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Heegner points and the modular curve of prime level

By Benedict H. GROSS
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The purpose of this note is to show how Heegner points can be used to
study the geometry of the modular curve $X=X_{0}(N)$ when $N$ is prime. For
example, we will show that the classical model for $X$ in $P^{1}\cross P^{1}$ given by the
zeroes of the $N^{th}$ modular polynomial has only ordinary double points as
singularities. We will also consider a specific fibre system of elliptic curve
over $X$ when $N\equiv 3(mod 4)$ and relate the fibres over certain Heegner points to
Q-curves.

I wish to thank R. Rumely, J. Tate, and D. Zagier for suggesting some of
the problems considered in this paper.

\S 1. Function theory.

Let $N$ be a prime. The curve $Y=Y_{0}(N)$ is defined over $Q$ and classifies
elliptic curves with an N-isogeny. If $F$ is any field of characteristic zero the
points of $Y$ rational over $F$ correspond to diagrams

$x=(\phi:Earrow E’)$ ,

where $E$ and $E’$ are elliptic curves over $F$ and $\phi$ is an F-rational (cyclic)

isogeny of degree $N$. The complex points of $Y$ may be identified with the
Riemann surface $\mathfrak{H}/\Gamma_{0}(N)[5$ , \S 1 $]$ .

The curve $Y$ is non-singular, but is not complete. We denote its compactifi-
cation $X=X_{0}(N)$ ; this is obtained by adjoining the two cusps $\infty$ and $0$ which
correspond to diagrams $(\phi : Earrow E’)$ of degenerate elliptic curves where the kernel
of $\phi$ meets each geometric component of $E$ [ $1$ , pp. 150-151]. We will call the
points $x$ of $Y$ affine points of $X$ ; if $x$ is a complex affine point we let $\tau$ be a
pre-image of $x$ in $\mathfrak{H}$ and $q=e^{2\pi i\tau}$ .

The complex function field of $X$ consists of the modular functions $f(\tau)$ for
$\Gamma_{0}(N)$ which are meromorphic on the extended upper half-plane. A function $f$

lies in the rational function field $Q(X)$ if and only if the Fourier coefficients in
its expansion at $\infty:f(\tau)=\sum a_{n}q^{n}$ are all rational numbers [1, p. 306]. The
field $Q(X)$ is known to be generated over $Q$ by the functions
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(1.1) $\{\begin{array}{l}j=j(E)=j(\tau)=q^{-1}+744+196884q+\cdots j_{N}=j(E’)=j(-1/N\tau)=j(N\tau)=q^{-N}+744+\cdots\end{array}$

A further element in the function field $Q(X)=Q(j, j_{N})$ is the modular unit

(1.2) $u= \frac{\Delta(\tau)}{\Delta(N\tau)}$

with divisor $(N-1)\{(0)-(\infty)\}$ . If $m=gcd(N-1,12)$ , then an $m^{th}$ root of $u$ lies
in $Q(X)$ ; this function has the Fourier expansion

(1.3) $t==q^{(1-N)/m} \prod_{n\geq 1}(\frac{1-q^{n}}{1-q^{nN}})^{24/m}=(\frac{\eta(\tau)}{\eta(N\tau)})^{24/m}$

When $N-1$ divides 12, so $m=N-1$ , the function $t$ is a Hauptmodul for the
curve $X$ (which has genus $0$).

The canonical involution $w=w_{N}$ of $X$ takes the diagram $x=(\phi:Earrow E’)$ to
the diagram $w(x)=(\phi^{v} : E’arrow E)$ , where $\phi^{v}$ is the dual isogeny. We denote its
action on modular functions by $garrow g_{N}$ , so

$g_{N}(x)=g(w(x))=g(-1/N\tau)$ .
This is in agreement with our notation in (1.1), and $(]_{N})_{N}=j$ . Since

(1.4) $\eta(-1/\tau)=\sqrt{\tau/i}\eta(\tau)$

(where the square root has positive real part), we find from formula (1.3) the
relation

(1.5) $t\cdot t_{N}=N^{12/m}$ .

We note that the functions $j,$ $j_{N},$ $t$, and $t_{N}$ all lie in the affine co-ordinate
ring of $Y$

(1.6) $R_{Q}=H^{0}(Y, O_{Y})=H^{0}(X-\{\infty, 0\}, O_{X})$

as they are regular outside the cusps. By (1.5), $t$ and $t_{N}$ are units in this
Q-algebra.

\S 2. Heegner points.

