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§0. Introduction.

Throughout this paper, we fix the complex number field C as the ground
field. The purpose of this paper is to prove the following

MAIN THEOREM. Let X be a nonsingular projective 3-fold whose canonical
divisor Ky is nef and big (cf. M. Reid [12] or §1). Then
(1) @iy is birational with the possible exceptions of

a) XOx)=0 and Ki=2, or

b) [3Kx!| is composed of pencils, i.e., dim @ ;x ,(X)=1,
(ii) @ingy is birational for n=8. Further if X(Ox)<O0, e.g. when Ky is ample,
Dk 5 1S birational for n=7.

X. Benveniste proved that @ ,x, is birational for n=9 under the same
assumption as ours. Our proof follows mainly his ideas but improves the result
to the extent that it guarantees @ ,x,, being birational for n=7 if X(0x)<O0.

The author is grateful to Prof. X. Benveniste who was kind enough to send
us his preprints about this topic.

§1. Preliminaries.

Let X be a nonsingular complete variety, and DeDiv(X)®Q, where Div(X)
is a free abelian group generated by Weil divisors on X. Then D is called nef
if D-C=0 for any curve C on X, and big if (D, X)=dim X (cf. litaka [6]),
respectively. We denote the linear equivalence and the numerical equivalance
by ~ and =, respectively. For DeDiv(X) with A%X, 0x(D))#0, @,p, denotes
the rational map associated with the complete linear system |D]|.

PROPOSITION 1. Let X be a nonsingular complete variety, and D<Div(X)XQ.
Assume the following two conditions:
(i) D is nef and big,
(ii) the fractional part of D has the support with only normal crossings.

Then

HY(X, 0x("D14+Kx)=0  for i>0,
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where TD1 is the minimum integral divisor with TD1—DZ=0.
For a proof, see Kawamata [8], Theorem 1.2.

PROPOSITION 2. Let X be a nonsingular completé variety with the canonical
divisor Ky. Then the following conditions are equivalent to each other.
(1) There exists a positive integer n such that the base locus Bs|nKx|=@ and
that @ \nx 51 1S birational.
(ii) Ky is nef and big.

For a proof, see Kawamata [8], Theorem 2.6.

PROPOSITION 3. Let X be a nonsingular projective 3-fold, and DeDiv(X).
Then we have the following assertions:

(1)  2ox(D)=(D*/6)—(Kx-D*/H)+(D-(Kx+c3)/12)+X(0Ox)

and
XOx)=—(c:-Kx/24),

where ¢, is the second Chern class of X.

(i) Kx-D? is even. In particular, K% is even.

Proor. (i) is the Riemann-Roch theorem. (ii) follows easily from (i) and
the calculation

XOx(D)N+XOx(—D)=—(Kx-D*/2)+200x)EZ.
PROPOSITION 4. Let X be a nonsingular projective 3-fold whose canonical
divisor Ky is nef and big. Then
(i)  Pm):=h"(X, 0x(nKx)=0C2n—D{n(n—1)K%/12—X0x)}  for n=2,
(ii)  UOox)=K%/6,
(iii) (X, 0x(nKx)=5  for n=3.
PROOF. (i) is clear from (i) and [Proposition 1. (ii) follows

from the inequality
0=h"(X, Ox(2Kx))=3{K%}/6—X(0x)}.

For (iii), we consider the two cases. Whenever K%<4, (ii) implies 2(Ox)=0.
Therefore

h(X, 0x(nKx)=h"(X, Ox(3Kx))=(2-3—1){3(3—1)-2/12} =5.
Whenever K5=6, we have

R(X, Ox(nKx))Zh"(X, 0x(3Kx)2(2-3—1{33—1) K} /12— K% /6} =10.

Thus we obtain (iii).
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§2. Key steps.

The following theorem about a surface plays a crucial role in our proof of

the main theorem. We replace the condition A%S, ©s(mR))=7 in [Proposition 20
of Benveniste by (*) below, which is weaker than the former.

THEOREM 5. Let S be a nonsingular projective surface, RePicS a nef and
big divisor on S, and m a positive integer which satisfy the following condition (x).

(x)  Given arbitrary two distinct points x,, x,<S, letting n:S”"—S be the blow-
ing-up at x; and x,, L,:=n"Yx,) and L,:==n"x,), the linear system
|m*(mR)—2L,—2L,| is not empty.

Then @ xgimr: 1S birational in the following two cases:
(i) R®=2 and m=3,
(ii) R?=1 and m=4.

PrOOF. First, we note the following two lemmata.

LEMMA 5.1. Let S be a nonsingular projective surface, RePicS a divisor
with R*>0. Let (E)ic; be the family of distinct curves such that R-E;=0.
Then the E; are numerically independent in N,(S):=({1-cycles}/=)RR.

PrOOF. This follows easily from Hodge’s index theorem.

LEMMA 5.2. Let S be a nonsingular projective surface, RePic S a nef divisor
with R*>0. Given a positive integer n, let A, be the set of effective divisors D
on S such that R-D=0 and D*=—n. Then A, is a finite set.

PROOF. Let (E;);c; be as in Lemma 5.1 Then the E; are numerically
independent. Thus #(I)<p(S). Moreover, Hodge’s index theorem asserts that
the intersection matrix of (E;);c; is negative definite. Thus the number of
DeP; Z.E; with D*=—n is finite, Z, denoting the set of positive integers.

