A recursive calculation of the Arf invariant of a link

By Hitoshi MURAKami

(Received Nov. 22, 1984)

The Arf invariant of a knot was introduced in [11], and it can be calculated from its Alexander polynomial or its Conway polynomial [6]. The Arf invariant of a proper link (a link L is proper if $\operatorname{lk}(K, L-K)$ is even for every component K in L, where 1 k means a linking number) is defined to be that of a knot which is related to it (a knot K is related to a link L if there is a smoothly and properly embedded disk with holes D in $\boldsymbol{R}^{3} \times[0,1]$ with $D \cap \boldsymbol{R}^{3} \times\{0\}=K$ and $D \cap \boldsymbol{R}^{3} \times\{1\}=-L[11]$). K. Murasugi found a relation between the Arf invariants and the Alexander polynomials of two-component links [10]. The author showed in [9] that for some classes of proper links the Arf invariants can be expressed in terms of their Conway polynomials. See also [3].

In this paper we consider $V_{L}(i)$, where $V_{L}(t)$ is V.F.R. Jones' trace invariant [5] and $i=\sqrt{-1}$. He proposed there that one is allowed to define an Arf invariant of L as $V_{L}(i)$, and here we show that

$$
V_{L}(i)=\left\{\begin{array}{cl}
(\sqrt{2})^{\#(L)-1}, & \text { if } L \text { is proper and } \operatorname{Arf}(L)=0, \\
-(\sqrt{2})^{\#(L)-1}, & \text { if } L \text { is proper and } \operatorname{Arf}(L)=1, \text { and } \\
0, & \text { if } L \text { is not proper, }
\end{array}\right.
$$

where $\#(L)$ is the number of components in $L, \operatorname{Arf}(L)$ is the Arf invariant of L, and \sqrt{i} is chosen to be $e^{(5 / 8) \cdot 2 \pi i}$ in $V_{L}(i)$. This gives an answer to the Problem 12 in [2].

Using a recursive definition of $V_{L}(t)$ introduced by several people ([4], [8]), we can calculate the Arf invariant of any proper link recursively as follows.

Definition. For any oriented link L, a numerical link type invariant $I(L)$ is defined so that it satisfies the following two axioms.
(i) For the trivial knot $O, I(O)=1$, and
(ii) If three links L, L^{\prime}, and l are related as in Figure 1 (the other parts are identical), then

$$
I(L)+I\left(L^{\prime}\right)=\sqrt{2} \cdot I(l) .
$$

Figure 1.
Remark. $\quad V_{\mathbf{L}}(t)$ is defined so that $1 / t \cdot V_{\mathbf{L}}(t)-t \cdot V_{L^{\prime}}(t)=(\sqrt{t}-1 / \sqrt{ } t) V_{l}(t)$ with $V_{o}(t)=1$. A simple calculation shows that $I(L)=V_{L}(i)$, and so the above definition is well-defined. For another proof of well-definedness see [4], [8].

Then we have
Theorem.

$$
I(L)=\left\{\begin{array}{cl}
(\sqrt{2})^{\#(L)-1}, & \text { if } L \text { is proper and } \operatorname{Arf}(L)=0, \\
-(\sqrt{2})^{\#(L)-1}, & \text { if } L \text { is proper and } \operatorname{Arf}(L)=1, \text { and } \\
0, & \text { if } L \text { is not proper } .
\end{array}\right.
$$

Before proving the theorem, we show the following.
Lemma. Suppose that L, L^{\prime}, and l are given as in Figure 1 and that \#(L) $=\#\left(L^{\prime}\right)=\#(l)-1$. If L and L^{\prime} are proper and l is not proper, then $\operatorname{Arf}(L) \neq$ $\operatorname{Arf}\left(L^{\prime}\right)$.

Proof. Let K, K^{\prime}, k_{1}, and k_{2} be knots in L, L^{\prime}, or l as indicated in Figure 2.

Figure 2.
Let \bar{k} be a knot obtained from $l-k_{1}$ after a fusion, \bar{l} be the resulting twocomponent link obtained from l, and \bar{L} and \bar{L}^{\prime} be the corresponding knots obtained from L and L^{\prime} respectively.

We will show that $\operatorname{lk}\left(k_{1}, \bar{k}\right)$ is odd. Since L is proper, $0 \equiv \mathrm{lk}(K, L-K) \equiv$ $\mathrm{lk}\left(k_{1}, l-k_{1}\right)+\operatorname{lk}\left(k_{2}, l-k_{2}\right)(\bmod 2)$. Thus we have $\mathrm{lk}\left(k_{1}, \bar{k}\right) \equiv 1(\bmod 2)$ since otherwise $\mathrm{k}\left(k_{1}, l-k_{1}\right) \equiv \mathrm{lk}\left(k_{2}, l-k_{2}\right) \equiv 0(\bmod 2)$ and l cannot be non-proper.