We say the affine point $x=(\phi:Earrow E’)$ is a Heegner point of $X$ if End$(E)$

$=End(E’)=O$ is an order of conductor prime to $N$ in an imaginary quadratic
field $K$. Then the field $K(x)$ is a finite abelian extension of $K$, the ring class
field of conductor $c=cond(O)$ , and the values $j(x),$ $j_{N}(x),$ $t(x)$ are all algebraic
integers of $K(x)[5$, \S 4 $]$ .
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Over the complex numbers, a Heegner point $x$ is described by the order $O$ ,

invertible ideal $\mathfrak{n}$ of index $N$ in $O$ which annihilates ker $\phi$ , and the class $[\mathfrak{a}]$ of
the projective O-module $H_{1}(E, Z)$ in Pic(O). We have

$x=(E(C)=C/\mathfrak{a}arrow E’(C)=C/\mathfrak{a}n^{-1})\phi$

The involution $w$ acts on Heegner points by the formula:

(2.1) $w(O, \mathfrak{n}, [\mathfrak{a}])=(O,\overline{\mathfrak{n}}, [\mathfrak{a}\mathfrak{n}^{-1}])$

where $\alpha->\overline{\alpha}$ is the non-trivial involution of $K$ over $Q$ . The Artin isomorphism
of global class field theory $\mathfrak{b}arrow\sigma_{b}$ gives an isomorphism $Pic(O)\cong Ga1(K(x)/K)$ and
this group acts on Heegner points by the formula

(2.2) $\sigma_{\mathfrak{b}}(\mathcal{O}, \mathfrak{n}, [\mathfrak{a}])=(O, \mathfrak{n}, [\mathfrak{a}\mathfrak{b}^{-1}])$ .

Finally, if $x=(O, \mathfrak{n}, [\mathfrak{a}])$ then

(2.3) $t(x)=\sqrt[m]{\frac{\Delta(\mathfrak{a})}{\Delta(\overline{\mathfrak{m}})}}$

generates the ideal $(\overline{\mathfrak{n}}A)^{12/m}$ , where $A$ is the ring of integers in $K(x)$ .

\S 3. The fixed points of $w$ .
We say a Heegner point $x$ has discriminant $D$ if $D=disc(O)$ .

PROPOSITION 3.1. The fixed points of $w$ on $X$ consists of those Heegner
points whose discnminants $D$ divide $-4N$ and are divistble by $N$.

PROOF. If $w(x)=x$ then $E\simeq E’$ over $C$ and the isogeny $\phi:Earrow E’$ gives
rise to a complex multiplication $\alpha$ of $E$ of degree $N$. Since ker $\phi$ is identified
with ker $\phi^{\vee}$ , the trace $\alpha+\overline{\alpha}=t$ is divisible by $N$. But the discriminant $D$ of
$O=End(E)$ divides the discriminant of the sub-order $Z[\alpha]$ , which is equal to
$t^{2}-4N<0$ . If $N>3$ we must have $t=0$ and $D$ divides $-4N$. If $N=3$ then $t=0$ ,
$\pm 3$ and $D$ divides $-12$ ; if $N=2$ then $t=0,$ $\pm 2$ and $D$ divides $-8$ . Since in all
cases the conductor of $O$ is prime to $N,$ $x$ is a Heegner point of discriminant
$D$ dividing $-4N$.

Conversely, if $x$ is such a Heegner point, the ideal $\mathfrak{n}=\overline{\mathfrak{n}}$ is principal in $0$ ,

and $w(O, \mathfrak{n}, [\mathfrak{a}])=(O,\overline{\mathfrak{n}}, [\mathfrak{a}\mathfrak{n}^{-1}])=(O, \mathfrak{n}, [\mathfrak{a}])$ . Hence $x$ is fixed by $w$ .
We have the following table of discriminants dividing $-4N$, with the class

numbers of the respective orders. These class numbers give the number of
fixed points in each orbit for $Ga1(\overline{Q}/Q)$ .
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We wish to distinguish the two orbits of fixed points when $N=2$ or
$N\equiv 3(4)$ . In these cases $m=gcd(N-1,12)$ divides 6, and we have the following

PROPOSITION 3.2. Assume $N=2$ or $N\equiv 3(4)$ and $x$ is fixed by $w$ . Then

$t(x)=\{\begin{array}{ll}-N^{6/m} if disc (x)=-N (or -4 when N=2)+N^{6/m} if disc (x)=-4N.\end{array}$

PROOF. Since $x$ is fixed by $w$ , we have

$t(x)^{2}=t(x)t_{N}(x)=N^{12/m}$

by (1.5). Hence $t(x)=\pm N^{6/m}$ takes integral values at each fixed point, so it
takes the same value at each point in a Galois orbit. It therefore suffices to
show $t(x)<0$ for one point $x$ of discriminant $-N$ (or $-4$) and $t(x)>0$ for one
point $x’$ of discriminant $-4N$. We will do this for $N\equiv 3(4)$ , and leave the
case when $N=2$ to the reader.

