, and Kg(}) is an abelian extension of % ([13]). Therefore there exists

K

an integral ideal ¢ of % such that Kg(}) is a class field over k with
conductor ¢. Let {; be the conductor of X and % the primitive character of
Hg(1y) corresponding to X. We denote by &; one of the characters of the group
H,(c) determined by X in a natural manner. Let ¢y be the conductor of & and
£, the primitive character of H,(¢;) corresponding to &. Then we have the
following coincidence of two L-functions associated with the real quadratic field
F and the imaginary quadratic field 2 ([13]):

3) Li(s, T)=L(s, éx) R

3. Positive definite and indefinite modular forms of weight one.

In this section we use the same symbols as in Section 2. We put
K=Kz);

and assume that K/k is a cyclic extension. We denote by D(F/Q) and D(k/Q)
the different of F over @ and that of %2 over Q, respectively. Then we have
the following relation between the conductor ¢ of the cyclic extension K/%k and
the finite part § for the conductor of the abelian extension K/F':

2) Recently, H. Ishii proved that the coincidence (3) is equivalent to the condition (2)

[®D.
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LEMMA 1. P DEF/Q)=c-D(k/Q)
considered as ideals in L.

PrROOF. We shall consider a triple of algebraic number fields (%, 91, Q)
such that we have 2DNDH, 2 being a finite abelian extension over % and
the degree of 91 over .# is two. We denote by G and H the Galois group of
£ over M and that of £ over 7! respectively. Let fo, s (resp. fo;2) be the con-
ductor of 2/ (resp. £2/31). Let p be a prime ideal of o4 and P a prime divisor
of p in 9. We denote by G, (resp. H;) the i-th ramification group of p
(resp. P) for /M (resp. £/7) and let g; and h; be the order of G; and that
of H, respectively. We define the following three integers Cg, Cx and 7, by

Ce=max{i: g;#1}, Cyp=max{i: h;#1} and l,=max{s: G, H};

moreover we understand Co=—1 (resp. Cyp=—1) if p ) fo/a (resp. B/t fo/z) and
i,=—1if G,CH. Let f, (resp. fy) be the p-exponent of fo, 4 (resp. P-exponent
of fo/m). By Hasse’s theorem on conductor we have

1 % d 1 CHh
fp—ig*o‘g%gi an fm—‘mg:; i

Furthermore, since [71: #]=2, we have

L | g2 it i,
! gi» otherwise.

(%)

Let f,#0. Since C;=0 and Cyz=Cgs we have the following four possibilities
for integers Cq, Cx and i4,: \

(i) 7,<0 and Cy=Cs (& p is unramified for 7/ H);

(ii) 4,=0 and Cx=Cq;

(iii) 7,20, Cx=0 and Cy<Cq;

(iv) 7,=0 and Cyz<0=C; (& B is unramified for 2/7).
By (¥) we have the following corresponding to the each case of (i)-(iv):

(1) fe=fp;

(i) fe=2fy—g=;

(i) fe=fy—(Ce—Cu)/ho, fr=g%n;

(iv)" fe=0, fo=2gs,
where gp=(1/g,) 2i2,g;, which is the B-exponent of the different DT/ H). If
(iii) or (iv) holds, then we see easily that 7,=Cz>Cp,

(%) #(Geg)=2 and G=HXGg, (direct product).

Now let (%, :1, Q)=(k, L, K). Then, since K/k is a cyclic extension of
degree 4m, the vrelation (#+) is impossible for G. Therefore the possible case is
(i) or (ii). This shows



Indefinite modular forms 71

=T e=Tx/.-D(L/R).

Next we put (H, 71, 2)=(F, L, K). Suppose that the relation (x+) holds for
(F, L, K). Then we have Cs;=Cpy since K is the maximal ray class field
mod f(o0,) (c0,). This implies that neither (iii) nor (iv) occurs. Therefore we have

TZTK/F‘—‘TK/L “D(L/F).
On the other hand, it is well known that

DL/Q)=D(L/F)D(F/Q)=D(L/k)D(k/Q).
Hence we have

=1 DF/Q)D(k/Q)". Q.E.D.

