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$0$ . Introduction.

The purpose of the present paper is to prove the following

THEOREM A. Let $M$ be a connected, comPlete mimmal submanifold Properly
immersed into Euclidean sPace $R^{N}$ . SuPpose that

(0.1) the scalar curvature of $M$ at $x \geqq-\frac{A}{1+|x|^{2+8}}$

for some posttive constants $A$ and $\epsilon$ , where $|x|$ stands for the Euclidean norm of
$x\in M\subset R^{N}$ . Then:

(I) $M$ is an m-plane if $m=\dim M\geqq 3$ and $M$ has one end, or if $m=2,$ $\epsilon\geqq 2$

and $M$ has one end.
(1) $M$ is a hyperplane if $m=N-1,2+\epsilon>2m$ and $M$ is embedded into $R^{N}$ .
(III) $M$ is a catenoid if $m\geqq 3,$ $m=N-1$ and $M$ has two enalS, or if $m=2$ ,

$N=3$ and $M$ has two embedded ends.

Since an area-minimizing hypersurface properly embedded into $R^{N}$ has one
end (cf. [1]), we have the following

COROLLARY 1. Let $M$ be an area-minimizzng hypersurface properly embedded
into $R^{N}$ satisfying condition (0.1). Then $M$ is a hyperplane of $R^{N}$ .

In case $M$ is a complex submanifold properly embedded into $C^{N}$ , condition
(1.0) will imply that the volume of the exterior metric ball $M\cap B_{e}(r)$ with radius
$r$ grows like $r^{2m}(m=\dim_{C}M)$ (cf. Lemma 2 (1)), and hence by a theorem of
Stoll [16], $M$ turns out to be algebraic. In particular, $M$ has one end if $m\geqq 2$

(cf. Lefschetz hyperplane theorem). Thus we have proven

COROLLARY 2. Let $M$ be a complex submanifold pr0perly embedded into $C^{N}$ .

This research was supported partly by the Grant-in-Aid for Scientific Research, Ministry
of Education, Science and Culture.
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Then $M$ is a complex $m$-plane, prOmded that $m=\dim_{C}M$ is greater than or equal
to two and the scalar curvature of $M$ satisfies condition (0.1).

We shall give here some remarks and examples to illustrate the roles of
several hypotheses in Theorem A.

(1) (Vitter [17]). Let $M$ be an algebraic hypersurface in $C^{m+1}(m=\dim_{C}M)$ ,
$i$ . $e.,$ $M=\{z\in C^{m+1} : f(z)=0\}$ for $f=f_{(k)}+f_{(k-1)}+\cdots+f_{(0)}$ a polynomial of degree $k$

and $f_{(j)}$ the term of $f$ of degree $j$ . Suppose $M$ is nonsingular at infinity, $i$ . $e.$ ,

the projective hypersurface in $CP^{m+1}$ defined as the zero set of $f_{(k)}$ is non-
singular. Then the sectional curvature of $M$ at $z$ is uniformly bounded in
absolute value by $A/|z|^{2}$ for some positive constant $A$ .

(2) Let $M_{k}$ be a complex curve of $C^{2}$ defined by $M_{k}=\{z=(z_{1}, z_{2});z_{1}^{k}+z_{2}^{k}=1\}$

$(k\in\{3, 4, \})$ . Then the Gaussian curvature $K(z)$ of $M_{k}$ at $z$ is given by

$K(z)=- \frac{(k-1)^{2}|z_{1}z_{2}|^{2(k- 2)}}{(|z_{1}|^{2(k- 1)}+|z_{2}|^{2(k- 1)})^{8}}$ .

(3) Let $X:R^{2}arrow R^{3}$ be Enneper surface:

$X(x_{1}, x_{2})=(x_{1}+x_{1}x_{2}^{2}- \frac{x_{1}^{3}}{3},$ $-x_{2}-x_{2}x_{1}^{2}+ \frac{x_{2}^{3}}{3},$ $x_{1}^{2}-x_{2}^{2})$ .

Then Gaussian curvature $K(x)$ at $x$ is given by

$K(x)=- \frac{4}{(1+x_{1}^{2}+x_{2}^{2})^{4}}$ .

Thus Enneper surface satisfies condition (0.1) with $\epsilon=2/3$ . Note that it is not
embedded.

(4) Let $M$ be a catenoid of $R^{3},$ $i$ . $e.,$ $M=\{x=(x_{1}, x_{2}, x_{3}):\cosh x_{3}=\sqrt{x_{1}^{2}+x_{2}^{2}}\}$ .
Then the Gaussian curvature $K(x)$ is equal to $-1/(x_{1}^{2}+x_{2}^{2})^{2}$ . Thus catenoids
satisfy condition (0.1) with $\epsilon=2$ . More generally, m-dimensional catenoids satisfy
condition (0.1) with $\epsilon=2m-2$ , and complete minimal surfaces in $R^{3}$ of finite
total curvature and whose ends are embedded satisfy (0.1) with $\epsilon=2$ (cf. [15:
p. 801]).

In connection with the above results, we should mention first the two
works by Mok, Siu and Yau [12] and Greene and Wu [4]. In [12], they
investigated complete noncompact K\"ahler manifolds and proved that, if the
sectional curvature of a complete K\"ahler manifold $M$ with a pole $0\in M$ is
uniformly bounded in absolute value by $A(\epsilon)/dis_{M}(0, *)^{2+\epsilon}$ , then $M$ is biholomorphic
to $C^{m}$ , where $\epsilon$ is a positive constant and $A(\epsilon)$ is a positive number depending
on $\epsilon$ . Here we call a point $0$ of $M$ a pole if the exponential map at $0$ induces
a diffeomorphism between the tangent space at $0$ and $M$. In addition, they
showed that if the curvature of $M$ does not change its sign and $m\geqq 2$ , then $M$

is biholomorphic and isometric to $C^{m}$ . Recently, this result was extended by
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Greene and Wu [4] to Riemannian manifolds with a pole. The first two
assertions of Theorem A was inspired by these works.

During the submission of this paper to the journal, a paper of Schoen [15]

appeared. In the latter half of [15], he considers a class of complete minimal
hypersurfaces of $R^{N}$ which are said to be regular at infinity (cf. Definition
below) and shows that any complete minimal hypersurface which is regular at
infinity and has two ends is a catenoid or a pair of hyperplanes. Our result is
closely related to his theorem. In fact, the last assertion of Theorem A has
been obtained after his result just mentioned above.

We shall now outline the proof of Theorem A. At the first step, it will
be shown that each end of a minimal submanifold $M$ properly immersed into
$R^{N}$ satisfying (0.1) is quasi-isometric to the exterior of a ball of $R^{N}$ . At the
second step, we shall consider the Gauss map of $M$ and prove that each end
of $M$ behaves reasonably well. Finally we shall show the following

THEOREM B. Let $M$ be a connected, complete minimal submanifold ProPerly
immersed into $R^{N}$ . Supp0se that $M$ satisfies condition (0.1) and that if $m=$

dimM $=2,$ $\epsilon$ is greater than or equal to two and each end of $M$ is embedded.
Then $M$ is regular at infinity.

Here we shall give the following

DEFINITION. A complete minimal immersion $Marrow R^{N}$ is said to be regular
at infinity if there is a compact subset $K\subset M$ such that $M-K$ consists of $k$

connected components $M_{1},$ $\cdots$ , $M_{k}$ such that each $M_{j}$ is the graph of functions
$\{h_{j;\alpha}\}_{a=1,\cdots,N-m}(m=\dim M)$ with bounded slope over the exterior of a bounded
region in some m-plane $P_{j}$ . Moreover if $v_{1},$

$\cdots$ , $v_{m}$ are coordinates of $P_{j}$ , we
require the $h_{j;\alpha}$ have the following asymptotic behaviour for large $|v|$ and
$m=2$ :

$h_{j;\alpha}(v)=a_{j;\alpha}\log|v|+b_{j:\alpha}+(c_{j,a.1}v_{1}+c_{Jia}22$ $(0<\delta\leqq 1)$ ,

while for $m\geqq 3$ , we require

$h_{j;a}(v)=b_{j_{i}\alpha}+a_{j;\alpha}|v|^{2- m}+ \sum_{\beta=1}^{m}c_{j;a,\beta}v_{\beta}|v|^{-m}+O|v|^{-m}$

for some constants $a_{j;\alpha},$ $b_{j;a},$ $c_{J;a,\beta}$ .

This definition is an adaptation of Schoen’s one in [15] where m’nimaI
hypersurfaces are treated.

In the case of $m\geqq 3$ , the first assertion of Theorem A is an immediate
consequence of Theorem $B$ and the last one follows from Theorem $B$ and
Theorem 3 in [15] which has been stated above. The remaining parts of
Theorem A and Theorem $B$ will be proven in Section 2.
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1. Preliminaries.

Let $\iota:Marrow R^{N}$ be an immersion of an m-dimensional smooth manifold $M$

into Euclidean space $R^{N}$ . Throughout this paper, $M$ is assumed to be connected.
We consider $M$ as a Riemannian manifold with the induced metric $g_{M}$ . For
any point $x$ of $M$, we shall denote $\iota(x)\in R^{N}$ by the same letter $x$ if there is
no danger of confusion. Thus the tangent space $T_{x}M$ is a subspace of the
tangent space $T_{x}R^{N}(=R^{N})$ and it is equipped with the inner product induced
from the Euclidean inner product $\langle, \rangle$ . We write $T_{x}M^{\perp}$ for the normal space
to $M$ at $x\in M$ and $X^{\perp}$ for the normal component of a vector $X\in R^{N}$ . Moreover
let us denote by $\nabla$ (resp. 7) the covariant differentiation on $M$ with respect to
$g_{M}$ (resp. the covariant differentiation on $R^{N}$ ).

First we have the following

LEMMA 1. Let $f$ be a smooth function on an open subset $U$ of $R^{N}$ and denote
by $f|_{M\cap U}$ the restriction of $f$ to $M\cap U$. Then

$\nabla^{2}f|_{M\cap U}(X, Y)=\nabla^{2}f(X, Y)+\langle\alpha_{M}(X, Y), (\nabla f)^{\perp}\rangle$ ,

where $X,$ $Y\in TM$ and $\alpha_{M}$ : $TM\cross TMarrow TM^{\perp}is$ the second fundamental form of $M$.
PROOF. This follows immediately from the definitions of the Hessians

$\nabla^{2}f|_{M\cap U},$ $5^{2}f$ and the second fundamental form $\alpha_{M}$ .

Let us now prove

LEMMA 2. Let $\iota:Marrow R^{N}$ be a proper immerston of an m-&mensional non-
compact smooth manifold $M$ into $R^{N}$ . SuppOse that there exist posrtive constants
$A$ and $\epsilon$ such that

(1.1) the square length $|\alpha_{M}|^{2}$ of $a_{K}$ at $x \in M\leqq\frac{A}{1+|x|^{2+\epsilon}}$ ,

where $|x|$ stands for the Euclidean distance between $x\in M$ and the origin $0\in R^{N}$ .
Then the following assertions hold:

(1) There are $po\alpha tive$ constants $\beta$ , $B$ and a diffeomorphism $\mu:M\backslash B_{e}(\beta)arrow$

$[\beta, \infty)\cross_{t}\partial B_{e}(\beta)$ (the warped pr0duct of $[\beta,$ $\infty$ ) and $\partial B_{e}(\beta)$ with a warping func-
tion t) such that for any vector $X$ tangent to $M$ at $x\in M\backslash B_{e}(\beta)$ ,

$\frac{1}{B}g_{M}(X, X)\leqq g_{w}(\mu_{*}X, \mu_{*}X)\leqq Bg_{w}(X, X)$ .
Here $B_{e}(\beta)=\{x\in M:|x|\leqq\beta\}$ and $g_{w}$ denotes the warped metric on $[\beta, \infty$ ) $\cross_{t}\partial B_{e}(\beta)$ .
Moreover the $[\beta, \infty$)-comp0nent of $\mu(x)$ is equal to $|x|$ for any $x\in M\backslash B_{e}(\beta)$ .

(2) Supp0se that $m\geqq 3$ . Then $M$ p0ssesses the Green function $G_{M}(x, y)$ for
the Laplace operat0r $\Delta_{M}$ . Moreover for a fixed point $x\in M$, there exists a



Gap theorems 477

positive constant $C(x)$ such that

$\frac{1}{C(x)|x-y|^{m- 2}}\leqq G_{M}(x, y)\leqq\frac{C(x)}{|x-y|^{m- 2}}$

for any $y\in M$.
(3) Supp0se that $m\geqq 3$ . Then, for any smooth function $Q$ on $M$ satisfyng

$|Q(x)| \leqq\frac{D}{1+|x|^{2+\delta}}$

for some positive constants $D$ and $\delta$ , there is a unique solution $U$ of equation:
$\Delta_{M}U+Q=0$ such that

$|U(x)| \leqq\frac{D’}{1+|x|^{\delta}}$

for some positive constant $D’$ which is independent of $Q$ .
(4) SuppOse that $m\geqq 3$ . Let $h$ be a bounded harmonic function defined on an

end $\Omega$ of M. Then there is a constant $h_{\infty}$ such that

$|h(x)-h_{\infty}| \leqq\frac{E\sup|h|}{1+|x|^{m-2}}$

on $\Omega$ , where $E$ is a posttive constant independent of $h$ .
PROOF. For the proof of the first assertion, we put $\overline{r}(v)=|v|$ and $r=\overline{r}|_{M}$ .

Then we have by Lemma 1 and assumption (1.1)

$\frac{1}{2}\nabla^{2}r^{2}(X, X)=\frac{1}{2}F^{2}\overline{r}^{2}(X, X)+\frac{1}{2}\langle\alpha_{M}(X, X), (\nabla r^{2})^{\perp}\rangle$

$=|X|^{2}+r\langle\alpha_{M}(X, X), (\overline{\nabla}r)^{\perp}\rangle$

$\geqq|X|^{2}-r|\alpha_{M}(X, X)|$

$\geqq(1-r\sqrt{\frac{A}{1+r^{2+\epsilon}}})|X|^{2}$ ,

for any tangent vector $X\in TM$. Similarly we see that

$\frac{1}{2}\nabla^{2}r^{2}(X, X)\leqq(1+r\sqrt{\frac{A}{1+r^{2+\epsilon}}})|X|^{2}$ .

Thus the Hessian $(1/2)\nabla^{2}r^{2}$ satisfies

(1.2) $(1- \eta^{\circ}r)g_{M}\leqq\frac{1}{2}\nabla^{2}r^{2}\leqq(1+\eta\circ r)g_{M}$

on $M$, where $\eta(t)=t[A/(1+t^{2+\epsilon})]^{1/2}$ . In the sequel, we follow the argument in
[7] in order to construct a quasi-isometry $\mu:M\backslash B_{e}(\beta)arrow[\beta, \infty)\cross t\partial B_{e}(\beta)$ . At
first, note that $r^{2}$ is a smooth exhaustion function on $M$ and further it is a
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strictly convex function on $M\backslash B_{e}(\beta)$ for some $\beta>0$ , because of (1.2). In partic-
ular, we see that the gradient $\nabla r^{2}$ never vanishes on $M\backslash B_{e}(\beta)$ . Let us now
define a vector field $X_{r}$ on $M\backslash B_{e}(\beta)$ by $X.=\nabla r/|\nabla r|^{2}$ . We write $\lambda_{p}$ : $[\beta, \infty$ ) $arrow$

$M\backslash B_{e}(\beta)$ for the maximal integral curve of $X_{r}$ such that $\lambda_{p}(\beta)=p\in\partial B_{e}(\beta)$ .
Then $r(\lambda_{p}(t))=t$ for all $t\geqq\beta$ , since $dr(\lambda_{p}(t))/dt=1$ . Define a smooth map
$\nu;[\beta, \infty)\cross_{t}\partial B_{e}(\beta)arrow M\backslash B_{e}(\beta)$ by $\nu(t, p)=\lambda_{p}(t)$ . Then $\nu$ gives a diffeomorphism
between $[\beta, \infty$ ) $\cross_{t}\partial B_{e}(\beta)$ and $M\backslash B_{e}(\beta)$ . We shall prove that $\mu=\nu^{-1}$ is a
required quasi-isometry. In fact, for any smooth regular curve $\gamma:[0, \delta]arrow\partial B_{e}(\beta)$ ,

set a smooth map $\nu_{\gamma}$
; $[\beta, \infty$ ) $\cross[0, \delta]arrow M\backslash B_{e}(\beta)$ by $\nu_{\gamma}(t, s)=\nu(t, \gamma(s))$ . Put $X_{\gamma}=$

$\nu_{\gamma*}(\partial/\partial t)$ and $Y_{\gamma}=\nu_{\gamma*}(\partial/\partial s)$ . Then we have

(1.3) $\frac{\partial}{\partial t}|Y_{\gamma}(t, s)|=\frac{\nabla^{2}r(Y_{\gamma}(t,s),Y_{\gamma}(t,s))}{|Y_{\gamma}(t,s)||\nabla r|^{2}(\nu_{\gamma}(t,s))}$ .

On the other hand, we see by (1.2) that

(1.4) $\frac{1}{r}[(1-\eta^{\circ}r)g_{M}-(dr)^{2}]\leqq\nabla^{2}r\leqq\frac{1}{r}[(1+\eta\circ r)g_{M}-(dr)^{2}]$ ,

and hence by (1.3) and (1.4) we have

(1.5) $\frac{1-\eta(t)}{t}|Y_{\gamma}(t, s)|^{2}\leqq\nabla^{2}r(Y_{\gamma}(t, s),$ $Y_{\gamma}(t, s)) \leqq\frac{1+\eta(t)}{t}|Y_{\gamma}(t, s)|^{2}$ .

Moreover it follows from (1.4) that

(1.6) $1-\xi\circ r\leqq|\nabla r|^{2}\leqq 1$

on $M\backslash B_{e}(\beta),$ $\xi where\xi(t)=2\int_{\beta}^{t}u\eta(u)du/t^{2}-\beta^{2}(a-1)/t^{2}$ and $a= \min\{|\nabla r|^{2}(p);p\in$

$\partial B_{e}(\beta)\}$ (cf. [7: Lemma 2]). Therefore by (1.3), (1.5) and (1.6), we obtain

$\frac{1-\eta(t)}{t}\leqq\frac{\partial}{\partial t}$ log $|Y_{\gamma}(t, s)| \leqq\frac{1+\eta(t)}{t(1-\xi(t))}$

so that, integrating the both sides from $\beta$ to $t$ , we have

$\frac{t}{\beta}\exp\int_{\beta}^{t}-\frac{\eta(u)}{u}du\leqq_{Y}^{Y}\frac{1}{1}\frac{\gamma(t}{\gamma(\beta}\frac{s)|}{s)|},,\leqq\frac{t}{\beta}\exp\int_{\beta}^{t}\frac{\phi(u)}{u}du$ ,

where $\phi(t)=(\eta(t)+\xi(t))/(1-\xi(t))$ . This implies that

(1.7) $\frac{t}{\beta}\exp\int_{\beta}^{\infty}-\frac{\eta(u)}{u}du\leqq\frac{|Y_{\gamma}(t,s)|}{|Y_{\gamma}(\beta,s)|}\leqq\frac{t}{\beta}\exp\int_{\beta}^{\infty}\frac{\phi(u)}{u}du$ .

Thus it turns out from (1.6) and (1.7) that $\mu$ is a required map. This completes
the proof of the first assertion.

Let us next show the second assertion. We put
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$\Phi(t)=\int_{t}^{\infty}s^{1- m}\exp[-\int_{\beta}^{s}\frac{\phi(u)}{u}du]ds$ ,

$\Psi(t)=\int_{t}^{\infty}s^{1- m}\exp[\int_{\beta}^{s}\frac{m\eta(u)}{u}du]ds$ ,

where $\psi(t)=\{(m-1)\xi(i)+m\eta(t)\}/(1-\xi(t))$ . Then by (1.4) and (1.6), we see that
$\Delta_{M}\Phi\circ r\geqq 0$ and $\Delta_{M}\Psi\circ r\leqq 0$ on $M\backslash B_{e}(\beta)$ . The maximum principle implies that
for some positive constants $C_{1}(x)$ and $C_{2}(x)$ ,

$C_{1}(x)\Phi or(y)\leqq G_{M}(x, y)\leqq C_{2}(x)\Psi\circ r(y)$

outside a compact set. This shows the second assertion, since $\Phi(t)\geqq C_{3}t^{2-m}$ and
$\Psi(t)\leqq C_{4}t^{2-m}$ for some positive constants $C_{3}$ and $C_{4}$ .

To prove the third assertion, we set

$\Sigma(t)=\int_{t}^{\infty}[\frac{1}{\tau(s)}\int_{0}^{s}\sigma(u)\tau(u)du]ds$ ,

where $\sigma(t)=D/(1+t^{2+\delta}),$ $\tau(t)=t^{m-1}\exp[-\int_{1}^{t}m\eta(s)/sds]$ , and $\eta$ is as in (1.2). Then

by (1.4) and (1.6), we have

$\Delta_{M}\Sigma\circ r+\sigma\circ r\leqq 0$

on $M\backslash B_{e}(R)$ , for some positive constant $R$ . Therefore it follows from the same
argument as in the proof of Theorem 5.4 in [9] that

$\int_{M}Q(y)G_{M}(x, y)dy\leqq\int_{M}\sigma\circ r(y)G_{M}(x, y)dy$

$\leqq D’\Sigma\circ r(x)$ ,

where $D’$ is a positive constant independent of $Q$ . Thus $U(x)= \int_{M}Q(y)G_{M}(x, y)dy$

is the required solution.
It remains to prove the last assertion. For any $t>\beta$ , we denote by $M_{j}(t)$

( $J^{=1},$ $\cdots$ , k) the connected components of $M\backslash B_{e}(t)$ . Let us define immersions
$\iota_{j}(t)$ from $M_{j}(t)$ into the unit sphere $S^{N- 1}(1)$ of $R^{N}$ by $\iota_{j}(t)(x)=t^{-1}c(x)$ . Then by
condition (1.1), we see that the second fundamental forms $\alpha_{j}(t)$ of the immer-
sions tend to $0$ as $tarrow+\infty$ . Therefore each $M_{j}(t)$ turns out to be diffeomorphic
to the unit sphere $S^{m-1}(1)$ of $R^{m}$ . Thus taking account of the first assertion,
we may assume that each $M_{j}(t)$ ( $t$ is fixed) is a domain of $R^{m}$ equipped with a
Riemannian metric $g_{j}$ satisfying

$\frac{1}{\lambda}|X|^{2}\leqq g_{J}(X, X)\leqq\lambda|X|^{2}$
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for some $\lambda\geqq 1$ and every $X\in TR^{m}$ . Let $h$ be a bounded harmonic function
defined on $M_{j}(t)$ . Then it follows from Theorem 5 of Moser [13] that $h(x)$

tends to a constant $h_{\infty}$ as $xarrow\infty$ . Moreover by the second assertion, we get

$|h(x)-h_{\infty}| \leqq\underline{E}\sup_{x|}|h|\mapsto m-2$

where $E$ is a positive constant independent of $h$ . This completes the proof of
Lemma 2.

REMARK. Let $M$ and $\beta$ be as in Lemma 2. If the dimension of $M$ is not
less than 3 and $\partial B_{e}(\beta)$ is disconnected, that is, $M$ has at least two ends, then
$M$ possesses nonconstant bounded harmonic functions with finite Dirichlet norm
(cf. the proof of Lemma 2 (2) and [8: Corollary (5.8)]).

COROLLARY 3. Let $M$ be as in Lemma 2. SuppOse that $m\geqq 3$ . Then $M$ has
the only one end if and only if there are no bounded harmonic functions on $M$

except constants.

REMARK (cf. [10]). Let $\iota;Marrow R^{N}$ be a minimal immersion of an m-dimen-
sional smooth manifold $M$ into $R^{N}$ . Suppose that $m\geqq 3$ . Then:

(1) For any $x\in M$ and $R\geqq 0$ , the Green function $G_{R}(x, y)$ of $B_{e}(x;R)$

$(=\{y\in M:|y-x|\leqq R\})$ satisfies

$G_{R}(x, y) \leqq\frac{1}{(m-1)\omega_{m-1}}(\frac{1}{|x-y|^{m- 2}}-\frac{1}{R^{m- 2}})$ ,

where $\omega_{m-1}$ stands for the volume of the Euclidean unit sphere of dimension
$m-1$ .

(2) For any smooth function $Q$ on $M$ such that

$|Q(x)| \leqq\frac{D}{1+|x|^{2+\delta}}$ ,

where $D$ and $\delta$ are positive constants, there is one and only one solution $U$ of
equation: $\Delta_{M}U+Q=0$ satisfying

$|U(x)| \leqq\frac{D’}{1+|x|^{\delta}}$ ,

where $D’$ is a positive constant independent of $Q$ .
We shall now consider the Gauss map of an immersion $\iota:Marrow R^{N}$ from a

smooth manifold $M$ of dimension $m$ into Euclidean space $R^{N}$ and give a crucial
lemma (cf. Lemma 5) for the proof of the main theorem.

Let us begin by giving some notations. Let $P$ be an m-dimensional sub-
space (called an $m$-plane) of $R^{N}$ . We write $\pi_{P}$ (resp. $P$ ”) for the orthogonal
projection from $R^{N}$ to $P$ (resp. the orthogonal complement of $P$ ). For two
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m-planes $P$ and $Q$ , define an ‘ inner product ’
$\langle\langle P, Q\rangle\rangle$ by

$\langle\langle P, Q\rangle\rangle=\min\{|\pi_{Q}(X)| : X\in P, |X|=1\}$ .
When $P$ and $Q$ are oriented m-planes, we set

$\langle P, Q\rangle=\det(\langle e_{i}, f_{f}\rangle)$ ,

where $\{e_{t}\}_{i=1\ldots..m}$ and $\{f_{i}\}_{i=1\ldots..m}$ are, respectively, oriented orthonormal bases of
$P$ and $Q$ . Then we have the following

LBMMA 3.
(1) $\langle\langle P, Q\rangle\rangle=\langle\langle Q, P\rangle\rangle=\langle\langle P^{\perp}, Q^{\perp}\rangle\rangle$ .
(2) $\langle\langle P, Q\rangle\rangle=0$ if and only if $P\cap Q^{\perp}\neq\{0\}$ .
(3) $\langle\langle P, Q\rangle\rangle^{k}\leqq|\langle P, Q\rangle|\leqq\langle\langle P, Q\rangle\rangle$ $(k= \min\{m, N-m\})$ .
PROOF. The first two assertions are clear from the definition of $\langle\langle P, Q\rangle\rangle$ .

For the last one, it may be assumed that $N-m\geqq m$ and moreover that suitable
orthonormal bases $\{e_{i}\}_{t=1,\ldots.m},$ $\{f_{i}\}_{i=1,\ldots.m}$ and $\{\hat{f}_{i}\}_{i=1\ldots.,N-m}$ , respectively, of $P,$ $Q$

and $Q^{\perp}$ satisfy

$e_{i}= \frac{f_{i}+\lambda_{i}f_{i}}{\sqrt{1+\lambda}\S}$

for some $\lambda_{i}\in R$ $(i=1, \cdots , m)$ . Then we have

$|\langle P, Q\rangle|=|\det(\langle e_{i}, f_{j}\rangle)|=$ I $\mu_{i}$
$(\mu_{t}=1/\sqrt{1+\lambda_{i}^{2}})$ .

$i=1$

On the other hand, it follows from the definition of $\langle\langle P, Q\rangle\rangle$ that

$\langle\langle P, Q\rangle\rangle=\min\{\sqrt{\sum_{i=1}^{m}t_{i}\mu_{i}^{2}}$ : $\sum_{i=1}^{m}t_{i}=1,$ $t_{i}\geqq 0\}$

$\leqq\mu_{i}$ $(i=1, \cdots m)$ ,

and hence, we have
$\langle\langle P, Q\rangle\rangle^{m}\leqq\square \mu_{i}=m|\langle P, Q\rangle|$ .

$i=1$

Furthermore we see that $|\langle P, Q\rangle|\leqq\langle\langle P, Q\rangle\rangle$ , because

2 $t_{t}\mu_{i}^{2}\geqq\Pi^{m}\mu_{i}^{2t_{i}}\geqq\Pi^{m}\mu_{i}^{2}$ .
$i=1$ $i\Rightarrow 1$ $i=1$

Thus the last assertion has been proven. This completes the proof of Lemma 3.

LEMMA 4. Let $\iota;Marrow R^{N}$ be an immerston of an m-dimensional smooth
manifold $M$ into Euclidean space $R^{N}$ such that the induced metnc on $M$ is
complete. SuppOse that there are an $m$-plane $P$, a compact subset $K$ of $M(K$
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may be empty) and a positive constant $\epsilon$ such that

(1.8) $\langle\langle T_{x}M, P\rangle\rangle\geqq\epsilon>0$

on a noncompact connected comp0nent $\Omega$ of $M\backslash K$. Denote by $\overline{r}_{P}\perp the$ Euclidean
distance to $P^{\perp}and$ by $r_{P}\perp the$ restriction of $\overline{r}_{P}\perp to$ M. Set $\Omega_{t}=\{x\in\Omega:r_{P}\perp(x)\geqq t\}$ ,
$P_{t}=\{v\in P:|v|\geqq t\}$ , and $T= \max\{r_{P}\perp(x):x\in\partial\Omega\}$ . Then the following assertions
hold:

(1) The restriction $\pi_{P}|_{\Omega_{T}}$ of the orthogonal pr0jecti0n $\pi_{P}$ : $R^{N}arrow P$ to $\Omega_{T}$

defines a finite covering map from $\Omega_{T}$ onto $P_{T}$ .
(2) In the case when $m$ is greater than or equal to 3, $\Omega_{T}$ can be realized as

a graph of some smooth functions $\{h_{1}, \cdots , h_{N-m}\}$ defined on $P_{T}(i.e.,$ $\Omega_{T}=$

$\{(v, h_{1}(v), \cdots , h_{N- m}(v)):v\in P_{T}\})$ . Moreover these functions satisfy

(1.9) $1+ \sum_{i=1}^{N-m}|\frac{\partial h_{i}}{\partial v_{a}}|^{2}\leqq\epsilon^{2}$ $(\alpha=1, \cdots m)$ ,

where $(v_{1}, \cdots , v_{m})$ is a canonical coordinate system on $P$.
(3) If $K$ is empty, the second assertion holds on $P$ without any restriction

on $m$ .

PROOF. Without loss of generality, we may assume that $K$ is a compact
domain with smooth boundary $\partial K$. Since the vector field $\overline{\nabla}\overline{r}_{P}\perp$ is parallel to $P$,
we see by (1.8) that

(1.10) $|\nabla r_{P}\perp|\geqq\epsilon$

on $\Omega$ . This inequality enables us to define a smooth vector field $X$ on a neigh-
borhood of $\overline{\Omega}$ by $X=\nabla r_{P}\perp/|\nabla r_{P}\perp|^{2}$ . Let $\gamma:(a, b)arrow\Omega$ be an integral curve of $X$.
Observe that $|r_{P}(\gamma(t))-r_{P}(\gamma(s))|=|t-s|$ for any $t,$ $s\in(a, b)$ . This implies that
$|i-s|\leqq dis_{M}(\gamma(t), \gamma(s))$ . On the other hand, it follows from (1.10) that

$dis_{M}(\gamma(t), \gamma(s))\leqq\epsilon^{-1}|t-s|$ . Thus we obtain

(1.11) $|t-s| \leqq dis_{M}(\gamma(t), \gamma(s))\leqq\frac{1}{\epsilon}|t-s|$

for any $t,$ $s\in(a, b)$ . Let us now fix a number $t_{0}>T$ and let $\gamma:(a, b)arrow\Omega$ be a
maximal integral curve such that $t_{0}\in(a, b)$ and $\gamma(t_{0})\in\partial\Omega_{t_{0}}$ . Then inequality
(1.11) tells us that $\gamma((a, t_{0}$]) is contained in the closure of the (intrinsic) metric
ball around $\gamma(t_{0})$ with radius $\epsilon^{-1}(t_{0}-a)$ . Therefore we see by (1.11) that $\gamma$ can
be defined on $[a, t_{0}]$ and that $\gamma(a)$ belongs to $\partial\Omega$ . Hence the correspondence:
$\gamma(t_{0})arrow\gamma(a)$ defines an injective map from $\partial\Omega_{t_{0}}$ into $\partial\Omega$ such that $dis_{M}(\gamma(t_{0}), \gamma(a))$

$\leqq\epsilon^{-1}(t_{0}-a)\leqq\epsilon^{-1}t_{0}$ . This shows that $\partial\Omega_{t_{0}}$ is a compact hypersurface of $M$ for
every $t_{0}\in(T, \infty)$ , so that $\pi_{P}|_{\Omega_{T}}$ : $\Omega_{T}arrow P_{T}$ is a proper immersion. Thus the
assertion (1) turns out to be true. As for the second assertion, note that $P_{T}$ is
simply connected if $m\geqq 3$ and hence, $\pi_{P}|_{\Omega_{T}}$ : $\Omega_{T}arrow P_{T}$ is actually a diffeomorphism
between $\Omega_{T}$ and $P_{T}$ . Consequently $\Omega_{T}$ can be realized as a graph of some
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smooth functions $\{h_{i}\}_{i=1,\cdots.N-m}$ defined on $P_{T}$ . It is clear from condition (1.8)

that these functions satisfy inequality (1.9). The last statement (3) follows
from the above proof of the first assertion. This completes the proof of
Lemma 4.

LEMMA 5. Let $\iota:Marrow R^{N}$ be a proper immersion from an $m-\ell hmensfonal$

smooth manifold $M$ into Euclidean space $R^{N}$ . SuppOse that

(1.12) $m\geqq 3$ ,

(1.13) $| \alpha_{M}|^{2}(x)\leqq\frac{A}{1+|x|^{2+\epsilon}}$ ,

(1.14) $| \nabla H_{M}|(x)\leqq\frac{A’}{1+|x|^{2+8’}}$

for some positive constants $A,$ $A’,$ $\epsilon$ , and $\epsilon’$ , where $H_{M}$ stands for the mean cur-
vature normal of the immersion $\iota:Marrow R^{N}$ . Let $\{M_{j}\}_{j=1\ldots.,k}$ be the connected
comp0nents of $M\backslash B_{e}(\beta)$ , where $B_{e}(\beta)$ is as in Lemma 2 (1). Then for each $M_{j}$ ,

the assertions below are true:
(1) There exist an m-plane $P$ and a $po\alpha tive$ constant $B$ such that

(1.15) $\langle\langle T_{x}M, P\rangle\rangle\geqq\frac{B}{1+|x|^{\epsilon}}$

for every $x\in M_{j}$ .
(2) For some nonnegative constant $T$ , $M_{j.T}=\{x\in M_{j} : r_{P}\perp(x)\geqq T\}$ can be

realized as a graph of some smooth functions $\{h_{1}, \cdots , h_{N- m}\}$ defined on $P_{T}=$

$\{v\in P:|v|\geqq T\}$ , where $r_{P}\perp=dis_{R^{N}}(P^{\perp}, *)$ . Moreover each $h_{i}$ satisfies

(1.16) $| \frac{\partial h_{i}}{\partial v_{\alpha}}|\leqq\frac{C}{1+|v|^{\epsilon}}$ ( $\alpha=1,$ $\cdots$ , m)

for some positive constant $C$ , where $(v_{1}, \cdots , v_{m})$ is a canonical coordinate system
on $P$.

(3) Let $h$ be a harmonic function on $M_{j}$ such that $|h(x)|\leqq D(1+r_{P}(x)^{1-\eta})$

for some $D>0$ and $\eta>0$ . Then there are constants $h_{\infty},$ $D’$ and $E$ such that

$|h(x)-h_{\infty}| \leqq\frac{D’}{1+|x|^{m-2}}$ , $| \nabla h(x)|\leqq\frac{E}{1+|x|^{m-1}}$ .

PROOF. It is enough to prove Lemma 5 in case $M$ is oriented. Let $P$ be
any oriented m-plane of $R^{N}$ . Then the computation by Fischer-Corbrie [2;

Lemma 1.1] and the above assumptions (1.13) and (1.14) show that
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$|\Delta_{M}\langle T_{x}M^{\perp}, P^{\perp}\rangle|\leqq 2|\alpha_{Af}|^{2}(x)+|\nabla H_{M}|$

$\leqq\frac{2A}{1+|x|^{2+\epsilon}}+\frac{A’}{1+|x|^{2+\epsilon^{i}}}$

on $M$. Hence it follows from Lemma 2 (3) that there is a unique smooth func-
tion $U_{P}$ on $M$ such that

$\Delta_{M}\langle T_{x}M^{\perp}, P^{\perp}\rangle=\Delta_{M}U_{P}$

$|U_{p}(x)| \leqq\frac{B}{1+|x|^{\delta}}$ $(\delta=mIn\{\epsilon, \epsilon’\})$ ,

where $B$ is a positive constant independent of $P$. This implies[that $\langle T_{x}M^{\perp}, P^{\perp}\rangle$

$-U_{P}(x)$ is a bounded harmonic function on $M$, and hence it follows from
Lemma 2 (4) that for some positive constants $C(P)$ and $D$ ,

$| \langle T_{x}M^{\perp}, P^{\perp}\rangle-U_{P}(x)-C(P)|\leqq\frac{D}{1+|x|^{m-2}}$

on $M_{j}$ . Here $D$ is independent of $P$. Thus we have

(1.17) $| \langle T_{x}M^{\perp}, P^{\perp}\rangle-C(P)|\leqq\frac{B}{1+|x|^{\delta}}+\frac{D}{1+|x|^{m-2}}$

for any $x\in M_{j}$ and every oriented m-plane $P$ of $R^{N}$ . It is clear from (1.17) that
for some oriented plane $P,$ $C(P)$ is equal to 1, that is,

$\langle T_{x}M^{\perp}, P^{\perp}\rangle\geqq 1-\frac{B}{1+|x|^{\delta}}-\frac{D}{1+|x|^{m-2}}$

on $M_{j}$ . Because of Lemma 3 and (1.13), this implies the first assertion of the
lemma, from which the second one can be derived (cf. the proof of Lemma 4).

Now we shall show the last assertion, making use of the second one. Let
us identify $M_{j.T}$ with $P_{T}$ through the orthogonal projection from $M_{j,T}$ onto $P_{T}$ .
Then the Riemannian metric $g_{M}$ on $M$ can be written on $P_{T}$ as follows:

$g_{M}=$ $\sum_{\alpha.\beta=1}^{m}g_{\alpha\beta}dv_{\alpha}dv_{\beta}$

$g_{\alpha\beta}= \delta_{a\beta}+\sum_{i=1}^{N-m}\frac{\partial h_{i}}{\partial v_{\alpha}}\frac{\partial h_{i}}{\partial v_{\beta}}$ ,

where $(v_{1}, \cdots , v_{m})$ is a canonical coordinate system on $P$. Let us extend $g_{\alpha\beta}$ to
a smooth function $\tilde{g}_{a\beta}$ defined on $P$ so that $\tilde{g}=\sum\tilde{g}_{\alpha\beta}dv_{\alpha}dv_{\beta}$ becomes a Rieman-
nian metric on $P$. Observe that for some positive constant $C_{1}$ ,

$| \frac{\partial g_{\alpha\beta}}{\partial v_{\gamma}}|\leqq\frac{C_{1}}{1+|v|^{1+\epsilon/2}}$ $(\alpha, \beta, \gamma=1, \cdots m)$
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on $P$, because of (1.13) and (1.16). This shows that for some positive constant
$C_{2}$ ,

(1.18) $|a^{\alpha\beta}(u)-a^{\alpha\beta}(v)|\leqq C_{2}|u-v|$

for any $u,$ $v\in P$, where a $=\sqrt{G}\tilde{g}^{\alpha\beta},$ $G=\det(\tilde{g}_{\alpha\beta})$ , and $(\tilde{g}^{\alpha\beta})=(\tilde{g}_{\alpha\beta})^{-1}$ . Let $h$

be a harmonic function on $M_{j}$ satisfying $|h(x)|\leqq D(1+r_{P}\perp(x)^{1-\eta})$ for some $D>0$

and $\eta>0$ . Take a smooth function $\hslash$ on $P$ which coincides with $h$ on $P_{T}$ .
Then the Laplacian $\tilde{\Delta}\tilde{h}$ of $\tilde{h}$ with respect to $\tilde{g}$ is a smooth function on $P$ whose
support is compact. We set

$0_{(v)}=-\int_{P}\tilde{G}(v, w)\tilde{\Delta}\tilde{h}(w)dw$ ,

where $\tilde{G}(v, w)$ denotes the Green function of A. Then $\tilde{\Delta}\tilde{h}=\tilde{\Delta}\tilde{U}$ on $P$, so that
$\tilde{h}-\tilde{U}$ is a harmonic function with respect to $\tilde{g}$ such that $|(\tilde{h}-O)(v)|\leqq D’(1+|v|^{1-\eta})$

for some $D’\geqq 0$ . It follows from (1.16), (1.18) and Lemma 6 below that $\tilde{h}-\tilde{U}$

must be constant, and hence $h$ is a bounded harmonic function on $M_{j}$ . Con-
sequently we have $|h(v)-h_{\infty}|\leqq D’’|v|^{2-m}$ for some constants $h_{\infty}$ and $D’’\geqq 0$ .
Moreover since $|\nabla_{v}\tilde{G}(v, w)|\leqq E|v-w|^{1-m}$ (cf. Lemma 6), we obtain $|\nabla h|(v)=$

$|\tilde{\nabla}\tilde{U}|(v)\leqq E’|v|^{1-m}$ for large $|v|$ , where $E$ and $E’$ are positive constants. This
completes the proof of Lemma 5.

LEMMA 6 (Widman [18]). Consider an equation of divergence form

$Lf=_{\alpha},F_{=1}^{\frac{\partial}{\partial v_{\alpha}}(a^{\alpha\beta}\frac{\partial f}{\partial v_{\beta}})}m=0$

on $R^{N}$ with the propertjes:

$\lambda|\xi|^{2}\leqq\Sigma a^{\alpha\beta}(v)\xi_{\alpha}\xi_{\beta}\leqq\Lambda|\xi|^{2}$ $(v, \xi\in R^{m})$

$|a^{\alpha\beta}(u)-a^{\alpha\beta}(v)|\leqq\omega(|u-v|)$ ,

where $\omega(t)$ is a nondecreasing function such that $\int_{0}^{\infty}\omega(t)/tdt<+\infty$ and $\omega(2t)\leqq K\omega(t)$

for some constant K. Then a solution $f$ of $Lf=0$ on a domain $\Omega$ of $R^{m}$ satisfies
$|df(v)|\leqq\rho^{-1}(v)$ supl $f|K(m, \lambda, \Lambda, \omega)$ ,

where $\rho(v)=dis_{R^{m}}(v, \partial\Omega)$ and $K(m, \lambda, \Lambda, \omega)$ is a posttive constant dependeng only
$mm,$ $\lambda,$

$\Lambda$ and $\omega$ . In particular, if $f$ is a solution of $Lf=0$ on $R^{m}$ with $|f(v)|$

$\leqq D(1+|v|^{1-\eta})$ for some $po\alpha tive$ constants $D$ and $\eta$ , then $f$ must be a constant.

Before concluding this section, we shall show a result similar to Lemma 5
for the case of $m=2$ .

LEMMA 7. Let $\iota;Marrow R^{N}$ be a Proper immersion from a surface $M$ into $R^{N}$
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satisfying (1.13) and (1.14). Let $\{M_{j}\}_{j=1\ldots..k}$ be as in Lemma 5. Then for each
$M_{j}$ , the following assertions hold:

(1) There exists a plane $P$ and a positjve constant $B$ such that

$\langle\langle T_{x}M, P\rangle\rangle\geqq 1-\frac{B}{1+|x|^{\epsilon/2}}$

on $M_{j}$ .
(2) Let $(v_{1}, \cdots , v_{N})$ be coordinates of $R^{N}=P\oplus P^{\perp}and$ set $h_{a}=v_{\alpha}\circ\iota:Marrow R^{N}$

$(\alpha=3, \cdots , N)$ . Then

$| \nabla h_{\alpha}|(x)\leqq\frac{C}{1+|x|^{\epsilon/2}}$

on $M_{j}$, for some positive constant $C$ .
(3) Let $h$ be a harmonic function on $M_{j}$ such that $|h(x)|\leqq D$ logl $x|+E$ for

some positive constants $D$ and E. Then $h(x)$ has the form:
$h(x)=D’$ log $|x|+f(x)$ ,

where $D’$ is a constant which vamshes if so does $D$, and $f(x)$ has a finite limit as
$|x|arrow+\infty$ .

PROOF. Using the same diffeomorphism $\mu:M_{j}arrow[\beta, \infty$ ) $\cross S^{1}$ as in Lemma 2,
we take coordinates $(r, \theta)$ on $M_{j}(r(x)=|x|)$ . Then the metric $g_{M}$ on $M_{j}$ can
be expressed as follows: $g_{M}=a(r, \theta)dr^{2}+b(r, \theta)r^{2}d\theta^{2}$ . Observe that

$|1-a(r, \theta)|\leqq C_{1}/r^{\epsilon}$

(1.19)
$\exp(-C_{2}/r^{\epsilon})\leqq b(r, \theta)\leqq\exp(C_{2}/r)$

for some positive constants $C_{1}$ and $C_{2}$ (cf. the proof of Lemma 2). Set $\tilde{r}=1/r$

and take coordinates $(\tilde{r}, \theta)$ on $M_{j}$ . Then $g_{M}$ has the form: $g_{M}=\tilde{a}(\tilde{r}, \theta)\tilde{r}^{-4}\tilde{g}$,

where $\tilde{a}(\tilde{r}, \theta)=a(r^{-1}, \theta),\tilde{g}=d\tilde{r}^{2}+\tilde{c}(\tilde{r}, \theta)\tilde{r}^{2}d\theta^{2}$ and $\tilde{c}(\tilde{r}, \theta)=b(r^{-1}, \theta)/a(r^{-1}, \theta)$ . Set
$v=\tilde{r}$ cos $\theta$ and $w=\tilde{r}$ sin $\theta$ . Then $\tilde{g}$ has the form:

$\tilde{g}=(1+[\tilde{c}(\tilde{r}, \theta)-1]\frac{w^{2}}{v^{2}+w^{2}})dv^{2}-2[\tilde{c}(\tilde{r}, \theta)-1]\frac{vw}{v^{2}+w^{2}}$ dvdw

$+(1+[c \sim(\tilde{r}, \theta)-1])\frac{w^{2}}{v^{2}+w^{2}}dw^{2}$ .

Since $|\tilde{c}(\tilde{r}, \theta)-1|\leqq C_{3}\tilde{r}^{\epsilon}$ for some $C_{3}\geqq 0$ by (1.19), $\tilde{g}$ defines a metric on $\Omega=$

$\{(v, w)\in R^{2} ; v^{2}+w^{2}<\beta^{-2}\}$ whose coefficients are smooth on $\Omega^{*}=\{(v, w)\in\Omega$ :
$(v, w)\neq(O, 0)\}$ and H\"older continuous at $(0,0)$ . Hence we can apply the results
in [3] to the Laplacian A of $\tilde{g}$ . Then it is not hard to see that for any smooth
function $\tilde{Q}(\tilde{r}, \theta)$ on $\Omega^{*}$ with $|\tilde{Q}(\tilde{r}, \theta)|\leqq C_{4}\tilde{r}^{\delta-2}$ for constants $C_{4}>0$ and $\delta>0$,

there exists a unique solution C7 on $\Omega^{*}$ of equation: $\tilde{\Delta}0+\tilde{Q}=0$ on $\Omega^{*},$ $0=0$ on
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$\partial\Omega$ and $\lim_{\tilde{r}arrow 0}\{y_{(\tilde{r}},$ $\theta$ ) $=0$ . This implies that for any smooth function $Q(r, \theta)$ on
$M_{j}$ with $|Q(r, \theta)|\leqq C_{5}r^{-2-\delta}$ for constants $C_{5}>0$ and $\delta>0$ , there is a unique
solution $U$ on $M_{j}$ of equation: $\Delta_{M}U+Q=0$ on $M_{j}$ , $U=0$ on $\partial M_{j}$ and
$\lim_{rarrow\infty}U(r, \theta)=0$ . Thus it turns out from the same argument as in Lemma 5
that there is a plane $P$ of $R^{N}$ such that

(1.20) $\langle\langle T_{x}M, P\rangle\ranglearrow 1$ as $x\in M_{j}arrow\infty$ .

This shows that for large $T,$ $\Pi_{P}|_{M_{jT}}$ : $M_{j,T}arrow P_{T}$ defines a finite covering map
from $M_{j,T}$ onto $P_{T}$ (cf. Lemma 4). Moreover if we take coordinates $(v_{1}, \cdots , v_{N})$

in $R^{N}=P\oplus P^{\perp}$ and set $h_{a}=v_{\alpha}|_{M_{j}}$ $(\alpha=3, \cdots , N)$ , we see from (1.20) that $|\nabla h_{\alpha}|(x)$

converges to $0$ as $x\in M_{j}arrow\infty$ . Hence by assumption (1.13), we obtain $|\nabla h_{\alpha}|\leqq$

$C_{6}|x|^{-\epsilon}$ $(\alpha=3, \cdots , N)$ and further $\langle\langle T_{x}M, P\rangle\rangle\geqq 1-C_{7}|x|^{\epsilon}$ for some positive con-
stants $C_{6}$ and $C_{7}$ . This shows the first two assertions of the lemma. It remains
to prove the last one. Let $h$ be a harmonic function on $M_{j}$ such that $|h(x)|$

$\leqq D$ logl $x|+E$ . Note here that $M_{j}$ possesses a positive harmonic function $G_{\infty}$

such that $G_{\infty}(x)\sim\log|x|$ at infinity. Then suitable choice of constants $D’$ and
$E’$ makes $D’G_{\infty}(x)+E’+h(x)$ a positive harmonic function on $M_{j}$ . Hence it
follows from Theorem 5 in [3] that $h(x)$ has the form: $h(x)=D’’G(x)+F(x)$ ,

where $F(x)$ is a bounded harmonic function on $M_{j}$ which has a finite limit as
$x$ goes to $\infty$ . This proves the last assertion of the lemma.

2. Proofs of Theorem A and Theorem B.

We keep the notations in the preceding sections. We shall first prove
Theorem $B$ and then give a proof of Theorem A.

PROOF OF THEOREM B. Let $M$ be a minimal submanifold properly immersed
into $R^{N}$ satisfying condition (0.1). Let us consider first the case of $m\geqq 3$ . Then
Lemma 5 can be applied to $M$. Fix an end $M_{j}$ of $M$ and realize $M_{j,T}$ as a
graph over $P_{T}$ : $M_{j,T}=\{(v_{1}, \cdots , v_{m}, h_{m+1}(v), \cdots , h_{N}(v)):v=(v_{1}, \cdots , v_{m})\in P_{T}\}$ . Since
$M$ is minimal, each $h_{a}$ $(a=m+1, \cdots , N)$ is harmonic on $M$. Moreover by (1.16),

we have $|\nabla h_{\alpha}(v)|\leqq C_{1}|v|^{-\epsilon}$ for a constant $C_{1}\geqq 0$ . This implies that $|h_{\alpha}(v)|\leqq$

$C_{2}|v|^{1-\epsilon}$ for a constant $C_{2}\geqq 0$ . Therefore by Lemma 5 (3), we have

(2.1) $|h_{\alpha}(v)-h_{\alpha,\infty}| \leqq\frac{C_{3}}{1+|v|^{m- 2}}$ , $| \nabla h_{\alpha}(v)|\leqq\frac{C_{4}}{1+|v|^{m-1}}$

for some constants $h_{\alpha,\infty},$ $C_{3}$ and $C_{4}$ . Now we extend $h_{\alpha}$ to a smooth function
$\tilde{h}_{\alpha}$ on $P$. Then we have

$\sum_{\beta=1}^{m}\frac{\partial^{2}\tilde{h}_{\alpha}}{\partial v_{\beta}^{2}}=\Delta\hslash_{a}-\sum_{\gamma=1 ,\beta\neq\gamma}^{m}\tilde{g}^{\beta\gamma}\frac{\partial^{2}\tilde{h}_{a}}{\partial v_{\beta}\partial_{tJ_{\gamma}}}-\frac{1}{\sqrt G^{-}}\sum_{\beta\beta,,\gamma=1}^{m}\frac{\partial\sqrt{G}\tilde{g}^{\beta\gamma}}{\partial v_{\beta}}\frac{\partial\tilde{h}_{\alpha}}{\partial v_{\gamma}}$ .
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Observe that by (0.1) and (2.1), $|g^{\beta\gamma}|=O|v|^{2-2m}(\beta\neq\gamma),$ $|\partial^{2}h_{a}/\partial v_{\beta}\partial v_{\gamma}|=O|v|^{-1-\epsilon/2}$

and $|G^{-1/2}(\partial\sqrt{G}\tilde{g}^{\beta\gamma}/\partial v_{\gamma})|=O|v|^{-m-\epsilon/2}$ . This shows that $\Sigma_{\beta=1}^{m}\partial^{2}\tilde{h}_{\alpha}/\partial v_{\beta}^{2}=$

$O|v|^{-2m+1-\epsilon/2}$ . Hence we see that

$\tilde{h}_{\alpha}(v)=h_{\alpha,\infty}-\frac{1}{(m-1)\omega_{m}}\int_{P}\frac{Q(w)}{|v-w|^{m-1}}dw$ ,

where $\omega_{m}$ denotes the volume of unit sphere in $R^{m}$ and $Q(v)= \sum_{\beta=1}^{m}\partial^{2}\tilde{h}_{\alpha}/\partial v_{\beta}^{2}$ .
Noting the decay rate of $Q(v)$ and the following inequality: $|v-w|^{2-m}=|v|^{2-m}$

$-(m-2)v\cdot w|v|^{-m}+O|v|^{-m}|w|^{2}$ for $|w|\leqq(1/2)|v|$ , we obtain

$h_{a}(v)=h_{\alpha.\infty}+a_{\alpha}|v|^{2-m}+ \sum_{\beta=1}^{m}C_{\alpha\beta}v_{\beta}|v|^{-m}+O|v|^{-m}$

$a_{\alpha}=- \frac{1}{(m-2)\omega_{m}}\int_{P}Q(w)dw$

$C_{\alpha\beta}= \frac{1}{\omega_{m}}\int_{P}w_{\beta}Q(w)dw$ .

This proves Theorem $B$ in case of $m\geqq 3$ . Let us now suppose that $m=2,$ $\epsilon\geqq 2$

and $M$ has embedded ends. Then Lemma 7 can be applied to $M$. Since $M$ has
embedded ends, it is shown that for each end $M_{j}$, there exists a plane $P$ of
$R^{N}$ and $M_{j.T}$ is realized as a graph over $P_{T}$ : $M_{j,T}=$ { $(v_{1}, v_{2}, h_{3}(v), \cdots , h_{N}(v))$ :
$v=(v_{1}, v_{2})\in P_{T}\}$ . Moreover because of Lemma 7 and $\epsilon\geqq 2$ , each $h_{\alpha}(\alpha=3, \cdots , N)$

is a harmonic function on $M_{j}$ of the form: $h_{a}(x)=D$ log $|x|+f_{\alpha}(x)$ , where $f_{\alpha}(x)$

converges to a constant as $x\in M_{j}arrow\infty$ ($D=0$ if $\epsilon>2$). Then it turns out from
the same argument as in the case $m\geqq 3$ that the $h_{\alpha}$ has the following asymptotic
behaviour:

$h_{\alpha}(v)=a_{\alpha}\log|v|+b_{\alpha}+(C_{\alpha.1}v_{1}+C_{\alpha,2}v_{2})|v|^{-2}+O|v|^{-1-\delta}$ $(0<\delta\leqq 1)$ .
We remark here that if $\epsilon>2$ , we have $a_{\alpha}=0$ and $\delta=1$ ; if $N=3$ , we have $\delta=1$

(cf. [15: Proposition 3] for the case of $N=3$). This completes the proof of
Theorem B.

PROOF OF THEOREM A. Let $M$ be a connected, complete minimal submanifold
properly immersed into $R^{N}$ satisfying condition (0.1). The first assertion is an
immediate consequence of Theorem $B$ in the case of $m\geqq 3$ . We consider the
case $m=2$ and suppose $\epsilon\geqq 2$ and $M$ has one end. Then by Lemma 7, there is
a plane of $R^{N}$ such that the restriction $h_{a}$ of each component $v_{\alpha}$ of coordinates
$(v_{3}, \cdots , v_{N})$ in $P^{\perp}$ has the form: $h_{\alpha}(x)=D$ logl $x|+E(\alpha=3, \cdots , N)$ . Since $M$

has one end, the maximum principle says that each $h_{\alpha}$ must be constant, that
is, $M$ must be a plane. Now we shall prove the second assertion. Suppose
$m=N-1,2+\epsilon>2m$ and $M$ is embedded. Then by Lemma 5 and Lemma 7, we
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have a hyperplane $P$ such that for each end $M_{j},$ $M_{j.T}$ can be realized as a
graph over $P_{T}$ : $M_{j.T}=\{(v, h_{j}(v));v\in P_{T}\}$ . Since $2+\epsilon>2m$, each $h_{j}(x)$ tends to a
constant $C_{j}$ as $x\in M_{j}arrow\infty$ . We take the smallest constant, say $C_{1}$ , among $C_{j}’ s$ .
Then by the maximum principle, $h_{1}$ must be bounded from below by $C_{1}$ , that
is, $h_{1}-C_{1}$ is positive on $M$. Then if $m\geqq 3,$ $h_{1}(x)-C_{1}\geqq D_{1}(1+|x|^{m-2})^{-1}$ ; if $m=2$,
$h_{1}(x)-C_{1}\geqq D_{2}$ , where $D_{1}$ and $D_{2}$ are positive constants. This leads us to a
contradiction, because of Lemma 5 and Lemma 7. The last assertion of
Theorem A follows from Theorem $B$ and Theorem 3 in [15]. This completes
the proof of Theorem A.

3. Other results.

In this section, we shall give three results below, making use of Lemma 4
and Lemma 5 in Section 1.

Initially, we have the following

THEOREM 1. Let $M$ be a complex submamfold immersed into $C^{N}$ . Supp0se
that the induced metric on $M$ is complete and that there are a complex m-plane
$P(m=\dim_{C}M)$ , a compact subset $K$ of $M$, and a posjtive constant $\epsilon$ satisfying

$\langle\langle T_{z}M, P\rangle\rangle\geqq\epsilon>0$

for any $z\in M\backslash K$. Then $M$ is a complex m-plane if $m\geqq 2$ , or $m=1$ and $K$ is
empty.

PROOF. The same notations will be used as in Lemma 4. Consider first
the case $m\geqq 2$ . Then Lemma 4 (2) shows that $M_{T}$ is a graph of some holomorphic
functions $\{h_{1}, \cdots , h_{N-m}\}$ defined on $P_{T}$ . Therefore the Hartogs extension theo-
rem tells us that each $h_{i}$ has a unique extension, denoted by the same letter
$h_{i}$ , to $P$. Moreover, it follows from (1.9) that each $h_{l}$ is a constant or a
polynomial of degree 1. This proves that $M$ is a complex m-plane of $C^{N}$ .
The same proof is available for the case $m=1$ and $K$ is empty, by Lemma 4
(3). This concludes the proof of Theorem 1.

The following theorem is an immediate consequence of Theorem 7 in [6],

Lemma 3 and Lemma 4.

THEOREM 2. Let $M$ be a complete minimal submanifold of dimenston $m$

immersed into $R^{N}$ . Then $M$ is an m-plane of $R^{N}$ , promded that there are an
m-plane $P$ of $R^{N}$ and a post tive constant $\epsilon$ satisfying

$\langle T_{x}M, P\rangle\geqq\epsilon$ for every $x\in M$ ,

$\epsilon\geqq\cos^{k}(\frac{\pi}{2}\sqrt{\delta k})$ , $k= \min\{m, N-m\}$ , $\delta=\{21$
if $k=1$

if $k\geqq 2$ .
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Finally, let us consider an m-dimensional, connected noncompact Riemannian
submanifold $M$ properly immersed into $R^{N}$ . Assume that $M$ satisfies conditions
(1.13) and (1.14) and furthermore the constant $\epsilon$ of (1.13) is greater than 2. We
first consider the case of $m\geqq 3$ . Then applying Lemma 5 to $M$, we see that
for each end $M_{j}$ , there is an m-plane $P$ such that for some $T\geqq 0$ , $M_{j.T}=$

$\{x\in M_{j} : dis_{R^{N}}(x, P^{\perp})\geqq T\}$ can be realized as a graph of some smooth functions
$\{h_{m+1}, \cdots , h_{N}\}$ on $P_{T}=\{v\in P:|v|\geqq T\}$ . Moreover the $h_{\alpha}(v)$ tends to a constant
$h_{a,\infty}$ as $|v|arrow\infty$ . In fact, since $h_{\alpha}$ satisfies

$\Delta_{M}h_{a}=\langle H_{M}, (\overline{\nabla}h)^{\perp}\rangle\leqq|H_{M}|\leqq\frac{A’}{1+|x|^{1+\epsilon/2}}$

for a constant $A’’$ , there exists a unique solution $U_{\alpha}$ on $M_{j}$ of equation: $\Delta_{M}U_{a}$

$=\Delta_{M}h_{\alpha}$ and $U_{a}(x)$ goes to $0$ as $|x|arrow\infty$ (cf. Lemma 2 (3)). This implies that
$U_{\alpha}-h_{\alpha}$ is a bounded harmonic function on $M_{j}$ and hence it tends to a constant.
Suppose now that $M$ has one end. (Note that $M$ has one end if $M$ has non-
negative Ricci curvature, since $M$ has no nonconstant bounded harmonic func-
tions (cf. [19] and Corollary 3).) Then if $M$ is not an m-plane, we can find a
(sufficiently large) ball $B$ of $R^{N}$ such that for some point $x$ of $M,$ $M$ is tangent
to $\partial B$ from the inside of $B$ . Hence the second fundamental form $\alpha_{M}$ satisfies

(3.1) $\langle\alpha_{M}(X, X), \nu\rangle\geqq C\langle X, X\rangle$

for any $X\in T_{x}M$, where $\nu$ is the outer unit normal to $\partial B$ and $C$ is a positive
constant. In the case of $m=2$ , we can apply Lemma 7 to $M$ and obtain (3.1).

Thus we have the following

THEOREM 3. Let $M$ be an m-dimenstonal, connected noncompact Riemannian
submanifold pr0perly immersed into $R^{N}$ satisfying (1.13) with $\epsilon>2$ and (1.14).

Then:
(I) $M$ is a hyperplane if $m=N-1$ and the sectional curvature is nonnegative.
(I1) $M$ is an m-plane if $M$ has one end and if, for any point $x$ of $M$, there

is a subspace $T$ of $T_{x}M$ such that dim $T>N-m$ and the sectional curvature for
any plane of $T$ is nonnegative.

The first assertion follows from the above argument and the results of [5]
and [14]. The second one is a consequence of the above argument and Otsuki’s
lemma (cf. [11: p. 28]).
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Added in proof. During the submission of this paper to the journal, the
author received a preprint [20] in which Anderson investigated complete minimal
submanifolds in $R^{n}$ of finite total scalar curvature. Especially, the proof of his
main theorem there tells us that for a complete minimal submanifold $M$ of
dimension $m\geqq 3$ immersed into $R^{n}$ , the immersion is proper and the second
fundamental form $a_{M}$ satisfies: $|\alpha_{M}|\leqq c/|x|^{m}$ for some positive constant $c$, if
the total scalar curvature $\int_{M}|\alpha_{M}|^{m}$ is finite. It is easy to see that the total
scalar curvature is finite if the immersion is proper and $|\alpha_{M}|\leqq c/|x|^{1+\epsilon}$ for
some constants $c>0$ and $\epsilon>0$ . Moreover some improvements of Theorem A (I)

and Theorem 3 have been given in [21].
Finally, manifolds as in Theorem A and Theorem 3 belong to a class of

Riemannian manifolds of asymptotically nonnegative curvature. In [22], several
results on such manifolds, including some gap theorems similar to the results
in this paper, have been proved.
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