If we take $[\mathfrak{a}]=[O]$ then $x$ is represented by the point $\tau=1/2+i/(2\sqrt{N)}$ in
$\mathfrak{H}$, which solves the equation $Nz^{2}-Nz+(N+1)/4=0$ of discriminant $-N$, and $x’$

is represented by the point $\tau’=i/\sqrt{N}$ , which solves the equation $Nz^{2}+1=0$ of
discriminant $-4N$. Hence

$q=-e^{-\pi/}\sqrt{N}<0$

$q’=e^{-2\pi/}\sqrt{N}>0$ .
Since

$t=q^{(1-N)/m} \prod_{n\geq 1}(\frac{1-q^{n}}{1-q^{nN}})^{24/m}$

with $(1-N)/m$ odd and $24/m$ even, we see that sign $t(x)=signq$ is negative and
sign $t(x’)=signq’$ is positive.
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\S 4. The modular equation.

The functions $j$ and $j_{N}$ define a morphism over $Q$

$\pi$ : $Xarrow Z\subset P^{1}\cross P^{1}$

$(4.1)$

$x-\geq(j(x), j_{N}(x))$

whose image is the correspondence $Z$ defined by the vanishing of the classical
modular polynomial of level $N:\phi(j, j_{N})=0$. The polynomial $\phi(u, v)$ is sym-
metric, has integral coefficients, and is absolutely irreducible [1, pp. 283-284].

More precisely, it has the form

(4.2) $\phi(u, v)=u^{N+1}+v^{N+1}-u^{N}v^{N}+$
$\sum_{0\leqq m,n\leqq N}$

$a_{m.n}u^{m}v^{n}$ .

Hence the correspondence $Z$ is symmetric of bidegree $N+1$ and has intersection
$2N$ with the diagonal in $P^{1}\cross P^{1}$ .

Kronecker established two important results on the poIynomial $\phi(u, v)$ . The
first $i$ the famous congruence

(4.3) $\phi(u, v)\equiv(u^{N}-v)(u-v^{N})$ $(mod N)$

and the second is a factorization of $\phi(u, u)$ . Let $D$ be a negative discriminant
and define [6, \S 4]

(4.4) $f_{|D|}(x)=$
$\prod_{D=df^{2}}$ $\prod_{\tau\in \mathfrak{H}/SL_{2}(Z)}$

$(x-j(\tau))^{1/Aut(\tau)}$ .
disc $(\tau)=d$

Thus the roots of $f_{|D|}(x)$ are the singular moduli with multiplication by the
order of discriminant $D$ . Then Kronecker showed that

(4.5) $\phi(u, u)=-\prod_{t\in Z}f_{4N-t^{2}}(u)$ .
$t^{2}<4N$

Since $w$ induces the involution $(u, v)rightarrow(v, u)$ of $Z$ , its fixed points all lie on
the diagonal. By Proposition 3.1, these correspond to the roots of $f_{4N}(x)$ when
$N$ is odd and of $f_{8}(x)f_{4}(x)^{2}$ when $N=2$ . The other roots of $\phi(u, u)$ in (4.5) all
occur with multiplicity 2, and we shall show that they are double points on $Z$ .
More generally, we have the following description of the singularities of $Z$ .

PROPOSITION 4.6. The corresp0ndence $Z$ is non-singular, except at the image

$\pi(\infty)=\pi(0)=(\infty, \infty)$

of the two cusps of $X$ and at the images

$\pi(x)=\pi(x’)=(j(\mathfrak{a}), ](\mathfrak{a}\iota\iota^{-1}))$

of the pairs of Heegner points $x=(O, \mathfrak{n}, [\mathfrak{a}])$ , $x’=(O, \overline{\mathfrak{n}}, [\mathfrak{a}])$ where $\mathfrak{n}\neq\overline{\mathfrak{n}}$ but
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$[\mathfrak{n}]=[\overline{\mathfrak{n}}]$ in Pic(O). At each singularity $(u, v)$ the curve $Z$ has an or&nary
double pOint.

NOTES. 1) The result in 4.6 was obtained by Dwork [2, lemma 8.16]

using N-adic methods. Moreover, Dwork shows that the affine singularities of
$Z$ are the canonical liftings, in the sense of Serre and Tate, of the ordinary
moduli on the intersection of the two components in characteristic $N$. This
result also follows from Proposition 4.6; indeed, each singularity is an integral
point $(u, v)$ whose co-ordinates satisfy

$v\equiv u^{N}$

$(mod NA)$
$u\equiv v^{N}$

where $A$ is the ring of integers in $K(x)$ . This congruence follows from (2.2)

and the definition of the Artin symbol. Since n#ff, the reduction of $u$ and $v$

are ordinary moduli in the field of $N^{2}$ elements.
2) The double points of $Z$ which lie on the diagonal are the images of the

cusps and those Heegner points $x=(O, \mathfrak{n}, [\mathfrak{a}])$ where $\mathfrak{n}\neq\overline{\mathfrak{n}}$ and $\mathfrak{n}=(\alpha)$ is principal
in $O$ .

