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0. Introduction.
The purpose of the present paper is to prove the following

THEOREM A. Let M be a connected, complete minimal submanifold properly
immersed into Euclidean space R¥. Suppose that

A

> __ “*
(0.1) the scalar curvature of M at x = [ERpaEE

for some positive constants A and e, where | x| stands for the Euclidean norm of
xEMCRY. Then:

(1) M is an m-plane if m=dim M=3 and M has one end, or if m=2, e=2
and M has one end.

(1) M is a hyperplane if m=N—1, 24+e>2m and M is embedded into R¥.

() M is a catenoid if m=3, m=N—1 and M has two ends, or if m=2,
N=3 and M has two embedded ends.

Since an area-minimizing hypersurface properly embedded into R¥ has one
end (cf. [1]), we have the following

COROLLARY 1. Let M be an area-minimizing hypersurface properly embedded
into RY satisfying condition (0.1). Then M is a hyperplane of R".

In case M is a complex submanifold properly embedded into C¥, condition
(1.0) will imply that the volume of the exterior metric ball MN\B,(r) with radius
r grows like »*™ (m=dim¢M) (cf. Lemma 2/(1)), and hence by a theorem of
Stoll [16], M turns out to be algebraic. In particular, M has one end if m=>=2
(cf. Lefschetz hyperplane theorem). Thus we have proven

COROLLARY 2. Let M be a complex submanifold properly embedded into C¥.
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Then M is a complex m-plane, provided that m=dim¢M is greater than or equal
to two and the scalar curvature of M satisfies condition (0.1).

We shall give here some remarks and examples to illustrate the roles of
several hypotheses in Theorem A.

(1) (Vitter [17]). Let M be an algebraic hypersurface in C™** (m=dim¢M),
ie, M={zeC™**: f(z)=0} for f=fu+f -+ -+ @ a polynomial of degree %
and f(; the term of f of degree ;. Suppose M is nonsingular at infinity, i.e.,
the projective hypersurface in CP™*' defined as the zero set of f(,, is non-
singular. Then the sectional curvature of M at z is uniformly bounded in
absolute value by A/|z|? for some positive constant A.

(2) Let M, be a complex curve of C? defined by M,={z=(z,, z,): 25 +zk=1}
(k={3, 4, ---}). Then the Gaussian curvature K(z) of M, at z is given by

(k=17 |22
CEAREE PR

(3) Let X:R*—R?® be Enneper surface:

Kz =—

3 3
X(x1, x2) =<x1+x1x§—%, —xz—xzx?+i32—, xf—x%).
Then Gaussian curvature K(x) at x is given by
4
Ko =~z

Thus Enneper surface satisfies condition (0.1) with ¢=2/3. Note that it is not
embedded.

(4) Let M be a catenoid of R?, i.e., M={x=(x,, x5, xs):cosh x;=+/x%+x2}.
Then the Gaussian curvature K(x) is equal to —1/(x}+x2)?2 Thus catenoids
satisfy condition (0.1) with ¢e=2. More generally, m-dimensional catenoids satisfy
condition (0.1) with ¢=2m—2, and complete minimal surfaces in R?® of finite
total curvature and whose ends are embedded satisfy (0.1) with =2 (cf. [15:
p. 8017).

In connection with the above results, we should mention first the two
works by Mok, Siu and Yau and Greene and Wu [4]. In [12], they
investigated complete noncompact Kéhler manifolds and proved that, if the
sectional curvature of a complete Kihler manifold M with a pole oM is
uniformly bounded in absolute value by A(e)/disx(0, *)**¢, then M is biholomorphic
to C™, where ¢ is a positive constant and A(e) is a positive number depending
on e. Here we call a point 0 of M a pole if the exponential map at o induces
a diffeomorphism between the tangent space at o and M. In addition, they
showed that if the curvature of A does not change its sign and m=2, then M
is biholomorphic and isometric to C™. Recently, this result was extended by
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Greene and Wu to Riemannian manifolds with a pole. The first two
assertions of Theorem A was inspired by these works.

During the submission of this paper to the journal, a paper of Schoen
appeared. In the latter half of [15], he considers a class of complete minimal
hypersurfaces of RY which are said to be regular at infinity (cf.
below) and shows that any complete minimal hypersurface which is regular at
infinity and has two ends is a catenoid or a pair of hyperplanes. Our result is
closely related to his theorem. In fact, the last assertion of Theorem A has
been obtained after his result just mentioned above.

We shall now outline the proof of [Theorem Al At the first step, it will
be shown that each end of a minimal submanifold M properly immersed into
RY satisfying (0.1) is quasi-isometric to the exterior of a ball of RY. At the
second step, we shall consider the Gauss map of M and prove that each end
of M behaves reasonably well. Finally we shall show the following

THEOREM B. Let M be a connected, complete minimal submanifold properly
immersed into RY. Suppose that M satisfies condition (0.1) and that if m=
dim M =2, ¢ is greater than or equal to two and each end of M 1is embzdded.
Then M is regular at infinity.