We now return to the proof of Let B,:=\Upe4,D and U :=S\B,.
Then by B, is a proper closed subset of S. Thus U is a nonempty
Zariski open set of S. In the following argument, we shall show that [Kg+mR)|
+@ and that @ s+mri Separates any two distinct points x;, x, of U.

CLamM 5.3. Any member A<|n*(mR)—2L,—2L,| is linearly l-connected
with A*>0.

ProOoOF. We note first that
[#*(mR)—2L,—2L,|+ &

from the hypothesis, and we have
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A’=m*R*—4—4>0

in both of the cases (i) and (ii). Therefore it is sufficient to show that A is
linearly l-connected, i.e., for an arbitrary decomposition of A, A~D,+ D, where
D, and D, are nonzero effective divisors, we have D,-D,=1.

Let E,=n(D,) for 7=1, 2. Then for some integers a;, b;, we have

D;=n*E))+a;L,+b;L,.

By definition,
a,+a,=b,+b,=—2.
Moreover,
Dl M D2:E1 'Eg"—alag"_blbz .

We put &:=(R-E,/R® )R—E,. We note here that é=—(R-E,/R*)R+E,, since
mR~zw(A)~E,+E,.

Case 1. R-E,>0 and R-E,>0. The assumption of this case implies

0={(R-E)—1}{{R-E)—1}=(R-E)R-E,)—mR*+1.
Therefore
E\-E,=(R-E,)(R-E,)/R*—¢&*
=2(R-E)(R-E,)/R*z(mR*—1)/R*>2
in both of the cases (i) and (ii). Furthermore a,+a,=b,+b,=—2 implies a,a,
=<1 and b,b,=<1. Thus
DI'D2:E1'E2_ala2_—'b1b2§1.

Case 2. R-E,=0. If a,=—1 or b,=—1, then x,€E, or x,=E, respectively,
since #*(E,)+a,L,+b,L, is effective. Since x,, x,& U=S\B,, the definition of B,
implies E?<—3. Noting that E,-E,=E,(mR—E,)=—FE} we have

Dl'D2:E1‘Eg'—alag_blbzz—E%—alag—blbgzl.
have E?<—1, which implies

Dl 'DZZ_Eg—alag_blbggl .

In the case with E,=0, i.e. E,=0, since D,==*(E,)+a,L,+b,L, is nonzero effec-
tive, we have a,>0 or b,>0. Thus a,a,<0 or b;b,<0 respectively. Therefore
D,-D,—=—a,a,—b,b,=1.

The case with R-E,=0 can be treated similarly as in Case 2. This com-
pletes the proof of Claim 5.3.

We have an exact sequence
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0 —> Os(r*(Ks+mR)—L,—L;) —> Osn*(Ks+mR))
—> OLIEBOLZ D 0.
Since Ae|n*(mR)—2L,—2L,| is a nonzero effective divisor which is linearly 1-

connected by Claim 5.3, Ramanujam’s vanishing theorem (cf. Ramanujam [10])
and Serre duality imply

HYS”, Osn*(Ks+mR)—L,—L,))
=HY(S”, Os(—(n*(mR)—2L,—2L,)))=0.
Therefore the induced homomorphism
H(S”, Os(a*(Ks+mR))) —> H(L,, 0L )DH (L., OL,)
is surjective. Thus we complete the proof of

COROLLARY 6 (cf. Bombieri [3]). Let S be a nonsingular projective surface
of general type with the canonical divisor Ks. Then @ kg is birational for n=5.

PROOF. We may assume that S is minimal, which implies Kg is nef and

K¢=1. By Riemann-Roch theorem and [Proposition 1, we have

h(S, 0s(mKs))=X(0s(mKs))
=mKs—Ks, mKg)/2+X(05)=7 for m=4,

noting that X(®s)=1 since S is of general type. Therefore R:=Kgand m:=n—1
satisfy the condition (x) of Thus we obtain the required result.

THEOREM 7 (cf. Proposition 3-0 of Benveniste [1]). Let X be a nonsingular
projective 3-fold whose canonical divisor Ky is nef and big. Setting W,:=
(DmKX,(X) for a positive integer n, we have the following assertions:

(i) dimW,=2 for n=4.
(ii) If dim Wy=1, then one of the following two cases a), B) holds. We consider
the commutative diagram below and introduce the next notation.

hy
X — s W

Here fy is a succession of blowing-ups with nonsingular centers such that g,:=
O sk 5 1°fs 1S a morphism, and gs=s;-h, is the Stein factorization. Let by:=deg(s,)
and S; be a general fiber of h,.

Case a) by {S; f¥(Kx)*}=2. In this case, X(Ox)=1 and K% =6.
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Case B) bs=1, S:-f¥(Kx)?*=1. In this case, S; is a nonsingular projective
surface of general type. Letting my: Ss—Ss, be the morphism onto the minimal
model Ss,o of Ss, and K, o the canonical divisor of S, we have K&,=1, and

Os,(m5(Ks,0)=0s,([5(Kx)ls,).
(iii) dim W,=3 for n=8.

PrOOF. First, we note that dim W,=1 for n=3, since A%X, Ox(nKx))=5
for n=3 by (iii).