3) The function $t$ distinguishes the pairs of points $x\neq x’$ over each double
point of $Z$ , by the remarks following (2.3). This shows that $t$ is not a poly-
nomial in $j$ and $j_{N}$ . The affine ring of $Y$ over $Q$ is equal to the integral
closure of the ring $Q[j, j_{N}]/\phi(j, j_{N})$ in its quotient field $Q(X)=Q($], $j_{N})$ , as $Y$

is the normalization of the affine curve
$Z^{aff}=Z-\{(\infty, \infty)\}=SpecQ[j, j_{N}]/\phi(], j_{N})$ .

We now turn to the proof of Proposition 4.6.

PROOF. The covering $\pi:Xarrow Z$ is generically l-to-l and is given by the
rule “ forget the isogeny $\phi$ “. Hence $X$ is the normalization of $Z$ and its genus
$g$ is given by the formula

$g=N^{2}- \sum_{z\in Z}\delta(z)$ ,

where $N^{2}$ is the arithmetic genus of $Z$ and $\delta(z)$ is a local term which is positive
if and only if $z$ is a singular point on $Z$ [ $9$ , Ch. IV]. If $z=\pi(x)=\pi(x’)$ with
$x\neq x’$ , we have $\delta(z)\geqq 1$ with equality if and only if $z$ is an ordinary double
point.

To prove Proposition 4.6 we will count the number $s$ of pairs of Heegner
points which occur therein and will show that

(4.7) $g=N^{2}-s-1$ .
Hence $\sum\delta(z)=s+1$ , so $\delta(z)=1$ for each obvious singularity and $\delta(z)=0$ at all
other points of $Z$ .
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If $x=(O, \mathfrak{n}, [\mathfrak{a}])$ is of the type discussed in the proposition, then the ideal
$\mathfrak{n}^{2}=(\alpha)$ is principal and prime to $\overline{\mathfrak{n}}$ . Then $N(\alpha)=N^{2}$ and $Tr(\alpha)=t$ is prime to
$N$ ; the ring $O$ contains the order $Z[\alpha]$ of discriminant $t^{2}-4N^{2}$ . There are
$w(d)$ choices for the generator $\alpha$ , which all give the same ideal $\mathfrak{n}$, and $h(d)$

choices for $[\mathfrak{a}]$ once the pair $(O, \mathfrak{n})$ has been fixed. Hence

$s= \sum_{|t|\in Z}$
$\sum_{t^{2}-4N^{2}=df^{2}}\frac{h(d)}{w(d)}=\frac{1}{2}\sum_{|t|\in Z}H(4N^{2}-t^{2})$

$t\leq 2N$ $t\leqq 2N$

$(t, N)=1$ $(t. N)=1$

where $H(|D|)$ is the Hurwitz class number.
But Kronecker established the class number relation

$t^{2} \leqq 4n\sum_{t\in z}H(4n-t^{2})=\sum_{n=dd’}\max(d, d’)$

with $H(O)=-1/12=\zeta_{Q}(-1)$ . Taking $n=N^{2}$ and separating out the terms $t$ with
$t\equiv 0(mod N)$ , we find

$s=N^{2}+ \frac{N}{2}-\frac{H(4N^{2})}{2}-H(3N^{2})-H(O)$ .

Hence

$N^{2}-s-1= \frac{N-13}{12}+\frac{(1-(\frac{-4}{N}))}{4}+\frac{(1-(\frac{-3}{N}))}{3}$ .

But the right hand side is equal to the genus $g$ of $X$ (one can show this by
considering the ramification in the covering $X_{0}(N)arrow X_{0}(1)j\cong P^{1}$ and using
Hurwitz’s formula), so we have established (4.7).

\S 5. A fibre system of elliptic curves.

In this section we will assume that $N\equiv 3(mod 4)$ and $N>3$ . We will define
a fibre system $E$ of elliptic curves over $X=X_{0}(N)$ , with degenerations at the
cusps and Heegner points of discriminant $-3$ . We will show that the complex
points of $E$ can be identified with a certain elliptic modular surface defined by
Shioda, which answers a question posed in [8, pp. 57-58].

Recall the classical modular forms of level 1:

$c_{4}=1+240 \sum_{n\geqq 1}\sigma_{3}(n)q^{n}$

$c_{6}=-1+504 \sum_{n\geqq 1}\sigma_{\text{\’{o}}}(n)q^{n}$

$\Delta=\eta^{24}=q\prod_{n\geq 1}(1-q^{n})^{24}$ .