Here we shall give the following

DEFINITION. A complete minimal immersion M—RY is said to be regular
at infinity if there is a compact subset KCM such that M—K consists of k
connected components M,, ---, M, such that each M, is the graph of functions
{hj.ata=1,.. v-n (m=dim M) with bounded slope over the exterior of a bounded
region in some m-plane P,. Moreover if vy, ---, v, are coordinates of P; we
require the h;., have the following asymptotic behaviour for large |v| and
m=2:

hj, a®) = a;, 2108 10| +b;, 0+ (Cj: 0,101+ Cjo a, 20) V| 2HO0 0] 170 0<o=sD),

while for m=3, we require
hj;a(v) :bj;a+aj;a|U]2—m+lg§(:j;a,ﬁvﬁ|v]—m+0lv!-m

for some constants a;;., bj;a Cj;a. 3-

This definition is an adaptation of Schoen’s one in [15] where minimal
hypersurfaces are treated.

In the case of m=3, the first assertion of Theorem A is an immediate
consequence of Theorem B and the last one follows from Theorem B and
Theorem 3 in [15] which has been stated above. The remaining parts of
Theorem A and Theorem B will be proven in Section 2.
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1. Preliminaries.

Let ¢: M—RY be an immersion of an m-dimensional smooth manifold M
into Euclidean space R¥. Throughout this paper, M is assumed to be connected.
We consider M as a Riemannian manifold with the induced metric g4. For
any point x of M, we shall denote ((x)R" by the same letter x if there is
no danger of confusion. Thus the tangent space T.M is a subspace of the
tangent space T.R¥ (=RY) and it is equipped with the inner product induced
from the Euclidean inner product <,)>. We write T,M* for the normal space
to M at xeM and X* for the normal component of a vector X R¥. Moreover
let us denote by V (resp. V) the covariant differentiation on M with respect to
gx (resp. the covariant differentiation on RY).

First we have the following

LEMMA 1. Let f be a smooth function on an open subset U of RY and denote
by flun~v the restriction of f to MNU. Then

V(X Y) = VX, YV)+H<au(X, V), V)Y,
where X, YETM and ay: TMXTM—TM* is the second fundamental form of M.

Proor. This follows immediately from the definitions of the Hessians
V2flu~v, N2f and the second fundamental form ay.

Let us now prove

LEMMA 2. Let ¢: M—RY be a proper immersion of an m-dimensional non-

compact smooth manifold M into R¥. Suppose that there exist positive constants
A and € such that

A
ERPIET,

where | x| stands for the Euclidean distance between x =M and the origin 0= RY.
Then the following assertions hold:

(1) There are positive constants B, B and a diffeomorphism p: M\By(8)—
[B, 00) X, 0B.(B) (the warped product of [B, o) and 0B.(B) with a warping func-
tion t) such that for any vector X tangent to M at x<MN\B(f),

1
—B'gM(X, X) = gu(psX, uxX) = Bgu(X, X).

1.1) the square length |ay!|* of ay at xeM =

Here B,(B)={xeM:|x| =B} and g, denotes the warped metric on [ 8, )X ,dB.(B).
Moreover the [, co)-component of u(x) is equal to |x| for any x<MN\B(p).

(2) Suppose that m=3. Then M possesses the Green function Gy(x, y) for
the Laplace operator Ay. Moreover for a fixed point x&M, there exists a
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positive constant C(x) such that

1 C(x)
SGCulx, N — o
Clola—ylms = b0 = 1y s
for any ye M.
(3) Suppose that m=3. Then, for any smooth function Q on M satisfying
D

<
for some positive constants D and 0, there is a wunique solution U of equation:
AyU+Q=0 such that
Dl

[U(x)| émg

for some positive constant D’ which is independent of Q.
(4) Suppose that m=3. Let h be a bounded harmonic function defined on an
end 2 of M. Then there is a constant h. such that

Esupl|h]
— < - T
A —hal = {07 s

on 2, where E is a positive constant independent of h.

PrROOF. For the proof of the first assertion, we put 7(v)=|v| and r=F|y.

Then we have by [Lemma 1| and assumption

VX, X) = 3T, Xt o-alX, X), @0

= | X2 +rlan(X, X), O
= | X|*—rlay(X, X)]

2 (1r ) X1

for any tangent vector X TM. Similarly we see that

Lo, x) < (I—H’\/ )[X]z.

A
2 1472+

Thus the Hessian (1/2)V?r? satisfies
1

(1.2) (I—ner)gy = ~2*V272 = (A+nerigu

on M, where n(t)=t[A/(1+#**)]"% In the sequel, we follow the argument in

in order to construct a quasi-isometry p:M\B,(B)—[8, )X .0B.(B). At
first, note that »? is a smooth exhaustion function on M and further it is a
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strictly convex function on M\B,(8) for some >0, because of [1.2). In partic-
ular, we see that the gradient V7* never vanishes on M\B.,f). Let us now
define a vector field X, on M\B,(B) by X,=Vr/|Vr|% We write 1,:[S, c0)—
M~B,B) for the maximal integral curve of X, such that 2,(8)=p0dB.(f).
Then r(4,(t)=t for all t=pf, since dr(4,(t))/dt=1. Define a smooth map
v:[B, )X, 0BB)—M\B.B) by v(t, p)=2,(t). Then v gives a diffeomorphism
between [f, ©0)x,0B.(8) and M\B,B). We shall prove that p=p~' is a
required quasi-isometry. In fact, for any smooth regular curve y: [0, 6]—0B(B),
set a smooth map v,:[8, o)X [0, d]=>M~B.) by v,(t, s)=v(t, 7(s)). Put X,=
v;%(0/0t) and Y,=v,4(0/0s). Then we have

Vir(Y, (¢, s), Y, (i, s))
Y (8, )L IVr(vdt, s))

(1.3) v, 91 =

On the other hand, we see by that

1 1
(1.4) 7[(1_“7]°7')gM”—(d7’)2] =Vr= 7[(1+77°V)gM—(d7)2] :
and hence by and we have

1—x()
t

(1.5) 1Y, )" = ViYL, s, Vi@, 9) = ————1Y,@, 9)|%

Moreover it follows from that

(1.6) 1—-¢ér = |Vt 1

on MN\B,(f), jwhere E(z,‘)::ZS;u77(u)a,'u/z‘2—ﬁ’2<a——l)/t2 and a=min{|Vr|¥p): p=

0B.B)} (cf. [7: Lemma 2]). Therefore by [1.3), [1.5] and [1.6), we obtain
1—x@®) _ 3 L9

so that, integrating the both sides from § to ¢, we have

f ool AW V9]t (e gl
Bexpgﬁ du < 1Y (8, )l < ﬁengﬁ ” du,
where @¢(t)=(n{t)4-£())/(1=£()). This implies that
t = plu) Y, s)| _ ¢ © @(u)
1. — — = =L — <=
(1.7) 3 expgﬁ du < 1Y ,(B, 5l < ﬁexpSB du.

Thus it turns out from [1.6) and that g is a required map. This completes
the proof of the first assertion.

Let us next show the second assertion. We put
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D(t) = S:cs‘"’”exp[—g;ibii)du]ds,
Vi) = S?sl““ exp[s;ﬁz(‘u)du]ds,

where O)={(m—DEt)+mn@)} /(1—£&@2)). Then by and we see that
Ay@-r=0 and Ay¥-r<0 on M\B.,B). The maximum principle implies that
for some positive constants C,(x) and C,(x),

Cix)Dor(y) = Gulx, ¥) = Co(x)¥or(y)

outside a compact set. This shows the second assertion, since @()=C,*~™ and
U)<Cxt?™ for some positive constants C; and C,.
To prove the third assertion, we set

() = ST[LSZU(u)r(u)dudes,

7(s)

where a(t)=D/(1+12*7), r(t):tm‘lexp[ﬂgimn(s)/s ds], and 7 is as in[1.2Z). Then
by and we have
Aylor+aer <0

on M\B/R), for some positive constant R. Therefore it follows from the same
argument as in the proof of Theorem 5.4 in that

S Q(»)Culx, y:>dy§§ 670G ul(x, y)dy
M M
< D' XYer(x),

where D’ is a positive constant independent of . Thus U(x):SMQ(y)GM(x, y)dy

is the required solution.

It remains to prove the last assertion. For any t>f, we denote by M)
(j=1, -+, k) the connected components of M\B.(¢). Let us define immersions
¢;(t) from M,(t) into the unit sphere S¥-*(1) of RY by ¢;(¢t)(x)=t""«(x). Then by
condition [(1.1), we see that the second fundamental forms «a;({) of the immer-
sions tend to 0 as t—-+oco. Therefore each M,(t) turns out to be diffeomorphic
to the unit sphere S™-*(1) of R™. Thus taking account of the first assertion,
we may assume that each M;(¢) (¢ is fixed) is a domain of R™ equipped with a
Riemannian metric g, satisfying

1
TIXI" = gi(X, X) = 41XP
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for some A=1 and every XeTR™. Let h be a bounded harmonic function
defined on M,#). Then it follows from Theorem 5 of Moser that A(x)
tends to a constant h. as x—oo. Moreover by the second assertion, we get
Esuplh]

—he| == — =,
| A(x) I = x|
where E is a positive constant independent of i4. This completes the proof of

Lemma 2.

REMARK. Let M and B be as in If the dimension of M is not
less than 3 and 9B.(B) is disconnected, that is, M has at least two ends, then
M possesses nonconstant bounded harmonic functions with finite Dirichlet norm

(cf. the proof of Lemma 2(2) and [8: Corollary (5.8)]).

COROLLARY 3. Let M be as in Lemma 2. Suppose that m=3. Then M has
the only one end if and only if there are no bounded harmonic functions on M
except constants.

REMARK (cf. [10]). Let ¢: M—R" be a minimal immersion of an m-dimen-
sional smooth manifold M into RY. Suppose that m=3. Then:

(1) For any x=M and R=0, the Green function Gg(x, ¥) of B.(x;R)
(={yeM:|y—x|<R}) satisfies

1 1 1
GR(x’ y) = (m—l)a)m_l(\x—y”:{# Rm™-2 )’

where w,-; stands for the volume of the Euclidean unit sphere of dimension
m—1.
(2) For any smooth function ¢ on M such that

D
[Q(x)] émm,

where D and § are positive constants, there is one and only one solution U of
equation : AyU+ Q=0 satisfying

DI
|U(x)] = ml—g,

where D’ is a positive constant independent of Q.

We shall now consider the Gauss map of an immersion ¢: M—R" from a
smooth manifold M of dimension m into Euclidean space RY and give a crucial
lemma (cf. for the proof of the main theorem.

Let us begin by giving some notations. Let P be an m-dimensional sub-
space (called an m-plane) of R¥. We write zp (resp. P*) for the orthogonal
projection from RY to P (resp. the orthogonal complement of P). For two
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m-planes P and Q, define an ‘inner product’ (P, @) by
(P, Q) = min{|mo(X)| : X&P, | X[=1}.

When P and Q are oriented m-planes, we set
<P’ Q> = det(<ei; fJ>) »

where {e;}i=1,..m and {f;}i=1,..m are, respectively, oriented orthonormal bases of
P and Q. Then we have the following

LEMMA 3.

(L) (P, Q) =(Q, Py =(P+, Q*).

(2) (P, QY =0 1if and only if PNQ* # {0}.

@) (P, AF=KP QI =(P, Q)  (k=min{m, N—m}).

PrOOF. The first two assertions are clear from the definition of (P, Q).
For the last one, it may be assumed that N—m=m and moreover that suitable

orthonormal bases {¢;}i=1...m, {fi}i=t,..m and {fi}i=i .. x-m, respectively, of P, Q
and @Q* satisfy

o, = Lol
P N142
for some 4;€R (i=1, ---, m). Then we have

<P, @) = |det(Kes, f)l =Tl g (u=1/VIFID).
On the other hand, it follows from the definition of {P, @) that
& @ =minf [ Bt - Fr=t, 120)

= Hi (2217 Tty 771) ’
and hence, we have

(P, Qm <L = <P, @1

Furthermore we see that [{(P, Q)| =<{P, @), because

M2
[\
s
Y
s

tipd pit 0

1 7

[

1

I
-

i=1

Thus the last assertion has been proven. This completes the proof of Lemma 3.

LEMMA 4. Let ¢: M—RY be an immersion of an m-dimensional smooth
manifold M into Euclidean space R™ such that the induced metric on M is
complete. Suppose that there are an m-plane P, a compact subset K of M (K
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may be empty) and a positive constant ¢ such that
(1.8) (T:M, P)=¢e>0
on a noncompact connected component 2 of MNK. Denote by 7pr the Euclidean
distance to P* and by rps the restriction of Ppr to M. Set Q,={x=Q:rpi(x)=t},
P,={veP:|v|=t}, and T=max{rp:(x): x€0R}. Then the following assertions
hold :

(1) The restriction mplo, of the orthogonal projection mp:RY—P to Qr

defines a finite covering map from Rr onto Pr.
(2) In the case when m is greater than or equal to 3, Q2r can be realized as

a graph of some smooth functions {hy, ---, hy_n} defined on Pr (i.e., Qr=
{(v, hy(v), ==+, hy-n(V) :vEPr}). Moreover these functions satisfy
) N-m| dh; |2
(19) l+ 2 _§ 52 (a:]-y T m) ’
=11 dv,

where (vy, -+, V) 1S a canonical coordinate system on P.
(3) If K is empty, the second assertion holds on P without any restriction

on m.

PrROOF. Without loss of generality, we may assume that K is a compact
domain with smooth boundary dK. Since the vector field V7p: is parallel to P,

we see by that
(1.10) INrpL| = ¢

on 2. This inequality enables us to define a smooth vector field X on a neigh-
borhood of @ by X=Vrpi/|Vrp:|®% Let 7:(a, b)—R be an integral curve of X.
Observe that |rp(y#)—rp(y(s))|=1t—s| for any t, se(a, b). This implies that
lt—s| <disy(r(), r(s)). On the other hand, it follows from that
disy(y(?), r(s))=e'|t—s|. Thus we obtain

(L.11) jt—s1 = disu(z(®), 7(s) = —lt—s|

for any ¢, s€(a, b). Let us now fix a number t,>T and let 7:(a, b)—£2 be a
maximal integral curve such that {,&(a, b) and 7(t,)€08,, Then inequality
tells us that y((a, ¢,]) is contained in the closure of the (intrinsic) metric
ball around r(f,) with radius e-*(fp—a). Therefore we see by that y can
be defined on [a, t,] and that y(a) belongs to 9f2. Hence the correspondence:
7(ty)—7(a) defines an injective map from 02, into 02 such that disy(y(t,), 7(a))
<e'(ty—a)<e7't,. This shows that 02, is a compact hypersurface of M for
every t,=(T, o0), so that ﬂp‘gT:QT'—)PT is a proper immersion. Thus the
assertion (1) turns out to be true. As for the second assertion, note that Pr is
simply connected if m=3 and hence, 7p|g,: 2r—Pr is actually a diffeomorphism
between @2 and Pr. Consequently £; can be realized as a graph of some
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smooth functions {A;} ... y-n defined on Py. It is clear from condition
that these functions satisfy inequality The last statement (3) follows
from the above proof of the first assertion. This completes the proof of

Lemma 4

LEMMA 5. Let ¢: M—RY be a proper immersion from an m-dimensional
smooth manifold M into Euclidean space RY. Suppose that

(1.12) m=3,
) A
(1.13) lay| (X)ém;;,
A/
(1.14) IVHy |(x) = W

for some positive constants A, A’, &, and ¢’, where Hy stands for the mean cur-
vature normal of the immersion ¢: M—RY. Let {M;};-, .. be the connected
components of MNBf), where B.B) is as in Lemma 2(1). Then for each Mj,
the assertions below are true:

(1) There exist an m-plane P and a positive constant B such that
(1.15) (TM, Py = —2

1+1]x1¢

for every xeM,.

(2) For some mnonnegative constant T, M;r={x&M;:rpu(x)=T} can be
realized as a graph of some smooth functions {hy, -+, hy-n} defined on Pr=
{veP: |v|=T}, where rpr=disgN(P*t, *). Moreover each h; satisfies

t 0h; C
. o< =1, -,
(1.16) ov, 1 = 1+|v|¢ (a m
for some positive constant C, where (vy, **+, vn) iS a canonical coordinate system
on P

(3) Let h be a harmonic function on M; such that |h(x)| =D(14rp(x)'"7)
for some D>0 and 9>0. Then there are constants h., D’ and E such that

D’ E
[h(x)—he| = THx IVh(x)| = THiz| 1

Proor. It is enough to prove in case M is oriented. Let P be
any oriented m-plane of R¥. Then the computation by Fischer-Corbrie [2:
Lemma 1.1] and the above assumptions [1.13) and [1.14) show that
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AT M*, P4)| = 2|ay|*(x)+ | VHy|
2A A’

<
= Tjxr IR R

on M. Hence it follows from Lemma 2(3) that there is a unique smooth func-
tion Up on M such that

AM<Tle, P = AMUP
B

[Up(x)| < NPT (d=min{e, ¢’}),

where B is a positive constant independent of P. This impliesjthat <T',M*, P*)
~—Up(x) is a bounded harmonic function on M, and hence it follows from
Lemma 2/(4) that for some positive constants C(P) and D,

<D
=1+ [z

on M, Here D is independent of P. Thus we have

KT zM*, P+>—Upx)—C(P)

B D
4

(1.17) KTM*, PH=CP) = v 7 T 17

for any x=M; and every oriented m-plane P of RY. It is clear from that
for some oriented plane P, C(P) is equal to 1, that is,

B D
I+[x° I+[x["

T:M*, P+ =z1—

on M;. Because of Lemma 3 and [1.13), this implies the first assertion of the
lemma, from which the second one can be derived (cf. the proof of Lemma 4).

Now we shall show the last assertion, making use of the second one. Let
us identify M; r with Pr through the orthogonal projection from AMj; r onto Pr.
Then the Riemannian metric g5 on M can be written on Pr as follows:

8u = am§=1gaﬁdvadvﬁ
Nom 3/11 ahl
Bes =0t B o, Gu,”

where (v,, ---, vp) is a canonical coordinate system on P. Let us extend g,z to
a smooth function Z,s defined on P so that §=3 §,5dv.dvs becomes a Rieman-
nian metric on P. Observe that for some positive constant C,,

C
= l—{-IvI“e/? (a, Br y=1, -, m

‘ 0845
ov,
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on P, because of [1.13) and [1.16). This shows that for some positive constant
CZ’

(1.18) la*f(u)—a*?(v)| £ Cslu—v|

for any u, veP, where a**=+/G g, G=det(§.p), and (§*F)=(Z,5)"'. Let h
be a harmonic function on M, satisfying | A(x)| = D(1+rp1(x)*-7) for some D>0
and 7>0. Take a smooth function 4 on P which coincides with 4 on Pr.
Then the Laplacian Afh of A with respect to & is a smooth function on P whose
support is compact. We set

Do) = -—Spé(v, AR w)dw

where G(v, w) denotes the Green function of A. Then Ah=AU on P, so that
i —U is a harmonic function with respect to  such that |(A—N@)| <D’ (1+ |v|*-7)

for some D’=0. It follows from and below that 71—
must be constant, and hence 4 is a bounded harmonic function on M;. Con-

sequently we have |A(v)—he|ZD”|v[* ™ for some constants h. and D”=0.
Moreover since |V,G(v, w)| <E|v—w|*™ (cf. Lemma 6), we obtain |Vi|()=
|V |(v)SE’|v|*-™ for large |v|, where E and E’ are positive constants. This
completes the proof of

LEMMA 6 (Widman [18]). Consider an equation of divergence form

1= 3 g (e g) =0

on RY with the properties:
A& = 3 a"P)ébs = Al§IF (v, EER™)
la*?(u)—a*P(v)| = o(lu—vl),
where w(t) is a nondecreasing function such that S:ow(t)/t dt<+oo and w(2)<Ko(t)
for some constant K. Then a solution f of Lf=0 on a domain 2 of R™ satisfies
ldf(n)| = p~*(w)sup| f1K(m, 4, 4, @),

where p(v)=disgn(v, 02) and K(m, 2, A, ) is a positive constant depending only
on m, A, A and w. In particular, if [ is a solution of Lf=0 on R™ with |f(v)|
<D+ |v|*7) for some positive constants D and %, then f must be a constant.

Before concluding this section, we shall show a result similar to
for the case of m=2.

LEMMA 7. Let ¢: M—RY be a proper immersion from a surface M into RY
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satisfying (1.13) and (1.14). Let {M;};_;,..» be as in Lemma 5. Then for each
M;, the following assertions hold:

(1) There exists a plane P and a positive constant B such that

B
(T.M, P) = 1—W§

on A/[j.

(2) Let (vy, -, vy) be coordinates of RY=P@EP* and set ho=v,°¢: M—RY
(=3, -, N). Then

on M;, for some positive constant C.
(3) Let h be a harmonic function on M; such that |h(x)|<Dlogix|+E for
some positive constants D and E. Then h(x) has the form:

h(x) = D"log| x|+ f(x),

where D’ is a constant which vanishes if so does D, and f(x) has a finite limit as
| x|—+o0.

PrROOF. Using the same diffeomorphism p: M;—[f, c0)x S* as in Lemma 2,
we take coordinates (», ) on M; (r(x)=|x|). Then the metric g on M; can
be expressed as follows: gx=a(r, 8)dr+b(r, 6)r*d6®. Observe that

[1—a(r, )] = Cy/re
(1.19)

exp(—C,/r®) = b(r, 0) = exp(C,/r?)

for some positive constants C, and C, (cf. the proof of Lemma 2). Set #=1/r
and take coordinates (7, §) on M,. Then gy has the form: gy=a(7, 6)7g,
where a(7, 0)=a(r"?, 0), g=dP*+&(7, 0)7*d6* and &7, 0)=b(r?, 0)/a(r, 8). Set
v=Fcosf and w=~#sinf. Then g has the form:

. o w? ) o VW
g = (1412, 0)—1]?+w2>dv —2[e(7, O)—11—""— dvdw

2

(1L, 0)—1]>—Ugfi“_—w2dw2.

Since |&#, 8)—1|<C,# for some C,=0 by (1.19), & defines a metric on 2=
{(v, w)ER?: v®*4+w?< B-?} whose coefficients are smooth on £2*={(v, w)e2:
(v, w)#(0, 0)} and Holder continuous at (0, 0). Hence we can apply the results
in to the Laplacian A of g. Then it is not hard to see that for any smooth
function O(#, #) on 2* with |07, 0)|<C,7-* for constants C,>0 and >0,
there exists a unique solution {f on Q% of equation: AT+3=0 on 2% U'=0 on



Gap theorems 487

02 and lim;.,0/(7, 6)=0. This implies that for any smooth function Q(r, #) on
M; with |Q(r, )| <Cs2"° for constants C;>0 and >0, there is a unique
solution U on M; of equation: AyU+Q=0 on M; U=0 on oM, and
lim,..U(r, 8)=0. Thus it turns out from the same argument as in
that there is a plane P of RY such that

(1.20) (T M, P) — 1 as xeM; — oo.

This shows that for large T, HP!M].,T:M,-, r—Pr defines a finite covering map
from M, r onto Pr (cf. Lemma 4). Moreover if we take coordinates (v, -, vy)
in RY=P@®P* and set h,=v.|u; (@a=3, -+, N), we see from [1.20) that |VA,|(x)
converges to 0 as x€M;—oo. Hence by assumption we obtain |Vh,|=
Cilx|~¢ (=3, -+, N) and further (T.M, P)=1—C,|x|¢ for some positive con-
stants C, and C,. This shows the first two assertions of the lemma. It remains
to prove the last one. Let 2 be a harmonic function on M; such that |A(x)]
<Dlog|x|+E. Note here that M; possesses a positive harmonic function G
such that G.(x)~log|x| at infinity. Then suitable choice of constants D’ and
E’ makes D’'Gu.(x)+E’+h(x) a positive harmonic function on M;. Hence it
follows from Theorem 5 in that A(x) has the form: A(x)=D"G(x)+F(x),
where F(x) is a bounded harmonic function on M; which has a finite limit as
x goes to oo, This proves the last assertion of the lemma.

2. Proofs of Theorem A and Theorem B.

We keep the notations in the preceding sections. We shall first prove
Theorem B and then give a proof of Theorem A.

PrROOF OF THEOREM B. Let M be a minimal submanifold properly immersed
into RY satisfying condition (0.1). Let us consider first the case of m=3. Then
can be applied to M. Fix an end M; of M and realize M;r as a
graph over Pr: M; r={(vs, ***, Vm, Ams:1(¥), -, Ay()) i v=(vy, -, v)EPr}. Since
M is minimal, each h, (@=m+1, ---, N) is harmonic on M. Moreover by [1.16),
we have |Vh.(v)}|<ZC,|v|-¢ for a constant C,=0. This implies that |A,(v)]| <
C,|v|*-¢ for a constant C,=0. Therefore by Lemma 5(3), we have

G

C,
W; [Vha(v)| =

2.1) [ha(V)—he,o! = = Tt

for some constants A, ., C; and C,, Now we extend /i, to a smooth function

h, on P. Then we have

mn G P ok,
,921 avﬁ B.r=1 avigavr :/Eﬁ,zrﬂ avﬁ av, )
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Observe that by (0.1) and [2.1)} 1% |=0|v|>*™ (8+7), 10°he/0vs0v,|=0|v|-1-*/2
and |G VNG g#1/dv,)|=0|v|-™*%.  This shows that X7,0%h./0v%=
O|v|-?™+1-¢/2, Hence we see that

B o) = By 1 g Qw) .,

T m—Dwy, Je|v—w|™

b

where w, denotes the volume of unit sphere in R™ and Q(v):E;;;Iazﬁa/av%.
Noting the decay rate of Q(v) and the following inequality: |v—w|? ™=]|v|2-™
—(m—2w-wlv]"™+0|v|"™|w|? for |w|=(1/2)|v|, we obtain

Bo(v) = hy oty |v)2-™+ élcaﬁvm]-uom-m

1

Ga=" (m—2)wn

SPQ(w)dw

1
Cap = —w—m—gpwﬂmw)jw .
This proves Theorem B in case of m=3. Let us now suppose that m=2, =2
and M has embedded ends. Then Lemma 7 can be applied to M. Since M has
embedded ends, it is shown that for each end M, there exists a plane P of
RY and M; p is realized as a graph over Pr: M;r={(vs, vs, hs(v), -+, hy(®)):
v=(vy, v,)€ Pr}. Moreover because of and ¢=2, each A, (@a=3, ---, N)
is a harmonic function on M; of the form: h,(x)=Dlog|x|+f.(x), where f.(x)
converges to a constant as x€M;—oco (D=0 if ¢>2). Then it turns out from
the same argument as in the case m=3 that the &, has the following asymptotic
behaviour :

ho(v) = 02108 0] +bat(Ca, v +Co,2v2) [0 2 +0]v] 10 (0<KIZ1).

We remark here that if ¢>2, we have a,=0 and d=1; if N=3, we have =1
(cf. [15: Proposition 3] for the case of N=3). This completes the proof of
Theorem B.

PROOF OF THEOREM A. Let M be a connected, complete minimal submanifold
properly immersed into RY satisfying condition (0.1). The first assertion is an
immediate consequence of Theorem B in the case of m=3. We consider the
case m=2 and suppose £=2 and M has one end. Then by there is
a plane of RY such that the restriction 2, of each component v, of coordinates
(vg, -, vy) in P* has the form: h.(x)=Dlog|x|+E (a=3, ---, N). Since M
has one end, the maximum principle says that each h, must be constant, that
is, M must be a plane. Now we shall prove the second assertion. Suppose
m=N—1, 2-+¢>2m and M is embedded. Then by and LCemma 7, we
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have a hyperplane P such that for each end M, M;r can be realized as a
graph over Pr: M; r={(v, hj(v)):vePr}. Since 2+&>2m, each h,(x) tends to a
constant C; as x€M;—occ. We take the smallest constant, say C,, among C;/s.
Then by the maximum principle, 4, must be bounded from below by C,, that
is, h,—C, is positive on M. Then if m=3, h(x)—C,=D,(1+|x|™2)?; if m=2,
hy(x)—C,=D, where D, and D, are positive constants. This leads us to a
contradiction, because of [Lemma 5 and Lemma 7| The last assertion of
Theorem A follows from Theorem B and [Theorem 3 in [15]. This completes
the proof of Theorem A.

3. Other results.

In this section, we shall give three results below, making use of
and in Section 1.

Initially, we have the following

THEOREM 1. Let M be a complex submanifold immersed into C¥. Suppose
that the induced metric on M is complete and that there are a complex m-plane
P (m=dim¢M), a compact subset K of M, and a positive constant ¢ satisfying

(T.M, P) =2 e>0

for any ze MNK. Then M is a complex m-plane if m=2, or m=1 and K is
empty.

ProoF. The same notations will be used as in Consider first
the case m=2. Then (2) shows that My is a graph of some holomorphic
functions {h,, *--, hy-m} defined on Pr. Therefore the Hartogs extension theo-
rem tells us that each 4, has a unique extension, denoted by the same letter
h; to P. Moreover, it follows from that each h; is a constant or a
polynomial of degree 1. This proves that M is a complex m-plane of C¥.
The same proof is available for the case m=1 and K is empty, by Lemma 4
(3). This concludes the proof of Theorem 1.

The following theorem is an immediate consequence of Theorem 7 in [6],
Lemma 3 and Lemma 4

THEOREM 2. Let M be a complete minimal submanifold of dimension m
immersed into RY. Then M is an m-plane of RY, provided that there are an
m-plane P of RY and a positive constant e satisfying

(T.M,Py=¢  for every xeM,

e= cos”(%\/ﬁ), k= min{m, N—m},  §= { é ZZ Zié |
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Finally, let us consider an m-dimensional, connected noncompact Riemannian
submanifold M properly immersed into RY. Assume that M satisfies conditions
(1.13) and [1.14) and furthermore the constant e of is greater than 2. We
first consider the case of m=3. Then applying to M, we see that
for each end M, there is an m-plane P such that for some T=0, M, r=
{xeM;:disgr¥(x, P)=T} can be realized as a graph of some smooth functions
{hmet, =+, hy} on Pr={veP:|v|=T}. Moreover the h,(v) tends to a constant
e« as |v|—co. In fact, since h, satisfies

A//

Ayho = {Hy, Nh)*> = |Hy| = TF[xme

for a constant A”, there exists a unique solution U, on M; of equation: AyU,
=Ayh, and U,(x) goes to 0 as |x|—oco (cf. Cemma 2(3)). This implies that
U,—hs is a bounded harmonic function on M; and hence it tends to a constant.
Suppose now that M has one end. (Note that M has one end if M has non-
negative Ricci curvature, since M has no nonconstant bounded harmonic func-
tions (cf. and [Corollary 3).) Then if M is not an m-plane, we can find a
(sufficiently large) ball B of R¥ such that for some point x of M, M is tangent
to 0B from the inside of B. Hence the second fundamental form a, satisfies

@.1) Can(X, X), v) = CLX, X>

for any XeT.M, where v is the outer unit normal to dB and C is a positive
constant. In the case of m=2, we can apply to M and obtain [(3.1).
Thus we have the following

THEOREM 3. Let M be an m-dimensional, connected noncompact Riemannian
submanifold properly immersed into RY satisfying (1.13) with ¢>2 and (1.14).
Then:

(I) M is a hyperplane if m=N—1 and the sectional curvature is nonnegative.

(II) M is an m-plane if M has one end and if, for any point x of M, there
is a subspace T of T M such that dim T >N—m and the sectional curvature for
any plane of T is nonnegative.

The first assertion follows from the above argument and the results of [5]

and [14]. The second one is a consequence of the above argument and Otsuki’s
lemma (cf. [11: p. 28]).
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Added in proof. During the submission of this paper to the journal, the
author received a preprint in which Anderson investigated complete minimal
submanifolds in R™ of finite total scalar curvature. Especially, the proof of his
main theorem there tells us that for a complete minimal submanifold M of
dimension m=3 immersed into R”, the immersion is proper and the second
fundamental form a, satisfies: |ay|=c/|x|™ for some positive constant ¢, if
the total scalar curvature SMlaMl"‘ is finite. It is easy to see that the total
scalar curvature is finite if the immersion is proper and |ay|=c/|x|'*® for
some constants ¢>0 and ¢>0. Moreover some improvements of Theorem A (I)
and have been given in [21].

Finally, manifolds as in Theorem A and [Theorem 3 belong to a class of
Riemannian manifolds of asymptotically nonnegative curvature. In [22], several
results on such manifolds, including some gap theorems similar to the results
in this paper, have been proved.
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