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A recursive calculation of the Arf invariant of a link
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The Arf invariant of a knot was introduced in [11], and it can be cal-
culated from its Alexander polynomial or its Conway polynomial [6]. The Arf
invariant of a proper link (a link $L$ is proper if $1k(K, L-K)$ is even for every
component $K$ in $L$ , where lk means a linking number) is defined to be that of a
knot which is related to it (a knot $K$ is related to a link $L$ if there is a smoothly
and properly embedded disk with holes $D$ in $R^{3}\cross[0,1]$ with $D\cap R^{3}\cross\{0\}=K$ and
$D\cap R^{3}\cross\{1\}=-L[11])$ . K. Murasugi found a relation between the Arf in-
variants and the Alexander polynomials of two-component links [10]. The author
showed in [9] that for some classes of proper links the Arf invariants can be
expressed in terms of their Conway polynomials. See also [3].

In this paper we consider $V_{L}(i)$ , where $V_{L}(t)$ is V. F. R. Jones’ trace invariant
[5] and $i=\sqrt{-1}$ . He proposed there that one is allowed to define $an$ Arf in-
variant of $L$ as $V_{L}(i)$ , and here we show that

$V_{L}(i)=\{\begin{array}{ll}(\sqrt{2})^{\#(L)-1}, if L is proper and Arf(L)=0,-(\sqrt{2})^{\#(L)-1}, if L is proper and Arf(L)=1, and0, if L is not proper,\end{array}$

where $\#(L)$ is the number of comPonents in $L,$ $Arf(L)$ is the Arf invariant of
$L$ , and $\sqrt{i}$ is chosen to be $e^{(5/8)\cdot 2\pi i}$ in $V_{L}(i)$ . This gives an answer to the
Problem 12 in [2].

Using a recursive definition of $V_{L}(t)$ introduced by several people ([4], [8]),

we can calculate the Arf invariant of any proper link recursively as follows.

DEFINITION. For any oriented link $L$ , a numerical link type invariant $I(L)$

is defined so that it satisfies the following two axioms.
(i) For the trivial knot $O,$ $I(O)=1$ , and
(ii) If three links $L,$ $L’$ , and $l$ are related as in Figure 1 (the other parts

are identical), then

$I(L)+I(L’)=\sqrt{2}\cdot I(1)$ .
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Figure 1.

REMARK. $V_{L}(t)$ is defined so that $1/t\cdot V_{L}(r)-r\cdot V_{L’}(t)=(\tau^{/\overline{t}-1}/\sqrt{t})V_{l}(t)$

with $V_{0}(t)=1$ . A simple calculation shows that $I(L)=V_{L}(i)$ , and so the above
definition is well-defined. For another proof of well-definedness see [4], [8].

Then we have
THEOREM.

$I(L)=\{\begin{array}{ll}(\sqrt{2})^{*(L)-1}, if L is proper and Arf(L)=0,-(\sqrt{2})^{*(L)-1}, if L is proper and Arf(L)=1, and0, if L is ngt proper.\end{array}$

Before proving the theorem, we show the following.

LEMMA. Supp0se that $L,$ $L’$ , and $l$ are given as in Figure 1 and thai $\#(L)$

$=\#(L’)=\#(l)-1$ . If $L$ and $L’$ are proper and $l$ is not proper, then $Arf(L)\neq$

$Arf(L’)$ .

PROOF. Let $K,$ $K’,$ $k_{1}$ , and $k_{2}$ be knots in $L,$ $L’$ , or $l$ as indicated in Figure 2.

$\lambda 1$ $\zeta$

L $L’$ 1

Figure 2.

Let $\overline{k}$ be a knot obtained from $1-k_{1}$ after a fusion, $\overline{l}$ be the resulting two-
component link obtained from $l$, and $\overline{L}$ and $\overline{L}’$ be the corresponding knots ob-
tained from $L$ and $L’$ respectively.

We will show that $1k(k_{1},\overline{k})$ is odd. Since $L$ is proper, $0\equiv 1k(K, L-K)\equiv$

$1k(k_{1}, l-k_{1})+1k(k_{2},1-k_{2})$ (mod2). Thus we have $1k(k_{1},\overline{k})\equiv 1$ (mod2) since other-
wise $1k(k_{1}, l-k_{1})\equiv 1k(k_{2},1-k_{2})\equiv 0$ (mod2) and $l$ cannot be non-proper.

Now it follows from Theorem 10.7 in [7] (see also Lemma 3.1 in [12]) that
$Arf(L)+Arf(L’)\equiv Arf(\overline{L})+Arf(\overline{L}’)\equiv 1k(k_{1},\overline{k})\equiv 1$ (mod2). Thus $Arf(L)\neq Arf(L’)$ ,

completing the proof.
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PROOF OF THE THEOREM. If $L,$ $L’$ , and $l$ are given as in Figure 1, then we
write $L=L’\oplus l$ and also $L’=L\oplus l$ . Continuing this, we can write $L=L_{1}\oplus L_{2}\oplus$

$..\oplus L_{m}$ (here we omit parentheses), where $L_{j}$ is a trivial link ($j=1,2,$ $\cdots$ , m)

[7]. We define $d(L)$ to be the minimum number of such $m’ s(d(L)\geqq 1)$ .
We will induct on $d(L)$ . If $d(L)=1,$ $L$ is a trivial link.

$O\cdots O$ $L$

$O\cdots O$ $L’$

$O\cdots OOO$
Figure 3.

Figure 3 and a simple induction will show that $I(L)=(\sqrt{2})^{*(L)-1}$ in this case,
while $Arf(L)=0$ .

Now suPpose that the theorem is proved for every link $L’$ with $d(L’)<m$

and consider a link $L$ with $d(L)=m$ . We may assume that $L,$ $L’$, and $l$ are as
in Figure 1 and that $d(L’)<m$ and $d(l)<m$ . There are two cases.

Case I. Suppose that $\#(L)=\#(L’)=\#(l)-1$ .
(A) First assume that $L$ is proper. Then $L’$ is also proper. If 1 is proper,

then $Arf(L)=Arf(L’)=Arf(l)$ . So from the inductive hypothesis $I(L)=$

$\sqrt{2}\cdot\pm(\sqrt{2})^{*(l)-1}-(\pm(\sqrt{2})^{*(L’)-1})=\pm(\sqrt{2})^{\#(L)-1}$ according to whether $Arf(L)$ is
$0$ or 1. If $l$ is not proper, then from the above lemma $Arf(L)\neq Arf(L’)$ . So $I(L)$

$=\mp(\sqrt{2})^{\#(L)-1}$ according to whether $Arf(L)$ is 1 or $0$ .
(B) Next assume that $L$ is non-proper. Then $L’$ is also non-proper. It is

easily shown that 1 is non-Proper and so $I(L)=0$ .
Case II. SuPpose that $\#(L)=\#(L’)=\#(l)+1$ .
(A) Assume that $L$ is proper. Then $L’$ is non-proper and $l$ is proper. Since

$Arf(L)=Arf(l)$ , $I(L)=\sqrt{2}\cdot\pm(\sqrt{2})^{\#(l)-1}=\pm(\sqrt{2})^{\#(L)-1}$ according to whether
$Arf(L)$ is $0$ or 1.

(B) Assume that $L$ is non-proper. If $L’$ is Proper, then $l$ is proper and
$Arf(L’)=Arf(l)$ . So $I(L)=\sqrt{2}\cdot I(l)-I(L’)=0$ . If $L’$ is non-proper, then it is
easily proved that $l$ is also non-proper and so $I(L)=0$ .

Now the proof is complete.
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