Proofs of (i) and (ii). Take a positive integer n=3. Assuming that dimW,
=1, we shall show that n=3. We consider the following commutative diagram :

h

X —" > W,
fnl X lsn

where f, is a succession of blowing-ups with nonsingular centers such that g,
1=,k yi°frn is @ morphism, and g,=s,°h, is the Stein factorization. Let b,:=
deg(s,) and S, be a general fiber of h,, H, be a hyperplane section of W, in
PF™-1 and let a, be the degree of the curve W, in PP-1, Then

FanKx) ~ hisi(Hp)+Zn,
where Z, is the fixed part of |ff¥(nKx)|. Thus
f¥nKy) = apbnSp+2Zn.
Multiplying this equality by f¥(K)?, we obtain
nKy=nf3(Kx)'=a,b, f5(Kx)* Sut[2(Kx)* Za.

Let ¢, :=f%(Kx)*-S,. Since f¥(Kx) is nef and big and since S, is nef and
S»#0, it follows that ¢,=1 and f¥(Ky)*-Z,=0. Thus

nKi=a,b,c,.

Moreover, since W, is the image of @ ,x x> We obtain
a,=zP(n)—1.

Combining these inequalities and equalities together, we have

2n—D{nn—1DK%/12—X0x)} —nK%/bnca =1,
i.e., defining

Ry, c,(n) = n{2n*—3n+1—(12/byc,)} K% /12— (2n—1)X(Ox),
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we obtain that R, ., (n)<1.
Now we examine the following two cases separately.

Case 1. X(©x)=1. By (i) X(©x)<K%/6, we have 6=K%. We
define P, . (x) by
Py, (%) i= x{2x*—=3x+1—(12/bncn)} /2—(2x—1).
a) the subcase b,c,=2. We have for n=3 that
P(n)Z Py, M =Ry, (n).

In fact, it is clear from the hypothesis b,c,=2 that P,(n)<P; . ,(n), and

Rbncn(n)—'ancn(n)
=n{2n*—3n+1—12/bnca)} (K3 /12—1/2)—(2n—1){X(0x)—1}
Zn{2n’—3n+1—12/bpc ) HX(Ox)—1}/2—(2n—1D{X(0x)—1}
= {n2n*—3n+1—-6)/2—2n—1)} {X(©x)—1} =0.

On the other hand, a simple computation shows P,(n)=23 if n=4. Thus n=3.
Moreover, P,(3)=1. Therefore, in this subcase, all the inequalities above must
be equalities, i.e., bpc,=2, ¥(Oyx)=1 and K§=6.
B) the subcase b,c,=1. By a similar computation to that in the subcase a),
we have P,(n)<R,(n) for n=4. But P,(n)=11 if n=4. Thus n=3.

Case 2. X(©x)=0. In this case,

n{2n*—3n-+1—(12/b,c)} K% /12— 2n—1X(0x) =1
implies
R () :=n{2n*—3n+1—(12/b,c,)} K} /121 for n=3.
Define a polynomial Q,,.,(x) by
Qb e, (%) 1= x{2x°*—3x+1—(12/byc,)} /6.
a) the subcase b,c,=2. We have
QM =0, (M=RG e, (1)

But by a simple computation Q,(n)=2 for n=3. Thus this case does not occur.
B) the subcase b,c,=1. We have Q,n)=R;,(n) for n=4. But a direct
calculation shows @Q,(n)=6 if n=4. Thus n=3.

This completes the proofs of (i), (ii) a) and the former part of 8). In what
follows, we shall prove the latter part of 8). We assume that byc;=1. Then
bs=1 and c,=f¥(Ky)*-S;=1. We put N,;:=f:4x(Z;) and F;:=f34(S;).

Then
3Ky = asb;Fs+N; (1)

F¥ashsFs) = ashySi+Es (2)

and
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where FE; is an exceptional divisor for f,. Moreover, taking f; in such a way
that all the centers of the blowing-ups are on Bs|3Kx|, we may assume
Supp(E;)=Supp(exceptional locus of f;)
Multiplying (1) with Ky-F,;, we have
3Fs Ky=asbsKy-Fi+Ky-F3 N;.
By hypothesis, we have

Fy-Ky=/%Kx)*Ss=1,
and
KX'Fa'Nago,

because Ky is nef and F;-N;=0 (as a l-cycle). Thus

32(1353KX'F§. (3)
On the other hand, applying (iii), we have
a;=P(3)—1=4. (4)

Moreover, since F2=0 (as a l-cycle) and since Ky is nef, it follows that
Ky F§=0. (5)
Combining (3), (4) and (5) together, we have
Ky -Fi=0. (6)
Since S, is a general fiber of h;, we obtain
[3(Kx)-S§=0. (7)
Multiplying (2) by f¥(asb:Fs)-f¥(Kx), we have
a3D3K x - Fi=aibiSE [E(Kx)+2f5(Kx) [$(ashy Fo)- Ei—f5(Kx)- E3*.
Thus the equality above with (6) and (7) implies
fH(Kx)- Eg*=0.

implies that there exists a positive integer p such that Bs [pKx|=@.
Then a general member T <|pf¥(Kx)| is a nonsingular projective surface by
Bertini’s theorem. Let (E, ;);c;, be all the prime components of Ej. Since Ej
is exceptional for f;, we have

(¥ Ex)|r-Es lr)r=p/5(Kx)-f5(Kx) By ;=0 for any i€];.