These have weights 4, 6, and 12 respectively and satisfy $c_{4}^{3}-c_{6}^{2}=1728\Delta$ . Define
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the meromorphic function $e=e(\tau)$ on $\mathfrak{H}$ by the following expression, where
$\eta\circ N(\tau)=\eta(N\tau)$ :

(5.1) $\{\begin{array}{ll}N\equiv 7(24) e=\eta\cdot\eta^{Q}N/j^{2/3}=\eta^{17}\cdot\eta\circ N/c_{4}^{2}N\equiv 11(24) e=\eta\cdot\eta^{Q}N/(j-1728)^{1/2}=\eta^{13}\cdot\eta\circ N/c_{6}N\equiv 19(24) e=\eta\cdot\eta^{Q}N/j^{2/3}(]-1728)^{1/2}=\eta^{29}\cdot\eta\circ N/c_{4}^{2}c_{6}N\equiv 23(24) e=\eta\cdot\eta\circ N.\end{array}$

Then $e(\gamma\tau)=(c\tau+d)e(\tau)$ for all elements $\gamma$ in the subgroup

(5.2) $\Gamma_{0}’(N)=\{(\begin{array}{ll}a bc d\end{array})\in SL_{2}(Z)$ : $c\equiv 0(N),$ $( \frac{d}{N})=+1\}$ .

Hence $e(\tau)^{2}$ is a meromorphic form of weight 2 for the group $\Gamma_{0}(N)=$

$\Gamma_{0}’(N)\cross\langle\pm 1\rangle$ .
We define modular functions on $X_{0}(N)$ over $Q$ by taking

(5.3)
$\{\begin{array}{l}f_{4}=c_{4}/e^{4}f_{6}=c_{6}/e^{6}f_{12}=\Delta/e^{12}=\sqrt{\frac{\Delta(\tau)}{\Delta(N\tau)^{1}}} (mod 24).\end{array}$

Then $f_{4},$ $f_{6}$ , and $f_{12}$ lie in $R=H^{0}(Y, O_{Y})$ , and $f_{12}$ is a unit once the points with
$j=0$ or $j=1728$ have been removed.

We define a cubic curve $E$ over $R$ by the (non-homogeneous) equation

(5.4) $E$ : $v^{2}=u^{3}- \frac{f_{4}}{2^{4}3}u-\frac{f_{6}}{2^{5}3^{3}}$ .

This has the invariant differential $\omega=du/2v$ with invariants

$c_{4}(E, \omega)=f_{4}$

$c_{6}(E, \omega)=f_{6}$

$\Delta(E, \omega)=f_{12}$

$j(E)=j$ .
Hence $E$ defines a fibre system of elliptic curves over $Y$ , once the appropriate
points in the base where $j=0$, 1728 and $f_{12}$ is not invertible have been removed.
Our first task will be to see at which of these points $E$ has good reduction.

LEMMA 5.5. 1) If $N\equiv 11(12)$ then $E$ has good reduction at all points of $Y$.
2) If $N\equiv 7(12)$ then $E$ has good reduction at all Points of $Y$ except the two

Heegner Points of discriminant $-3$ . At these Points, $E$ has bad reduction of type
$N^{*}$ .
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PROOF. 1) If $N\equiv 23(24)$ there is nothing to prove, as $f_{12}$ is a unit in $R$

and $\omega$ is a N\’eron differential over $Y$. If $N\equiv 11(24)$ , we must show $E$ has good
reduction at each of the $(N+1)/2$ points $x$ where $j=1728$ . The key point is
that $ord_{x}(J-1728)=2$ . If $\pi$ is a uniformizing parameter in the local ring $R_{x}$ at
$x$ , then the differential $\omega’=\pi\omega$ has invariants

$c_{4}(E, \omega’)=c_{4}(j-1728)^{2}/\eta^{4}\cdot\eta^{Q}N^{4}\cdot\pi^{4}$

$c_{6}(E, \omega’)=c_{6}(j-1728)^{3}/\eta^{6}\cdot\eta\circ N^{6}\cdot\pi^{6}$

$\Delta(E, \omega’)=t(j-1728)^{6}/\pi^{12}$

in $R_{x}$ , with $\Delta(E, \omega’)$ in $R_{x}^{*}$ . Hence $E$ has good reduction at $x$ .
2) If $N\equiv 7(24)$ we must show $E$ has good reduction at each of the $(N-1)/3$

points $x$ where $j=0$ which are not Heegner points of discriminant $-3(JN(x)\neq 0)$ .
The key point is that $ord_{x}(j)=3$ . If $\pi$ is a uniformizing parameter in the local
ring $R_{x}$ , then the differential $\omega’=\pi^{2}\omega$ has invariants

$c_{4}(E, \omega’)=c_{4}j^{8/3}/\eta^{4}\cdot\eta^{Q}N^{4}\cdot\pi^{8}$

$c_{6}(E, \omega’)=c_{6}j^{4}/\eta^{6}\cdot\eta\circ N^{6}\cdot\pi^{12}$

$\Delta(E, \omega’)=t^{3}j^{8}/\pi^{24}$

in $R_{x}$ , with $\Delta(E, \omega’)\in R_{x}^{*}$ . Hence $E$ has good reduction at $x$ . When $N\equiv 19(24)$

this argument handles the points where $j=0$ and $j_{N}\neq 0$, and the argument of
1) handles the points where $j=1728$ .

At the points $x$ where $j=j_{N}=0$ , which are Heegner points of discriminant
$-3$ , the function $j$ has a simple zero and $ord_{x}(\Delta(E, \omega))=8$ . Hence $E$ has
potentially good reduction of type $N^{*}$ .

The equation (5.4) defines an elliptic curve over the field $Q(X)$ . We have
discussed the reduction of $E$ at the affine places of this field; at the two cusps
we have the following;

LEMMA 5.6. $E$ has bad reduction at $\infty$ of type $I_{1}$ and bad reduction at $0$ of
type $I_{N}$ . The reduction at $\infty$ is split over $Q$ , and at $0$ it is split by the quadratic
extenszon $Q(\sqrt{-N})$ .

PROOF. Let $q=e^{2\pi i\tau}$ be the standard uniformizing parameter at $\infty$ , and
write $e(\tau)=\pm q^{a}+\cdots$ with $a\geqq 1$ . The differential $\omega’=\omega/q^{a}$ has invariants

$c_{4}(E, \omega’)=q^{4a}f_{4}=1+\cdots$

$c_{6}(E, \omega’)=q^{6a}f_{6}=-1+\cdots$

$\Delta(E, \omega’)=q^{12a}f_{12}=q+\cdots$

$j(E)=j= \frac{1}{q}+\cdots$
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Hence the reduction is of type $I_{1}$ at $\infty$ , split over $Q$ .
To study the reduction at $0$ , we conjugate the curve $E$ by the involution

$w$ of $X$ and study the reduction at $\infty$ . By (1.4) and (5.1) we have

$\frac{e(-1/N\tau)}{\tau}=(\sqrt{-N})^{a}(q^{b}+\cdots)$

with $a\equiv 1$ (mod4) and $b\geqq 1$ . Let $\omega_{1}$ be the conjugate differential on $E_{1}=w(E)$

with invariants $(f_{4})_{N},$ $(f_{6})_{N}$ , and $(f_{12})_{N}$ and put $\omega_{1}’=\omega_{1}/q^{b}$ . We find

$c_{4}(E_{1}, \omega_{1}’)=(\sqrt{-N})^{4a}+\cdots$

$c_{6}(E_{1}, \omega_{1}’)=-(\sqrt{-N})^{6a}+\cdots$

$\Delta(E_{1}, \omega_{1}’)=(\sqrt{-N})^{12a}q^{N}+\cdots$

$j(E_{1})=j_{N}= \frac{1}{q^{N}}+\cdots$ .

Hence the reduction is of type $I_{N}$ , split by $Q(\sqrt{-N})$ .

If $\Gamma\subset SL_{2}(Z)$ is a subgroup of finite index which does not contain $\langle\pm 1\rangle$ ,

Shioda [8] has defined an elliptic modular surface $B_{\Gamma}$ over the complex curve
$\mathfrak{H}^{*}/\Gamma$. $B_{\Gamma}$ is the minimal regular compactification of the complex elliptic
surface:

$Cx\mathfrak{H}^{0}/Z^{2}\rangle\triangleleft\Gammaarrow \mathfrak{H}^{0}/\Gamma$

where $\mathfrak{H}^{0}$ is the upper half-plane minus the $\Gamma$-orbits of elliptic points.
Let $B$ denote the minimal regular model for $E$ over $X=X_{0}(N)$ .
PROPOSITION 5.7. The complex elliptic surface $B(C)arrow X(C)$ is analytically

isomorphic to Shioda’s modular surface $B_{\Gamma}arrow \mathfrak{H}^{*}/\Gamma$ where $\Gamma=\Gamma_{0}’(N)$ .

PROOF. We will give an analytic isomorphism over the open curve where
$j\neq 0$, 1728, $\infty$ . The result then follows from the uniqueness of a minimal
regular model.

The isomorphism is given by mapping $(z, \tau)\in C\cross \mathfrak{H}$ to the co-ordinates $(u, v)$

of $E$ , with

$u= \frac{\wp(z,\tau)}{(2\pi ie(\tau))^{2}}$

$2v= \frac{\wp’(z,\tau)}{(2\pi ie(\tau))^{3}}$

$\omega=\frac{du}{2v}=2\pi ie(\tau)dz$ .

Here $\wp$ and $\wp’$ are the functions of Weierstrass:
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$\wp(z, \tau)=z^{-2}+\sum_{a\in Z+Z\tau}\{(z+\alpha)^{-2}-\alpha^{-2}\}$

$\wp’(z, \tau)=-2\sum_{\alpha\in Z+Z\tau}(z+a)^{-3}$ .

Since $\wp$ is a meromorphic Jacobi form of weight 2 and index $0$ :

$\wp$ $( \frac{z}{c\tau+d},$ $\frac{a\tau+b}{c\tau+d})=(c\tau+d)^{2}\wp(z, \tau)$ $(\begin{array}{ll}a bc d\end{array})\in SL_{2}(Z)$

$\wp(z+\lambda\tau+\mu, \tau)=\wp(z, \tau)$ $(\lambda, \mu)\in Z^{2}$

we see the map factors through the quotient $B_{\Gamma}$ , and gives an analytic
isomorphism.

As an added dividend of the proof of (5.7), we see that the integral period
lattice of the curve $(E_{x}, \omega_{x})$ at a point $x$ in $Y$ is given by:

(5.8) $L(\omega_{x})=2\pi ie(\tau)(Z+Z\tau)$ .

\S 6. A rational N-isogeny and the representable moduli problem.

We retain the notion of the previous section. In particular, $N\equiv 3(4)$ and
$E$ is the elliptic curve over the affine curve obtained by removing the Heegner
points of discriminant $-3$ from $Y=Y_{0}(N)$ . (We will be a little sloppy below
and refer to $E$ as an elliptic curve over $Y$ , which is correct only when
$N\equiv 11(12))$ . We let $B$ denote the minimal regular model for $E$ over the complete
curve $X=X_{0}(N)$ .

Define the elliptic curve $F$ over $Y$ by first conjugating $E$ by the involution
$w$ of the base then twisting by the quadratic extension $Y(\sqrt{-N})$ . Let $\omega’$ be
the conjugate differential on $E’=w(E)$ and $\nu$ the differential on $F$ which cor-
responds to $\omega’/\sqrt{-N}$ . We then have

$c_{4}(F, \nu)=N^{2}(f_{4})_{N}$

$c_{6}(F, \nu)=-N^{3}(f_{6})_{N}$

$\Delta(F, \nu)=N^{6}(f_{12})_{N}$

$j(F)=j_{N}$ .
PROPOSITION 6.1. There is a umque N-isogeny $\phi:Earrow F$ over $Y$ such that

$\phi^{*}(\nu)=\omega$ .

PROOF. An analysis similar to the proof of (5.7) shows that the lattice of
$(F_{x}, \nu_{x})$ at a point $x$ is given by
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$L( \nu_{x})=2\pi ie(\tau)(Z(1/N)+Z\tau)=\frac{2\pi ie(\tau)}{N}(Z+ZN\tau)$ .

Since this contains $L(\omega_{x})$ with index $N$, we obtain an analytic isogeny
$\phi;E(C)arrow F(C)$ over $Y(C)$ with the desired properties. This extends to the
minimal regular compactifications over $X(C)$ , and is algebraic. To show $\phi$ is
rational over $Q$, we let $\sigma$ be any automorphism of $C$. Then

$\omega=\omega^{\sigma}=\phi^{*}(\nu)^{\sigma}=(\phi^{\sigma})^{*}(\nu^{\sigma})=(\phi^{\sigma})^{*}(\nu)$ .
Hence $\phi-\phi^{\sigma}$ acts trivially on the cotangent space of $F$, so $\phi=\phi^{\sigma}$ .

Let $\phi^{v}$ : $Farrow E$ be the dual isogeny over $Y$ , and let $Y[ker\phi^{v}]$ be the \’etale

abelian extension obtained by adjoining the co-ordinates of any point in the
kernel of $\phi^{v}$ . Let $Y_{1}=Y_{1}(N)$ be the affine curve which classifies elliptic curves
together with a point of order $N$ over $Q$ ; then there is a natural covering map

$\pi$ : $Y_{1}arrow Y$

which is abelian of degree $(N-1)/2$ with Galois group $(Z/N)^{*}/\pm 1\simeq(Z/N)^{*2}$ ,

and \’etale away from the Heegner points of discriminant $-3$ . Our main result
in this section is the following.

PROPOSITION 6.2. The covering $Y[ker\phi^{v}]$ has degree $(N-1)/2$ and is iso-
morphic to $Y_{1}$ . The representatjon of the Galois group of $Y[ker\phi^{v}]/Y$ in
$(Z/N)^{*}=Aut(ker\phi^{v})$ has image equal to $(Z/N)^{*2}$ .