Let us, temporarily, assume that K/Q is a dihedral extension. Then the
Galois group G(K/Q) is the dihedral group D, of order 8 and we have the
following diagram of fields:

&t sy F E <2, s

Q
G:G(K/Q):<r) s>

where E denotes the imaginary quadratic field determined by F and k. The
conductor ¢ of K/k is an ideal of Z by Satz 7 of Halter-Koch ([8]). Now we
put

c=(c), ceZ.

Since V=%, (}-DWF/Q))? is an ideal of Z, i.e.,
(1-D(F/Q))*=(g*-d),

where ¢ is a positive integer and d is a positive squarefree integer. K/k being
a cyclic extension by ‘assumption, we have the following by Lemma 1

LEMMA 2. c=gq-e3* and E=Q(—=d),

where
{ 1 if d=3 mod4,
€q—

2 otherwise.

We are going to discuss how to obtain an identity between cusp forms of
weight one. Take an integer g of F such that p<0, ¢p’>0 and g=1 modf,
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and denote by the same letter p the ray class modulo | represented by the
principal ideal (u). Then, by the condition (1), ¢ is an element of order 2 of
Hz(f), and by the condition (2), we have

He(N=Hr(D)o+Hr(Dopt -

Let <up’> be the subgroup of Hg(f), generated by pp’ and let R be a complete
set of representatives of Hp(f), mod {up’>. Since <{gu’> is the subgroup of order
2 of Hz(Y),, we have

He)=RURpUJRy" URpy’  (disjoint).
For céHF(T), we put
Cr(s, )= 25 N(a)™*.

aEc
aCop

Then it is easily checked that

Erls, G#):CF(S: 0';1’)

for c=R. Let X be a character of Hgz(f) with conductor f(oo,) satisfying the
condition (1). Then the Hecke L-function of F attached to X has the following
expression

Li(s, D= ZX(0){Crls, 0)—Cr(s, 0p)+Lals, ap")—Cx(s, app)}

:a%:RX(O‘) {CF(S’ 0)—CF(S: aﬂﬂ,)} .

Let ¢ be an element of R and let a, be an integral ideal of ¢-*. We put
Af={a<a,: a=1 mod{, a>0, a’ >0},

A;={aca,: a=1 modf{, a<0, a’<0}
and
A,=AJAS.

Then it is easy to verify that
A;,={acor: a=p, mod a,f, Ma)>0},

where p, denotes an element of a, such that p,=1 modf Moreover, we have
the following two bijections:

Armod Efsamod Eff «<— aa;lsoMNog
and

A;mod Ef2amod Eff <— aa;'sopup’ Nog,
where

Ef={e:a unit of or | e=1modf, ¢>0, ¢’>0}.

From these correspondences, it is easy to see that
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Ce(s, o)= 2 (Ma)/Nay)™*

aEA;'modE?'
and
Ce(s, opp)= 2 (Na)/Na)™.

aeA;modEf
Hence we obtain an explicit form of Lg(s, X):

Le(s, N)=2Xo) 2 (sgna)N(a)/NMas)™*

aEA”modEf

= 3 U(0)S(sgn a)(N(@)/ Na,)) ™,

where a in the summation runs over all integers of F such that a=p, moda,{,
amod Ef and N(a)>0.

We apply the inverse Mellin transformation on the above L-function and
obtain the following indefinite cusp form of weight one:

Or(t)= ERX(G)z‘y)(Sgn a)gV @ /N o) (g=e2"%%)

_—.0231(0')0(QD17; pa, g, T);

where {=0f;, Tll\/ﬁy D;=N(j,) and

0(; po, Qg, N=(sgn a)g™ @ /N @Dy
2 ,

In particular, if we put f;=+/D, then the above function # is just the Hecke
indefinite modular form defined in Section 1.
On the other hand, since K/ is a cyclic extension, we can put

H(0)/C=<4>,

where C denotes the subgroup of H,(c) corresponding to K. The generator A
is an element of order 4m. The restriction of the representation of Gal(X/@Q)
induced from X to Gal(K/k) is a direct sum of two distinct primitive characters
&and & of H,(c)/C via the Artin map. Then we consider the Hecke L-function
of £ attached to &:
L (s, E)=a§ké(a>N(u)“s-
4m-1 )
= 3§ 3, N,

aCop
For every odd j, the correspondence
, A€, aC 0, <> a' €A2™HVI q'Co,
is bijective and : .
E(Z)J‘:(_l)jeu)(zmﬂ)j.
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Hence

Li(s, =3 €& 3 N@*
aCop

=Sy 3 No<- 3 Na.
aCop aCep

Applying the inverse Mellin transformation on the above L-function L .(s, &),
we have the following positive definite cusp form of weight one:

04(c)= 'gswy{02,-<r>—02,~+2m<r>},

where
0j(T)= 2 qN(a) (q:eZnir).
aEQJ

acoe

It is now clear that the above results, combined with the coincidence (3) in
Section 2, prove the following identity :

0 p(7)=0(7).

From now on, we assume again that K/Q is a dihedral extension. Then
m=1 and

0x(t)=0(QDy7; 1, 05, N=t"'9(QDs7; p, Qv'D),
where k=1, Mp)-£>0, fo=(Q+/D) and t=[E} :u,]. Consequently we have

THEOREM 1. The notation and assumptions being as above, we have the
following identity between positive definite and indefinite cusp forms of weight one:

4 t19(QDyt; p, Qv D)=0(t)—04().

Theorem 1 gives a number theoretic explanation ofTthe identities discovered
by Kac and Peterson ([7]).

4. Numerical examples.

In this section we shall give some numerical examples based on
and Theorem 1 in Section 3. As the method for making of the examples which

are the focus of this section is the same for each, we shall give the details
only for the first example.

1. For the first example we set F=Q(+/3) and {=(24/3). The fundamen-
tal unit of F is totally positive and is given by e=2++/3. It is easy to see that
e’=1 modf. Put g=(7—6+/3). Then the group Hx(f) is an abelian group of
type (2, 2):
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HF(T):{I! fl: ﬂ,r [I‘U’} ;

Hp(Do=1{1, pp'}.

Hence the field F and the conductor | satisfy the conditions (1) and (2) in
Section 2. By we know that '

k=Q(+/=1) and c¢=(6).
Furthermore, since H,(c) is a group of order 4, we have C=/{1}, and so

Hy()=<, 2=0Q++/=1).
l > K=Q(~/—1, Y12

and

bicyclic IZ
L cyclic L=QW~L V=3
F=Q(3) l—->/e:Q(\/-—l) E=Q+-3)
f=2v3) ¢=(6) 4=(4v=3)
Q

In the following we shall look for the explicit forms of 8, and @z First
we treat the function 6,(z). It is easy to see that
{ ac(l) & a=(a), a=1 mod6,
ael? & a=(a), a=2+3+/—1 mod6.
Hence, if a=x+3v—1y (x, 3)=1), then we have |
(a)e{l) & x=1mod2 and y=0mod2,

(@)€2* & x=0mod2 and y=1 mod2.

Therefore
1

012(7)”—‘? 2 (—Dvg=*+*v’=p*(127).

(x,s)?—-’x?:cs ymod 2
Next, for the function 8z(z),

ae(l) & a=(a), a»0 and a=1 mod2+/3,
acpy’ & a=(a), a»0 and a=—1 mod2+/3.

Therefore, if a=x+24v3y (>0, x=+1 mod6), we have
 @e(l) &= x=1 mod3,
(@epy’ & x=—1 mod3.

Since ae**=(Tx+£24y)+(l4y+4x)+/ 3, we have the following as a fundamental
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domain :

x=4]yl,
so that

0x(t)=9,(127; 1, r\/ﬁ): . %“éz <_‘§_)qz2—12y2. 3)
x4y, (,6) =1

Another form of 6z(r) is obtained as follows: Let p be any positive integer
in F. Then it is easy to see that

ﬁp(z'):%(sgn ‘8>qN(,@)/N(p) ,
where 8 in the sum runs over all integers of F such that §=pmodfp, fmodEf
and N(B)-N(p)>0. Now we set p=1++/3. Put
g FTVEL i >0,
| x—yv3, if B<0
for rational integers x and y. Then, for the case 8>0,
y>0, x=1mod6é and x=y mod4.

Therefore we can put
x=6l+1, y=2k+1 and k=l mod 2

for rational integers & and /. Since Be**=(7x+12y)+(7y+4x)+/3, we have

7yi4x§y, i.e., 3_’))22[75]’
and hence

k=211].
For the case 8<0, we have

y>0, x=1mod6 and x=y+2 mod4.
Hence we put

x=6{41, y=2k-+1 with %%/ mod2

for rational integers £ and /. Since Be*!=(TxF12y)+(—7y+4x)v/3, we also
have the following as a fundamental domain :

k=2]1].
Therefore we obtain the following expression of 0x(7):

2_
(0= (_1)k+lq(3(2k+1) (6l+1%)y/2
N

k22710

For comparison, we write down the expression of the above right-hand side by

3) For instance, cf. Hecke [1, pp. 425-426].
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Hecke’s modular form:

91205 144/3, (144/3), VI2= 3 (—1)r+igeersni-GLinhre,

k,lEZ
kz21li

By combining the above results and the identity (4), we have the following
remarkable identities :

0p(t)=9,(127; 1; V/12)= %;z (%)qz2—12y2

X, YE<.
rz4lyl, (z,6)=1

— 2 (_1)k+lq(3(2k+l)2-(sl+l)2)/2

kIEZ
kz2il1

= XN (—D)rgrt=y(120),
2 x,yeZ
(r,8)=1,r#ymoi?2
where 7(z) is Dedekind’s eta function.
REMARK 1. In exactly the same way as for 6,(r), we obtain

0 5(7)= \ %Z(_l)kﬂq(e k+1)2+1212:77(24z.)190(241) ,
where

()= 3 (—Dmerines,

2. We set F=Q(4/2) and §=(4). The fundamental unit of F is given by
e=1+4/2 and satisfies N(¢)=—1 and e*=1modf. Thus, in the same way as
for the first example, we have

E=Q(v/—=2), =4),
E=Q(v/=T1), ¢=0@l++/=1)),
K=k(ve);

and obtain the following identities :

0p(t)=9,87;2+~/2,24/8)

fd 2 (_:_]'_)qxz—32y2: Z (_l)nq(2n+1)2_32m2

x, yeZ X m,neZ
xz6lyl, (z,2)=1 nz8lml
=0k(r)= 3 (—1yg=*+sv?
T, yeZ
Z=1mod 4

= E (—“l)nq(4m+1)2+8"2=77(81')‘/}(161‘)

m,n<eZ

:0E(T>: E (_1)m+nq(4m+1)2+16n2 .

m,neZ
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1+45

2 7 Me)=—1, e*=1"modf,

[ F=Q(V'5), f=(4); €=

k=Q(~—=5), =(2),
E=Q—-1), g=(0),
K=k ¢e).

0Aﬂ=%ﬂ4k;6+¢§ﬁ&4¢?)

— 2 (_1)y+(z-1)/zqz2-2oy2
x,YyEZ
z251yl, r:odd

= (_l)kq<5(zk+1>2-(zz+1)z),4
Z

k,le
2k2la0

_1_ » (_l)yqzhsyz.
2 x,yEZ
Z*y mod 2

=0 (t)=

The second expression of 6,(r) is obtained as follows: It is clear that
H,(¢) is a cyclic group of order 4 and

Hy(0)=<, 2=G, 1++/—5).
By the result in Section 3, we have also

Lis, )= = N(Cf)”“ﬂg%‘g N(a)-°.

ae(1)
aCo k aCo ]

In the following we shall calculate the right-hand side of this equality. We
can put

a=(y), p=a+b/ =5 (a,beZ).
Thus

ace(l) & p=1mod2 & a=1 and b=0 mod2,
a€® & p=2—+/5 mod2 & a=0 and =1 mod2.

The contribution of ideals a divided by A to the first sum cancels that to the
second sum. Therefore we may consider the ideals a with (a, )=1 in the
above sum. Hence, if we put p=Q2a--1)4-2b/—5 (a, b€Z), we have

2(a—b)-+1=%=0 mod 3.
On the other hand,

(1—+/=5)p=(2a+100+1)+2(b—a)—1)v/—5 .
Put s=b—a and t=a-+5b, then t=5smod6. Therefore we put

s=u-+6m and t=v-+6n.
Then
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v=5u mod6 0= u, v=5).

Hence
2(b—a)=1 mod3 & ZuflEO mod3 & u=2,5.
Therefore ‘
(u, v)=(0,0), (1,5), 3,3) and (4, 2);
and

N(p)={(12n+2v4-1)*+5(12m-+2u—1)?} /6.
Now we obtain

> N(g)—s:%{m’%;( (12n+7)*+5(12m+7)? )-,

a&s(1) 6
aCop
a,)=1
(12n4+1)2+-5(12m-+1)% \-s
+m,;ezz( 6 ) }
6n-+1)2+56m-+1)% \-*
= 3 (__,1)m+n<(n+)"l'6(m‘|f')) )
m,nez

m=n mod 2

In the same way as above, we obtain

6n-+1)24-56m-+1)% \-*
221V<a>_8: » ((n‘l")‘%(m'{‘) ) .
aER m,nez
(aa'cz?il m+n=1mod 2

Therefore we have

L (s, s)zm;d(_l)m,z( (6n+1)*4-5(6m-+1) )-.,.

6
Hence
ﬁk(z-)::mznlez(_1)m+nq((en+1)2+5(sm+1)2)/s
=n(47)n(207).
4. — _
F=qwan,  =(TYR); e=2TV2 1 o,
2 2
[ k=Q(W=T), =),
]E=Q(\/—_3),
K=pWa), a=2TY2
— 2_2192) /4 1 . 57 5T\
b= B (T5)a =59, T+ VAD/2, VD)
z27\yl, 2=y mod 2
= 04(0)=

247y2
G(X, y)q(z B )/4)
2

79
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where
1, if 3|yand 3/x,
o(x, y)z{—l, if 3|x and 3}y,
0, otherwise.

On the other hand, after a similar computation to that in Example 3, we find

01;(7): E (_1)m+nq((6m+1)2+7(6n—1)2)/8 .
m,ncz

It is well known that the right-hand side of the above identity is just the
function 7(37)n(217).

REMARK 2. Examples 1-3 were discovered by Kac-Peterson by using
the general theory of string functions for affine Lie algebras. A similar result
was obtained for some other cases (Jimbo-Miwa [6]).

REMARK 3. 79(7)9(237), 7(2r)n(227) and 7(67)n(187) are of D,-type and hence
can not be expressed by the indefinite theta series.®

REMARK 4. Biquadratic residue mod p and cusp forms of weight one. In
Example 2, we have obtained the following identity
(5) b (__l)nq(4m+1)2+8n2: ) <_1)m+nq(4m+1)2+16n2
m, nEZ m,neZ ’
by intermediating the function @z(r). This identity appeared for the first time
in Jacobi’s memoir and gives a generalization of the equivalence of Gauss’ two
criteria for the biquadratic residuacity of 2. In the following, we shall discuss

more precisely this fact from our point of view. Consider the following dia-
gram:

Q

L
//'\
F=Qv2) E=Q6) k=Q(-2) K=QU,V7), e=1+vZ
] K'=QU, ¥2), i=+/—1
Then, at the same time, £ is the maximal ray class field over F
mod 4+/ 2 (c0,)(c0,), over £ mod 4v/— 2 and over E mod8. Let » and r be dis-

tinct primes such that p=r=1 mod4. We write (v/p);=1 or —1, according as
y is or is not a fourth-power residue mod p. Then it is easily checked that

4) For cusp forms of weight one obtained from 7, see and [9]
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p splits completely in L & (—1/p)=(—2/p)=1 &= p=1 mod8
& p=4a+1*+8b®
& p={a+1)*4168%;

and moreover

(¢/p)=1 &= p splits completely in K

(6)

& b=0mod2 & a+5=0 mod2
and
o (2/p)y=1 &= p splits completely in K’

& a=0mod2 &= p=0 mod2.

The above identity (5) gives a generalization of the equivalence (6); and the
following identity gives a generalization of (7):

, b€

—;-192(81')30(322'):“ ﬂzez(_l)ﬁq(mn)?ﬂsﬁ?:a ZZ(_I)aq(4a+1>2+sb2 ,

where
192(7.'): Z exim2r/4.

M=1mod 2

We plan to discuss a more general case in a subsequent paper.

5. Higher reciprocity laws for some real quadratic fields.

Let F be a real quadratic field satisfying the conditions (1) and (2). Then
there exists an imaginary quadratic field %, and two L-functions associated with
F and % are coincident. Suppose that K/k is a cyclic extension and K/Q a
dihedral extension. Let f(x) be a defining polynomial with integer coefficients
of K/Q through the real quadratic field F. Let Spl{f(x)} be the set of all
primes p such that f(x)modp factors into a product of distinct linear polyno-
mials over the p-elements field F,,. Then we have the following

THEOREM 2. Spl{f(x)t={p:prime | pyd;, a(p)=2},

where 4y denotes the discriminant of f, and a(p) denotes the p-th Fourier coeffici-
ent of Hecke's indefinite modular form @g(t) associated with F.

PrROOF. We put

04(7)= 3 £a)g" =3 bln)g".

aCo g

Let p be any prime ideal of % unramified for K/k. Then we know that
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(i) &)=1 & pe(l) & p splits completely in K;

(ii) &p)=—1 & pei* & p splits completely in L/k
and remains prime in K/L;

(iii) &(p)=i or — &= psidor pA®* &= P remains prime in K.
Let p be a prime number and
p=pp’ in k&,
where p’ denotes the conjugate of a prime ideal p. Then
pe(l) = b(p)=2;

and vice versa. Let F(x) be a defining polynomial with integer coefficients of
K/k. Then it is easy to see that

SpH{F(x)}={p | b(p)=2, p}t 45},
where 4dr denotes the discriminant of F. On the other hand,
Spl{f(x)}U{p | p unramified, p|d,} =Spl{F(x)}\U{p | p unramified, p|4z},

and by Theorem 1,

b(p)=a(p)
for all p. Hence we obtain

SpH{fG=1{p | a(p)=2, pt 4}

ExaMPLE 1. We shall use the same symbols as in Example 1. Then we
have the following defining equation of K/k:

Fix)=x*—12 or Fy(x)=x4—6x2—-3.
On the other hand a defining equation of K/F is given by
fix)=x*—41++ 3)x2-+4(2+~/3 ).
Therefore the following is a defining equation of K/Q through the field F':

Fx)=f1x)-f1(x)

=x8—8x%+424x*+160x2+16.
Hence

SpH{Fi(x)} =Spl{Fy(x)} =Spl{f (x)}
={p | a(p)=2}

={p | p=u+2?, u=0 mod6 (u, vE2)},
where
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0p(0)=9,(12¢; 1, v/12)= éa(mq".

REMARK 5. For the defining polynomial f(x) in [Theorem 2, the following

assertions hold :

(i) f(x) modp has exactly 2 distinct quartic factors over F,
& a(p)=0 and a(p®>)=—1;
(ii) f(x)modp has exactly 4 distinct quadratic factors over F,

& ‘a(p)=-2" or ‘a(p)=0 and a(p?)=1".
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