Furthermore f¥(Kx)lr is nef, (f¥(Kx)lr)*=pf¥(Kx)*>0 and (E:|r)zi=pf}(Kx)-E;?
=0. Thus applying Hodge’s index theorem on T, we have E; ;|;=0, i.e., f¥(Kx)-E; ;
=0 (as a l-cycle of X). Therefore
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Ss Es i+ f¥Kyx)=0  for any i€/,.

We set R,:=f¥Kx)|s, and G,:=E|s,, where EY{ is the ramification divisor for
fo e, Ke~f¥Kyx)+EY. Then by the way of taking f; Supp(Ej;)=Supp(E%).
Since S;|s,~0, it follows that Ks,~R;+G: where Ky, is the canonical divisor of
Ss;.  Since S; is a general member, we may assume that G, is effective. R,
being nef and big, we conclude that S; is a nonsingular projective surface of
general type. Blowing down the exceptional curves on S;, we obtain the minimal
model S;,, of S; with the morphism 7;: S5—S;,,. Then Kg ~n¥(K; o)+ Ls, where
L, is the ramification divisor for =,. Thus

R3+Gs ~ ﬂ?(K& o)‘l’Ls-
Note that R{=f%(Kx)*-Ss=1, Rs-G;=f%(Kx)-Ss-E{=0. Therefore, since n¥(K, ,)
is nef and big and since L, is effective, numerical effectivity of R, implies that
Rg'x?;(K_g’O):l al’ld R3'L3:0. ThUS

R3'(R3—TF>§(K3,0)>:O-
By Hodge’s index theorem, we obtain

Og(Rs—?T?f(K&o))Z:R%"ZRs : ﬂ?(K&o)“"ﬂf(Kz,o)zgo,

which implies R,=x=¥(K;,) and L;=G, Since L, and G; are effective divisors
with Ry L;=R;-G,=0, we have L,=G; and n¥(K, )~R;=f¥(Kx)|s,, This com-
pletes the proofs of (i) and (ii).

Proof of (iii). Take a positive integer n=3. Assuming that dimW,=2, we
shall show that n<7. We consider the following commutative diagram:

hn
x—2 W,

SN

X ——— W,
¢lnl{}(l
where f, is a succession of blowing-ups with nonsingular centers such that
Zn: =D nkx g °fnis @ morphism, and g,=s,°h, is the Stein factorization. Let C,
be a general fiber of h,, H, be a hyperplane section of W, in PP™-! q,:=
(Hrnlw,)? i.e., the degree of W, in P"™-' and b, :=deg(s,). Then

{%sh(Hp)}? = anbnCy

f;‘:(nKX> ~ h;‘:Sj:(Hn)_l_Zn,
where Z, is the fixed part of the linear system |f5(nKy)|. Squaring the equality
above and then multiplying it by f*(Ky), we obtain

and
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WKy ={h3sx(Hp)}? 5 (Kx)+{h5sk(HR)} - Zn f5(Kx)+nf5(Kx)* Zs.
Since f¥(Ky) and h¥sk(H,) are nef, we have
{h%sE(HDY 20 fH(Kx) =0 and nfR(Kx)? Z,=0.

Thus
anbnfﬁ<KX) 'Cn énzK,‘% .

We set ¢, :=f¥(Kyx)-C,. Since f{(Ky) is nef and big and since C, is nef and
C,%#0, we have ¢,=1. Thus

a b, En?K3.

Since W, is the image of @,,x,, which is a surface of degree a, in PP™ -1
we have a,=Pmn)—2. Thus it follows that

Sopen() :=n{2n*—(3+12/bpcn+1} K3 /12— 2n—1X(O0x) =2.
Case 1. X(©x)=1. Then we have K$=6 by (ii).

a) the subcase b,c,=2. In this case,
S e (m)Zn{2n*—@+12/bycn)n+1}/2—(2n—1)
=n2n*—9n+1)/2—(2n—1) if n=5.
In facf, it is clear from the hypotheses that
n{2n*—(3+12/byca)n+1} /2—(2n—1)

>n(2n*—9n+1)/2—(2n—1).
Moreover,

Sonen(m—[n{2n*—(B3+12/byc)nt1}/2—(2n—1)]
=>[n{2n*—3+6)n+1}/2—2n—1)1{X(Ox)—1}
=0  if n=5.

On the other hand, we have

n2n*—9+1)/2—2n—1)=6 if n=5.
Thus n<4.

B) the subcase b,c,=1. In this case,
Sp e, (M) Zn(2n*—15n+1)/2—(2n—1) if n=5.
But a simple calculation shows

n(2n*—15n+1)/2—(2n—1)=21 if n=8.
Thus n<7.
Case 2. X(Ox)=<0.
a) the subcase b,c,=2. In this case,

SopenMZn(2n*—9n+1)/6  if n=5.
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On the other hand, a direct calculation shows
n(2n*—9n+4-1)/6=5  if n=5.

Thus n=4.

B) the subcase b,c,=1. In this case,

Sppe (M2N(2n®—15n+1)/6  if n25.
But by a simple calculation

n(2n®*—15n+1)/6=12 if n=8.
Thus n=7.
Since dim W,=2 for n=4 by (i), a) and B) imply that dim W,=3 for n=8.
This completes the proof of

§ 3. Proof of the main theorem.

THEOREM 8. Let X be a nonsingular projective 3-fold whose canonical divisor
Kx is nef and big. Then
(1) Dizx g is birational with the possible exceptions of
a) X(Ox)=0 and K3=2, or
b) [3Kxl| is composed of pencils, i.e., dim @ 3k, (X)=1,
(ii) Dingy is birational for n=8.

Proor. We shall show that @,,x,, is birational in each of the following
four cases:
Case 1. dim W,=2 and n=8,
Case 2. dimW,=2, [X(©0x)#0 or K}+2], and n=7,
Case 3. dim W,=1, B8) and n=8§,
Case 4. dim W,=1, a) and n=8,
where a) and B) are the cases described in (ii).

Case 1. Assuming that @ ,x,, is not birational, we shall derive a con-
tradiction.

We have a birational morphism f;: X’—X such that ge=®sxy°fs is a
morphism. Let H, be a hyperplane section of W;:=® 45, (X) in PP®-'and S,
a general member of |g¥(H;)|. Since |g¥(H,)| is not composed of pencils by the
hypothesis dim W,=2, S; is a nonsingular irreducible projective surface. We set
3K y~N,+Z, where Z, is the fixed part of |3Kg|, and set

f,:ls‘(Ns) ~ Ss+E;, Kx~ f’;(Kx)+E3,

where E; is the ramification divisor for f; and Ej5 is an exceptional divisor for
fs. Moreover, we put m:=n—4 and

URES @Ile+mf;(Kx)+Ssl .
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From the relation
nKxr ~ { Ky +mf5Kx)+Ss} +(m+3)Es+f5(Zs)+Es,

we infer that ¢, is not birational, since @,k is not birational. Fix an effec-
tive divisor Dy |(m+1)f¥(Kx)+E,|, and a section t,cH' (X', Ox (m+1)f%(Kx)
+FE,)) which determines D;. ‘Then there exists a nonempty Zariski open set U
of X’ such that UND,=¢@, and that for an arbitrary point x U, there exists
yeU distinct from x such that ¢np(x)=¢n(y). We may assume that S;N\U=+ @,
since S; is a general member.

CLAIM 8.1, ¢nls, is not birational.

Proof. Take se HY(X’, Ox (g%¥(H;))) so that s determines S,. For an arbitrary
point x& S, N\U, there exists ye U distinct from x such that ¢,(x)=¢n(y). Since
torseHY X!, Ox (Kx +mf¥(Kx)+S;), there exists a=C* such that f,(x)s(x)=
a-t(v)s(y). By hypotheses, we have D,NU=@, which implies #,(y)#0, and
s(x)=0. Therefore s(y)=0, i.e., y&SNU. Thus ¢nls, is not birational.

We have an exact sequence
0 — Ox (Kx +mf¥(Kx)) —> Ox (Kx+mf§(Kx)+Ss)
—> O (Ks,+mR;) —> 0
where R;:= f¥(Kx)ls,. gives
HYX', Ox(Kx +mf¥(Kx))=0.

Thus the homomorphism

HYX', Ox (Kx: +mf5(Kx)+Ss) —> HSs, Os(Ks,+mRs))
is surjective, which induces ¢n|s,=®x SgtmByl-

CLaIM 8.2. @.Kssmﬂs. is birational.

Proof. Since f#¥(Ky) is nef and big and since S; is nef and S;%0, we have
Ri=f%(Kx)*-S;=1. The hypothesis n=8 implies m=n—4=4. Therefore, by
it is sufficient to verify the condition (%).

We consider the blowing-up of X’ at arbitrary two points x; and x, of S,
denoted by ¢: X"—X’. Let M,:=¢ (xy), M,:=¢ (x,), S the proper transform
of S; and my:=¢|g;: S¢S, the restriction of ¢ to Sy. Then z; is the blowing-
up of S; at x, and x, with the exceptional divisors L,:= z5(x,)=M NSy and
L, :=n7%x,)=M,N\S{. We have

hAX”, O x(md*fHKx))=h"X', Ox (mf§(Kx))
=h"(X, Ox(mKx))Z14.

In fact, in case K§=<4, the inequality X(©x)<0 implies that
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RA(X, Ox(mKx)Zh"(X, Ox(4Kx)"
=(2:4—1){44—-1)K3/12} =14.
In case K$=6, the inequality X(Ox)<K3}/6 implies that
(X, Ox(mKx))=h"(X, 0x(4Kx))
=2(2-4—1D{4(4—1)—2}K3/12=35.
Thus we have
- hU(X”, Ox(mP*fE(Kx)—2M,—2M,)) =14—4—4=6,

HY X", Oy {md*fH(Kx)—2M,—2M,))#0.

Since
O x(mp*fF(Kx)—2M,—2M,)|s;

=0gy(ma*(R;)—2L,—2L,),
we obtain the natural restriction homomorphism
HYX", Ox(m* f¥(Kx)—2M,—2M,))
—> H(SY, Osy(mn*(Rs)—2L,—2L,)).

We claim that this is not a zero homomorphism. Assume the contrary. Then

we have
Sy C Bs |m@*f §(Kx)—2M,—2M,],

which implies A%X”, ©@x.(S¥))=1. On the other hand, we have
hA(X", OxA(S§)=h"X", Ox{*gs(Hs)— Mi— M,))
=5—1—-1=3,
which leads to a contradiction. This completes the proof of Claim 8.2.

Claim 8.1 and Claim 8.2 are contradictory to each other. Thus we complete
the proof in Case 1. S

Case 2. We fix the notation as in Case 1. We can carry out the same
argument as in Case 1 up to the proof of Claim 8.2, which we modify as follows.
In this case, we have m=n—4=3. Since X(Ox)#0 or K}+2, we have

hNX", Ox-BP*fE(Kx)))=h"(X', 0x Bf§(Kx)))
=h"(X, 0x(3Kx))210.
In fact, in case K{=2, we have X(Ox)<0, which implies
h(X, 0x(3Kx))=(2-3—-1){3(3—1)K3/124+1} =10.

In case Ki=4, we have X(Oy)<0, which implies
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h'(X, 0x(8Kx))=(2-3—1){3(3—1)K}/12}=10.

In case K$=6, the inequality X(Ox)<K$/6 implies

h(X, Ox(3Kx))=(2-3—1){3(B3—1)—2} K3/12=10.
Thus

R X", Ox(3¢*fH(Kx)—2M,—2M,))=10—4—4=2.
Moreover, we have

h(X", OxAS§)=h"(X", Ox{*g¥(H)— M,— M,))

=10—1—-1=8.

Therefore, it is sufficient to show that RZ=2 in order to apply

CrLAamm 8.3. Ri=2.
Proof. We have a priori R}=f¥(Kx)*-S;=1. Assuming that Ri=1, we shall
derive a contradiction. Multiplying 3Ky~N,+Z, by Ky+-Ns;, we have
SK}‘N3=Kx' §+Kx'Ns'Za.

Thus, noting that K}-N;=fFKx)*-S;=R3=1, we have 3=Ky Ni+Kx:N; Z..
Since |Ss| is not composed of pencils, f¥(Ky) is nef and big, and since S; is nef,
we have

Ky Ni=f¥Kx) f¥(Ns)*=f§(Kx) - f§(Ns)-Ss

=f5(Kx) - S3+f5(Kx)-Ss- Es=1.

Moreover, Ky-N3% is even by (ii), and Kx-N;-Z,=0 because
N;-Z,=0 as a l-cycle. Therefore we conclude that Ky -N:=2 and Kx-N,;-Z,
=1. Since 2=Kx Ni=f§Kx) -Si+ff(Kx)-Ss-E;, [¥(Kx)-Si=1 and since
f¥ Ky)-Ss-Es=0, we have the following two cases:
(A) f¥(Kx)-S3=1 and f§(Kx)-Ss-E;=1, or
(B) f3(Kx)-S3=2 and f§(Kx)-Ss'E;=0.
We consider an exact sequence

0 —> HYX', Ox/(f§(Zs)+E3)) —> HY(X', Ox (3fF(Kx)))
s HY(S,, 05,3Ry).
Since f¥(Zy)+Ej is the fixed part of |3f¥(Ky)|, we have
dim¢ (Imr)=P(3)—1=9.
Subcase: dimgy(Ss)=1. In this case,

a5 = g4(Ss)- Hy= P(3)—2=8,
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but we have D=a,F, where F is a general fiber of g,|s, and D:= g¥(H,)|s,, Thus
Ry-Dza,28.
On the other hand,
Rs- D=f¥(Ky)-Si=1 or =2

in the case (A) or (B), respectively. This is a contradiction.
Subcase: dimgy(S;)=2. In this case,

D*2(Hy gq59)'2 P(3)—327.

When (A) holds, R, D=f¥#Ky)-Si=1, which leads to R;(D—R;)=0. Thus we
have by Hodge’s index theorem

(D—Ry)*=D*—2R,;- D+ R3<0,

i.e., D?*<1, which contradicts D?*=7. When (B) holds, R;-D=f¥§(Kx)-Si=2,
which leads to R;-(D—2R,)=0. Thus we have by Hodge’s index theorem

(D—2R,;)*=D*—4R,;- D4+4R;<0,

i.e., D*<4, which contradicts D*=7.
This completes the proof of Claim 8.3, and thus the proof in Case 2.

Case 3. We take a birational morphism f;: X’—X such that g,=®sx41°fs
is a morphism. Moreover, we use the same notation as in Case 1 except that
S; denotes a general fiber of g;: X’—>W,. Then S; is a nonsingular projective
surface of general type as claimed in [Theorem 7 (ii) B).

Assuming that @,,x, is not birational, we shall derive a contradiction.
Under the assumption above, ¢m:=@ kv +msyck yr+e3my iS NOt birational as in
Case 1.

CLAIM 8.4. ¢nls, is not birational.
Proof. Let (s;);e; be a base of the C-vector space H(X’, Ox:(g¥(H;))). Then

ty-si€HYX', Ox (Kx +mff(Kx)+Ey))

and the ¢,-s; are linearly independent over C. We take D,, t, and U as in Case
1. For an arbitrary point x&S,NU, there exists ye U distinct from x such that
On(x)=¢n(¥). Thus there exists acC* such that t,(x)s;(x)=a-to(¥)s:(y). By
hypothesis, we have D,\U=@, which implies #,(y)#0. Since g:=® 3m,, We
have g(x)=g(y), i.e., y&g 'g(x)=S;. Thus ¢nls, is not birational.

Let m3:S;—S;, be the morphism onto the minimal model S;, with the
canonical divisor K;, as in (ii) B). Since

Osy(Ti(Ks,0)=20s,(f[§(Kx)lsy) and  Ox(gF(Hs))|s,=0x (So)ls,=0s,,
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we have an exact sequence

0 —> Ox (Kx+mf¥(Kx)+g5(Hs)—Ss)

—> Ox/ (Kg +mf§(Kx)+g¥(Hy)

—> Og,(Ksy+mai(Ks,o) —> 0.
Moreover, since mfF(Kx)+g¥(H;)—S; is nef and big, gives

HYX', Ox(Kx+mff(Kx)+g¥(Hs)—Ss))=0.
Thus the homomorphism
HYX', Ox/(Ky +mf§(Kx)+8§(Hs))) —> H(Ss, Os,(I(sy,+mas(Ks,0))

is surjective, which implies

¢m|s,,=q)1K33+m::;(1{3,0)1=@| (M+1D K gyl -

But since m+1=n—3=5, (D,(mH,KSa, is birational by Thus we come
to a contradiction. This completes the proof in Case 3.

Case 4. We consider the following diagram:

where f; is a succession of blowing-ups with nonsingular centers such that
8s:=@P g yiofs and gn :=@ g 5 °fs are morphisms, and g,=s;°h; is the Stein
factorization. Let S; be a general fiber of hs;, H; a hyperplane section of W, in
pPE®-1 H. a hyperplane section of W, in PP‘"”-“, and let S, be a general
member of |gk(H,)l. We set

as:=degw,(Hs), by:=deg(sy) and  ¢;:=fFKy)*S:.

We put 3Ky~N,;+Z; where Z; is the fixed part of |3Ky|, f¥( N.)~h¥s¥(H,)+E;
and Ky ~ff(Ky)+E, where E, is the ramification divisor for f, and Ej is an
exceptional divisor for f;. Then h¥s¥(Hs;)=a;b,S;. Thus

f¥BKx) = ashsSs+Es+f3(Zs).

Multiplying this by f*(Kyx)?, we have 3K§=ab,c,. Since bycs=2 as in
7 (i) a), as=P3)—1=(2-3—1){33—1)K%/12—X(Ox)} —1=9, and since Ki=6,
we have ag;=9. Therefore

¥8Ky) = 18S;(or 9Sy)+Ei+fKZ,).
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Assuming that @,x,, is not birational, we shall derive a contradiction.
Since m:=n—4=4, (1) implies that |mK| is not composed of pencils.
Thus S, is a nonsingular projective surface. We set

O o= @|er+sf§(1{x)+sm| .
Since

Ky +(m+3)f§(Kx) ~ Ky +3ff(Kx)+Sn+Zn
where Z, is the fixed part of |mf*(Kx)|, ¢ is not birational.

CLAIM 8.5. ¢nls, is not birational.
Proof. This can be done as in the former cases.

We have an exact sequence
0 —> Ox (Kx +3f§(Kyx)) —> Ox (Kx +3f¥(Kx)+Sn)
—_> Osm(K7n+3Rm) - 0:
where K, is the canonical divisor of S, and R, := f¥(Kx)|s,,. gives
HY X', Ox(Kx +3f§(Kx)))=0.
Thus the homomorphism
HY (X', Ox (Kg+3f§(Kx)+Sn)) —> HSn, Os,,(Kn+3Rn))

is surjective, which implies ¢nls, =@k o5,

CLamM 8.6. For a general member Sy, we get h*(Sp, Os,,(3Rx))=10 and R,
=3. Thus applying we obtain that @ g s, ¢S birational.

Proof. Since |S,!| is not composed of pencils, we have hy(S,)=W;i. More-
over, S, and S; are nef. Combining these together, we obtain that f¥(Kx):Sn-Ss
=>1. Restricting the numerical equivalence f¥(3Ky)=18S;(or 9S;)-+Ei+f¥Zs) to
Sm, We have

3R = 18Sils,,(0r 9Suls,)+Esls,,+1(Zo)ls -

We may assume that Ej|s, and f3(Z;)|s,, are effective, since S, is a general
member. Thus multiplying the above by R,, we have 3R%=18 or 9. Thus
R2=3. We have an exact sequence

0 — Ox Bff(Kx)—Sn) —> Ox Bff(Kx)) —> 0s,3Rn) —> 0,
which leads to the long exact cohomology sequence
0 —> HYX', 05 Gff(Kx)—Sn)) —> HY(X', 0x 3ff(Kx)))
—> HSp, 0s,(3Rn)).

Since |3f¥(K )| is composed of pencils in Case 4, and since |S,| is not composed
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of pencils, we have
H(X', Ox 3ff(Kx)—Sn))=0.
Thus the homomorphism
HYX', Oy 3ff(Kx))) —> H(Sn, Os,(8Rx))

is injective. Furthermore

h(X’, Ox 3f§(Kx)))=h"X, Ox(3Ky))

=(2-3—1){33—1K}/12—X0Ox)}=10.
Thus h°(Sn, Os,,(3R))=10.

Claim 8.5 and Claim 8.6 are contradictory to each other. Thus we finish
the proof in Case 4, which completes the proof of the main theorem.

COROLLARY 9. We fix the situation as in Theorem 8. Assume further that
X©x)<0. Then @,k is birational for n=7.

REMARK. When Ky is ample, we have the inequality X(Ox)<—K$/64<0
(cf. Yau [13].

PROOF OF COROLLARY 9. When dim W;=2, we know that @,,x 4, is birational
for n=7 as in Case 1 and Case 2 of the proof of noting that our
assumption X(@x)<0 implies the condition X(©x)#0 of Case 2.

When dim W,=1, we have the two cases a) and ) as in The
case a) does not occur because the derived condition of this case that X(Oyx)=1
and K$=6 contradicts the assumption X(Qx)<O.

Therefore the remaining case to be considered is the one with dim W,=1
and B) as described in [Theorem 7 Since dim W,=1 and byc,=1, putting n=3
in the following formula stated in the first part of the proof of

@En—D{nn—DKE/12—20x)} —nK /bnca =1,
we obtain that
—2—10X(0Ox)=KE.

Case: dim W,=2. We use the same notation and argument as in Case 1 of
the proof of replacing the number 3 there by the number 2 here

and letting m:=n—3 in this case. We shall derive a contradiction assuming
that @, 4, is not birational. Under this assumption ¢, is not birational and we
can show that ¢nl|s, is not birational as in Claim 8.1. Since

0 —> Ox(Kx +mff(Kx)) —> Ox(Kg +mfF(Kx)+S,)

—> O5,(Ks,+mRy) —> 0
is exact and
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HYX', Ox(Kx +mf§(Kx))=0

by Proposition 1, we have ¢nls,=@ x Syt mRle Therefore it is sufficient to show
that $|1{S2+m321 is birational as in Claim 8.2. Since m:=n—3=4,

R X", Ox(md*fF(Kx)) =14,
Since 8=—2—10X(0x)=K}%,
RU(X", OxS1)=h"(X", Ox*g¥(Hp)— M, — M)
=h(X, 0x(2Kx))—1—1
>(2:2—1{22—1)8/12+1} —1—1=5.

The remaining part of the argument is just the same as in Claim 8.2, and we
are done.

Case: dim W,=1. We use the notation as in the first part of the proof of
Putting n=2 in the formula

Cn—D{n(n—1DK%/12—X(Ox)} —nK3/b.c =1,
we obtain

(1—4/byc) K3 /2—3X(0x)=1,
which implies b,c,<3 since X(Ox)<0.

CLaMm 9.1. S, is a nonsingular projective surface of general type, and thus
letting m»: S,—S,,o be the morphism onto the minimal model S, of S,

Os,(TF(Ks,0))=0s,(fF(Kx)ls,)

where K, , is the canonical divisor of S,,,.

Proof. We apply the argument of the proof of the latter part of B) in
Theorem 7 replacing the number 3 there by the number 2 here. We will name
the corresponding formulas with the same numbers. We obtain

20,20:0, K5I} (3)
and

a,=P(2)—1=3.
Since

Ky F3=20 (9)
and Kx-F% is even by (ii), we have

Kx' %:O. (6)

The remaining argument goes without any changes and we finally have the
result that

Sz'Ez.i' ;(KX)ZO fOI‘ any 1’6]2.
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Therefore with the formula
ng ~ Ry +Gy ~ (K, o)+ Ls,
the uniqueness of the Zariski decomposition implies R,~n¥(K,,,), i.e.,

Os,(mF( Ky, 0)=0s,(fF(Kx)ls,) -
This completes the proof of Claim 9.1.

Now we back to the proof of Note that if H, is a general
hyperplane section, g¥(H,) is a disjoint union of S, ;'s (1=j=a,b,), each of which
is of the same kind as S, in Claim 9.1. We use the notations R, j;, 7, ; and
K, o ; for S, ; to signify R,, =, and K, , for S,. Since

0-— Ox: (KXI +771f§<(1{X>)
—> O3 (Kx +mfF(Kx)+g3(Hy))
—> BR20s, (K HmRy ) —> 0

is exact, and since [Proposition 1| gives

HY X, Ox (Kx +mf5(Kx))=0,
we have that

HYX', Ox (Kxr+mf§(Kx)+g¥(Hy)))
—> BFH2HYS,, 5, Os,, (Ks, +mRy, )

is surjective. This means that @, x . smr3k yr+s3y SEparates the fibers of g,
and the components on a fiber at least on some nonempty Zariski open subset of
X’. Furthermore,

Q)slc,gz+m32,j[ :®| (m+1 K g4, ;!

since R, ;j=n¥ (K, ;) by Claim 9.1. Since m:=n-—3=4, (Dltm+1>Ks2,,-l is bira-
tional by Thus @k yremrycx pr+g5cry1 restricted to S, ; is birational,
which altogether with the consideration above implies @,k is birational for

n=7. This completes the proof of

REMARKS. (i) There is a conjecture that X(©Qx)<0 under the assumption
about X in (cf. Miyaoka [9]). Once this is established, with
9 we can get the result that @, is birational for n=7 under the situation
of Main Theorem.

(ii) When X has only terminal singularities, and when X is Gorenstein and
Q-factorial, we can carry out the same argument as above taking some special
resolution f: X’—X as in Corollary (2.12) of M. Reid [11].
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