Now it follows from Theorem 10.7 in [7] (see also Lemma 3.1 in [12]) that $\operatorname{Arf}(L)+\operatorname{Arf}\left(L^{\prime}\right) \equiv \operatorname{Arf}(\bar{L})+\operatorname{Arf}\left(\bar{L}^{\prime}\right) \equiv 1 \mathrm{k}\left(k_{1}, \bar{k}\right) \equiv 1(\bmod 2)$. Thus $\operatorname{Arf}(L) \neq \operatorname{Arf}\left(L^{\prime}\right)$, completing the proof.

Proof of the Theorem. If L, L^{\prime}, and l are given as in Figure 1, then we write $L=L^{\prime} \oplus l$ and also $L^{\prime}=L \oplus l$. Continuing this, we can write $L=L_{1} \oplus L_{2} \oplus$ $\cdots \oplus L_{m}$ (here we omit parentheses), where L_{j} is a trivial link $(j=1,2, \cdots, m)$ [7]. We define $d(L)$ to be the minimum number of such m 's $(d(L) \geqq 1)$.

We will induct on $d(L)$. If $d(L)=1, L$ is a trivial link.

Figure 3.
Figure 3 and a simple induction will show that $I(L)=(\sqrt{2})^{\#(L)-1}$ in this case, while $\operatorname{Arf}(L)=0$.

Now suppose that the theorem is proved for every link L^{\prime} with $d\left(L^{\prime}\right)<m$ and consider a link L with $d(L)=m$. We may assume that L, L^{\prime}, and l are as in Figure 1 and that $d\left(L^{\prime}\right)<m$ and $d(l)<m$. There are two cases.

Case I. Suppose that $\#(L)=\#\left(L^{\prime}\right)=\#(l)-1$.
(A) First assume that L is proper. Then L^{\prime} is also proper. If l is proper, then $\operatorname{Arf}(L)=\operatorname{Arf}\left(L^{\prime}\right)=\operatorname{Arf}(l)$. So from the inductive hypothesis $I(L)=$ $\sqrt{2} \cdot \pm(\sqrt{2})^{\#(l)-1}-\left(\pm(\sqrt{2})^{\#\left(L^{\prime}\right)-1}\right)= \pm(\sqrt{2})^{\#(L)-1}$ according to whether $\operatorname{Arf}(L)$ is 0 or 1 . If l is not proper, then from the above lemma $\operatorname{Arf}(L) \neq \operatorname{Arf}\left(L^{\prime}\right)$. So $I(L)$ $=\mp(\sqrt{2})^{\#(L)-1}$ according to whether $\operatorname{Arf}(L)$ is 1 or 0 .
(B) Next assume that L is non-proper. Then L^{\prime} is also non-proper. It is easily shown that l is non-proper and so $I(L)=0$.

Case II. Suppose that $\#(L)=\#\left(L^{\prime}\right)=\#(l)+1$.
(A) Assume that L is proper. Then L^{\prime} is non-proper and l is proper. Since $\operatorname{Arf}(L)=\operatorname{Arf}(l), \quad I(L)=\sqrt{2} \cdot \pm(\sqrt{2})^{\#(l)-1}= \pm(\sqrt{2})^{\#(L)-1}$ according to whether $\operatorname{Arf}(L)$ is 0 or 1 .
(B) Assume that L is non-proper. If L^{\prime} is proper, then l is proper and $\operatorname{Arf}\left(L^{\prime}\right)=\operatorname{Arf}(l)$. So $I(L)=\sqrt{2} \cdot I(l)-I\left(L^{\prime}\right)=0$. If L^{\prime} is non-proper, then it is easily proved that l is also non-proper and so $I(L)=0$.

Now the proof is complete.
Acknowledgements. The author wants to thank all the people who encouraged him while he was in hospital.

References

[1] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, Oxford and New York, 1969, 329-358.
[2] C. McA. Gordon (ed.), Problems, Knot Theory (Proc., Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer-Verlag, 1978, 309-311.
[3] J. Hoste, The Arf invariant of a totally proper link, Topology Appl., 18 (1984), 163-177.
[4] J. Hoste, A polynomial invariant of knots and links, preprint, Rutgers Univ., 1984.
[5] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc., 12 (1985), 103-111.
[6] L. H. Kauffman, The Conway polynomial, Topology, 20 (1981), 101-108.
[7] L. H. Kauffman, Formal Knot Theory, Math. Notes, 30, Princeton Univ. Press, 1983.
[8] W. B. R. Lickorish and K. C. Millett, Topological invariants of knots and links, preprint, 1984.
[9] H. Murakami, The Arf invariant and the Conway polynomial of a link, Math. Sem. Notes Kobe Univ., 11 (1983), 335-344.
[10] K. Murasugi, On the Arf invariant of links, Math. Proc. Cambridge Philos. Soc., 95 (1984), 61-69.
[11] R. A. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math., 18 (1965), 543-555.
[12] Y. Matsumoto, An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, preprint, 1977, (to appear in Astérisque).

Hitoshi Murakami
Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan

