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Cohen-Macaulay normal local domains whose
associated graded rings have no depth
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Introduction.

In this note we prove the following proposition by giving explicit examples

PROPOSITION. For every integer $r\geqq 2_{2}$ there exists a Cohen-Macaulay normal
local domain $(B, \mathfrak{m})$ of dimension $r$ such that $depth_{\iota \mathfrak{n}}^{-}(Gr^{\mathfrak{m}}(B))=0$ , where $\overline{\mathfrak{m}}=$

$\oplus_{r\geq 1}\mathfrak{m}^{i}/\mathfrak{m}^{i+1}$ is the maximal ideal of $Gr^{\mathfrak{m}}(B)$ .

One dimensional complete local domains with the analogous property were
found some ten years ago by several authors ([2], [3] and [5]). The rings we
present here are obtained by localizing the affine coordinate rings of normal
determinantal schemes of codimension two at certain singular points which may
be assumed to be isolated if $\dim B\leqq 4$ . We see by these examples that, even
if a given local domain has some fairly good properties such as normality or
Cohen-Macaulayness, its depth provides no information on the depth of its own
associated graded ring in general.

ACKNOWLEDGEMENT. The author is grateful to M. Tomari for telling him
the subject.

Proof of the proposition.

Throughout this paper $A$ denotes the polynomial ring $k[x_{1}, \cdots , x_{n}](n\geqq 4)$

over an algebraically closed field $k$ of arbitrary characteristic. For an integer
$r\geqq 2$ , let $n$ and $m$ be integers satisfying $n=r+2,$ $m\geqq n-1$ . We introduce sets
of parameters $t=\{t_{ij}^{a}|1\leqq i\leqq m+1,1\leqq j\leqq m, 1\leqq a\leqq n\},$ $u=\{u_{ij}^{ab}|1\leqq i\leqq m+1$ ,
$1\leqq]\leqq m,$ $1\leqq a,$ $b\leqq n$ }, and for a subset $v$ of $t\cup u$ , we will denote by $A[t, u\backslash v]$

the polynomial ring generated over $A$ by the elements contained in $t\cup u\backslash v$ , in
particular $A[t, u]$ is the polynomial ring generated by all the elements of $t\cup u$ .
Let $M_{2}$ be an $(m+1)\cross m$-matrix whose $(i, j)$-component is $h_{ij}^{\circ}:= \sum_{a=1}^{n}t_{ij}^{a}x_{a}^{2}+$

$\sum_{a.b=1}^{n}u_{ij}^{ab}x_{a}^{2}x_{b}$ ,
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$-1I_{1}=(\begin{array}{lllllll}x_{2} x_{3} \cdots x_{n} 0 \cdots 0x_{1} x_{1} 0 0. \end{array})$ , $\wedge lI=IW_{1}+M_{2}$ ,

$\underline{x}_{1}$
$m$

and let $h_{ij}$ denote the $(i, j)$-component of $M$. We will consider the ideal $\tilde{I}$ in
$A[t, u]$ generated by the maximal minors of $M$ and the family of affine schemes
$SpecA[t, u]/\tilde{I}$ over Spec $k[t, u]$ . Let $P:Xarrow S$ denote the morphism induced by
the natural inclusion $k[t, u]\subset A[t, u]$ and $q$ : Spec $A[t, u]arrow Spec$ $A$ the morphism
induced by $A\subset A[t, u]$ , where $X=SpecA[t, u]/\tilde{I}$ and $S=Speck[t, u]$ . From
now on, the symbol $0$ will denote the point of $SpecA$ defined by $x_{1}=x_{2}=\cdots$

$=x_{n}=0$ and $D_{i}$ will denote the divisor $x_{i}=0$ for $1\leqq i\leqq n$ .

LEMMA 1. Let $Y$ be the subscheme of $X$ defned by $(m-1)\cross(m-1)$-minors
of M. Then, there exists a nonempiy Zariski open set $U_{1}$ of $S$ such that, for
every $s\in U_{1}$ , we have

dim $(Y_{s}\backslash q^{-1}(0))\leqq n-6$ , where $Y_{s}=p^{-1}(s)\cap Y$ .
PROOF. (The idea is due to [6].) Let $y_{ij}(1\leqq i\leqq m+1,1\leqq$ ] $\leqq m$ ) be alge-

braically independent elements over $A[t, u]$ and $k[y]$ the polynomial ring gener-
ated by all these $y_{ij}$ . For each $c(1\leqq c\leqq n)$ , set $P_{c}=A[t,$ $u\backslash \{t_{ij}^{c}|1\leqq i\leqq m+1$ ,
$1\leqq j\leqq m\}]\otimes_{k}k[y]$ and define a map $F_{c}$ : $P_{c}arrow A[t, u]$ by $F_{c}(t_{ij}^{a})=t_{ij}^{a}$ for $a\neq c$ ,
$F_{c}(y_{ij})=h_{ij}$ and $F_{c}(u_{ij}^{ab})=u_{ij}^{ab}$ . Let $I^{m-1}(y)$ (resp. $I^{m-1}(M)$ ) denote the ideal in $P_{c}$

(resp. $A[t,$ $u]$ ) generated by $(m-1)\cross(m-1)$-minors of the matrix $(y_{ij})$ (resp. $M$).

The ring homomorphism

$\overline{F}_{c}$ : $(P_{c}/I^{m- 1}(y))_{x_{C}}arrow(A[t, u]/I^{m- 1}(M))_{x_{c}}$ ,

induced by $F_{c}$ has the inverse satisfying $\overline{F}_{c}^{-1}(t_{ij}^{a})=t_{ij}^{a}$ for $a\neq c$ , $\overline{F}_{c}^{-1}(t_{ij}^{c})=$

$\{y_{ij}-(h_{ij}-t_{ij}^{c}x_{c}^{2})\}/x_{c}^{2}$ and $\overline{F}_{c}^{-1}(u_{ij}^{ab})=u_{ij}^{ab}$ , hence it is an isomorphism. The height
of $I^{m1}\wedge(y)$ is 6 (see [6; p. 679] for example), so it follows that dim $(Y\backslash q^{-1}(D_{c}))$

$=n+\dim S-6$ , and since $Y\backslash q^{1}\wedge(0)=U_{c=1}^{n}(Y\backslash q^{-1}(D_{c}))$ , we have dim $(Y\backslash q^{-1}(0))=$

$n+\dim S-6$ . The existence of $U_{1}$ in the statement is now obvious. QED

LEMMA 2. There exists a nonempty Zariski open set $U_{2}$ of $S$ such that, for
every $s\in U_{2}$ , the scheme $X_{s}\backslash (Y\cup q^{-1}(0))$ is smooth, where $X_{s}=p^{-1}(s)$ .

PROOF. (The idea is due to [6].) Let $w$ be a closed point of $SpecA[t, u]$

not contained in $Y\cup q^{-1}(D_{c})$ for some $c(1\leqq c\leqq n)$ . Then, by the definition of $Y$ ,
there exists an affine open neighborhood $W$ of $w$ in $(SpecA[t, u])\backslash q^{-1}(D_{c})$ such
that one of the $(m-1)\cross(m-1)$-minors does not vanish at any points of $W$ . We
may therefore assume, by renumbering the rows and columns suitably, that $M$
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is of the form $(-- h_{12}--\neg|h_{11_{1}}*^{1}Z\kappa\overline{M^{*}}||)$ , with $d:=\det M’$ not vanishing at any points of $W$ .

Multiply $M$ by a suitable matrix $N=(- 1*-| \frac{0}{(M’)^{-}}1)\in GL(m, A[t, u]_{d})$ on the right

so that $MN$ takes the form $(\begin{array}{ll}g_{1} \frac{g_{2}}{0} \overline{1.}*\cdot 1\end{array})$ . In this expression, one sees by

Cramer’s formula that $g_{i}=h_{i1}^{o}+h_{i}(i=1,2)$ , where $h_{1},$ $h_{2}$ are elements of $A[t, u]_{d}$

and none of the parameters $t_{i1}^{a},$ $u_{i1}^{ab}(i=1,2,1\leqq a, b\leqq n)$ occur in them. Observe
that $X$ is defined in $W$ by the equation $g_{1}=g_{2}=0$ and that the singularity of
$X_{s}\cap W$ coincides with the zero locus of the maximal minors of the Jacobian
matrix $(\partial g_{i}/\partial x_{j})(i=1,2,1\leqq]\leqq n)$ . Let $Z$ denote the subscheme of $W$ defined

by the ideal $J$ generated by $g_{1},$ $g_{2}$ and $\det(\begin{array}{ll}\partial g_{1}/\partial x_{i_{1}} \partial g_{1}/\partial x_{i_{2}}\partial g_{2}/\partial x_{i_{1}} \partial g_{2}/\partial x_{i_{2}}\end{array})(1\leqq i_{1}<i_{2}\leqq n)$ .
We want to show dim $Z=\dim S-1$ . Let $z_{ij}$ $(i=1,2, 0\leqq j\leqq n)$ be algebraically
independent elements over $A[t, u]$ and $k[z]$ the polynomial ring generated by
all these $z_{ij}$ . Set

$Q_{w}=(A[t, u \backslash \{t_{11}^{c}, t_{21}^{c}\}\cup\{u5_{1}^{b}|i=1,2,1\leqq b\leqq n\}]\bigotimes_{k}k[z])_{d}$

and dePne a map $G_{w}$ : $Q_{w}arrow A[t, u]_{d}$ by

$G_{w}(z_{10})=g_{1}$ , $G_{w}(z_{20})=g_{2}$ , $G_{w}(z_{ij})=\partial g_{i}/\partial x_{f}(i=1,2,1\leqq j\leqq n)$

and $G_{w}(t_{ij}^{a})=t_{ij}^{a}$ , $G_{w}(u_{ij}^{ab})=u_{ij}^{ab}$

for all parameters contained in $Q_{w}$ . We have

$\{\begin{array}{l}g_{i}=t\S_{1}x_{c}^{2}+uI_{1}^{c}x_{c}^{3}+\sum u5_{1}^{b}x_{c}^{2}x_{b}+g_{i0}b\neq\epsilon\partial g_{i}/\partial x_{c}=2t\S_{1}x_{C}+3ui_{1}^{c}x_{c}^{2}+\sum 2u\S_{1}^{b}x_{C}x_{b}+\partial g_{t0}/\partial_{X_{C}}bl \partial g_{i}/\partial x_{b}=ui_{1}^{b}x_{c}^{2}+\partial g_{i0}/\partial x_{b} for b\neq c,\end{array}$

with appropriate elements $g_{10},$ $g_{20}$ of $A[t, u\backslash \{t_{11}^{c}, t_{21}^{c}\}\cup\{u_{i1}^{cb}|i=1,2,1\leqq b\leqq n\}]_{d}$ .
Since $\det(\begin{array}{ll}x_{c}^{2} x_{c}^{3}2x_{c} 3x_{c}^{2}\end{array})=x_{c}^{4}\neq 0$ for $x_{c}\neq 0$ , it is easily seen that $G_{w}$ induces the iso-

morphism
$\overline{G}_{w}$ : $(Q_{w}/J(z))_{x_{c}}arrow(A[t, u]_{d}/J)_{x_{C}}$ ,

where $J(z)$ denotes the ideal generated by $z_{10},$ $z_{20}$ and $\det(\begin{array}{ll}z_{1i_{1}} z_{1i_{2}}z_{2i_{1}} z_{2i_{2}}\end{array})(1\leqq i_{1}<i_{2}\leqq n)$ .
The ideal $J(z)$ is of height $n+1$ [ $6$ ; pp. 679 and 683], therefore we have
dim Spec $(A[t, u]_{d}/J)_{x_{C}}=\dim Z=\dim S-1$ . Since
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$X \backslash (Y\cup q^{-1}(0))=\bigcup_{c=1}^{n}(X\backslash (Y\cup q^{-1}(D_{c})))$

is quasi-compact, the existence of the open set $U_{2}$ in the statement is now
clear. QED

The above lemmas imply that, for every point $s\in U_{1}\cap U_{2}$ , the scheme $X_{s}$

is not empty (containing at least the point o), $\dim X_{s}\leqq n-2$ and $dimSing(X_{s})\leqq$

$n-6$ . Fix a closed point $s\in U_{1}\cap U_{2}$ ( $s=\mathfrak{n}_{s}$ a maximal ideal) and denote by $L$

the matrix $M(mod \mathfrak{n}_{s})$ . Let $L^{(i)}$ be the $m\cross m$-matrix obtained by deleting the
i-th row from $L$ and put $f_{i}=(-1)^{i}$ det $L^{(i)}$ $(1\leqq i\leqq m+1)$ . The ideaI $I:=\tilde{I}$

$(mod \mathfrak{n}_{s})$ , then, coincides with $(f_{1}, \cdots , f_{m+1})A$ . We now turn our attention to
the ring $A/I=A[t, u]/\tilde{I}\otimes_{k[t.u]}k[t, u]/\mathfrak{n}_{s}$ and its localization by $\tilde{\mathfrak{m}}$ $:=(x_{1}, \cdots, x_{n})A$ .
Since dim $A/I\leqq n-2$ , we find by [1; Theorem 5.1] that $A/I$ is Cohen-Macaulay
of dimension $n-2$ , therefore $A/I$ satisfies the condition $S_{2}$ of Serre’s criterion
of normality (see [4; p. 125]). On the other hand, since $X_{s}\backslash (Y_{s}\cup\{0\})$ is smooth
with $\dim(Y_{s}\cup\{0\})\leqq n-6$ and since $X_{s}$ is pure dimensional of dimension $n-2$ ,
the condition $R_{1}$ is also satisfied by $A/I$ . Hence $A/I$ is a normal ring of dimen-
sion $n-2=r$ . Let $B$ denote the normal local ring $A_{1\overline{\mathfrak{n}}}/IA_{\overline{\mathfrak{m}}}$ . Then, $B$ is a
domain (see the proof of [4; Theorem 39]), and its associated graded ring
actually has no depth, which we will prove below. Let $\mathfrak{m}$ denote the maximal
ideal of $B$ and $Gr^{\mathfrak{m}}(B)$ the associated graded ring $\bigoplus_{i\geqq 0}\mathfrak{m}^{i}/\mathfrak{m}^{i+1}$ .

LEMMA 3. $Gr^{\mathfrak{m}}(B)$ has no depth, namely $depth_{\overline{\mathfrak{m}}}(Gr^{\mathfrak{m}}(B))=0$ , where $\overline{\mathfrak{m}}$ denotes
the maximal ideal $\bigoplus_{i\geqq 1}\mathfrak{m}^{l}/\mathfrak{m}^{i+1}$ in $Gr^{\mathfrak{m}}(B)$ .

PROOF. Let $H$ be the homogeneous ideal in $A$ generated by the initial
forms of the elements of $IA_{\overline{\mathfrak{m}}}$ . By definition, for each $f\in\tilde{\mathfrak{m}}^{i}A_{\overline{\mathfrak{m}}}\backslash \tilde{\mathfrak{m}}^{i+1}A_{\overline{\mathfrak{m}}},$ $in(f)$

denotes the homogeneous polynomial $f^{(i)}$ of degree $i$ such that $f-f^{(i)}\in\iota\tilde{\mathfrak{n}}^{i+1}A_{\overline{\mathfrak{m}}}$

and we have

$\{\begin{array}{l}H_{i}=\{ g| deg g=i and g=in(f) for some f\in IA_{\overline{m}}\}H=\oplus H_{i}\subset A.\end{array}$

$i\geq 0$

$Gr^{\mathfrak{m}}(B)$ is canonically isomorphic to $A/H$ and under this isomorphism $\overline{\mathfrak{m}}$ corre-
sponds to $\tilde{\mathfrak{m}}(mod H)$ . It is therefore sufficient to prove $depth_{\overline{\mathfrak{m}}}(A/H)=0$. Recall
that $L$ is of the form $M_{1}+L_{2}(L_{2} :=M_{2}(mod n_{s}))$ , in particular, that every entry
of $L_{2}$ belongs to $\tilde{\mathfrak{m}}^{2}$ . One sees immediately in $(f_{1})=-x_{1}^{m}$ , in $(f_{i})=x_{l}x_{1}^{m-1}$ for
$2\leqq i\leqq n$ , and $H_{i}=0$ for $i<m$ . Hence the nonzero element $x_{1}^{m-1}(mod H)$ of $A/H$

is annihilated by $\tilde{\mathfrak{m}}$ , which means $depth_{\overline{\mathfrak{m}}}(A/H)=0$ . QED
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