PROOF. It is clear that $Y[ker\phi^{v}]$ contains $Y_{1}$ ; so it suffices to verify that
the co-ordinates of a point in ker $\phi^{v}$ are in the ring of modular functions for
$\Gamma_{1}(N)$ with rational Fourier coefficients.

Since $NL(\nu_{x})=2\pi ie(\tau)(Z+ZN\tau)$ is contained with index $N$ in $L(\omega_{x})$ , we find
that co-ordinates for the point $2\pi ie(\tau)\cdot\tau$ mod $NL(\nu_{x})$ in the kernel of the dual
isogeny are given by

$u= \frac{\wp(\tau,N\tau)}{(2\pi ie(\tau))^{2}}$ , $v= \frac{\wp’(\tau,N\tau)}{2\cdot(2\pi ie(\tau))^{3}}$ .

A simple calculation shows that the functions $f(\tau)=\wp(\tau, N\tau)/(2\pi i)^{2}$ and $g(\tau)=$

$\wp’(\tau, N\tau)/(2\cdot(2\pi i)^{3})$ are modular forms of weight 2 and 3 for

$\Gamma_{1}(N)=\{(\begin{array}{ll}a bc d\end{array})$ : $c\equiv 0(N),$ $a\equiv d\equiv 1(N)\}$

which have rational Fourier coefficients in terms of the parameter $q=e^{2\pi i\tau}=$

$e^{2\pi iN\tau/N}$ at $\infty$ . Since the same is true for $e^{2}$ and $e^{3},$ $u$ and $v$ are elements of
the rational function field of $X_{1}(N)$ over $Q$ , which are regular for $\tau$ with
$j(\tau)\neq 0$ , 1728, $\infty$ .
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The representation has image in $(Z/N)^{*2}$ , as this is the unique subgroup
of index 2 and order $(N-1)/2$ in $(Z/N)^{*}$ .

COROLLARY 6.3. The covering $Y[ker\phi]$ has degree $N-1$ and is isomorphic
to $Y_{1}(\sqrt{-N})$ .

$\phi_{a}$

If $A$ is a Q-algebra, then the fibre $E_{a}arrow F_{a}$ of our family over each point
$a\in Y(A)$ defines an N-isogeny between elliptic curves over $A$ such that ker $\phi_{a}^{\vee}$

trivializes over an \’etale extension of degree dividing $(N-1)/2$ of each geometric
component. In fact, the family

$Earrow^{\phi}F$

$\pi\backslash _{Y}\sqrt{}$

represents this (rigid) functor on Q-algebras: any isogeny of degree $N$ with this
property arises as one of the fibres of this family (away from the Heegner
points of discriminant $-3$).

Let $\underline{\omega}=\pi_{*}\Omega_{E/Y}^{1}$ ; then $e$ is a meromorphic section of $\underline{\omega}$ with poles only when
$j=0$, 1728. When $N\equiv 23(24),$ $e$ is regular and non-zero, so gives a trivialization
of the line bundle to over $Y$.

We now have enough information to identify the fibres of the family $Earrow Y$

over the fixed points $x$ of $w$ which have discriminant $-N$. Recall from Prop-
osition 3.2 that at each such point we have

$t(x)=-N^{6/m}$

where $m=2$ if $N\equiv 2(3)$ and $m=6$ if $N\equiv 1(3)$ .
LEMMA 6.4 (Rumely [7]). If $x\in Y$ has complex multiplicati0n by $K$, then the

torston patnts of $E_{x}$ are rational over $K^{ab}$ .
PROOF. The condition that $x$ has complex multiplication by $K$ is just that

$\tau\in K\cap \mathfrak{H}$ . Then the torsion points of $E$ are given by the values of arithmetic
automorphic functions at $\tau$ , by (5.7). Shimura’s reciprocity law guarantees that
these values lie in $K^{ab}$ .

LEMMA 6.5. If $x$ is fixed by $w$ and has discriminant $-N$, then $E_{x}$ is a
Q-curve and $Q$( $x$ , ker $\phi_{x}^{\vee}$ ) has degree $(N-1)/2$ over $Q(x)=Q(j(E_{x}))$ .

PROOF. By lemma 6.4, $E_{x}$ is a $K=Q(\sqrt{-N})$-curve; since $Q(x)$ has degree
$h$ over $Q$ by the results in \S 3, $E_{x}$ is defined over the field of its modulus and
is a Q-curve. The same is true for $F_{x}$ , which is isogenous to $E_{x}$ over $Q(x)$ .

In [4, 14.1.2] we determined the structure of the Galois representation on
the N-torsion in the rational N-isogeny for all Q-curves. The character always
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has order divisible by $(N-1)/2$ , so is equal to a character of order $(N-1)/2$ in
this case.

Recall that $E(N)$ is the unique Q-curve with good reduction outside $N$ and
minimal discriminant $(-N^{3})$ over $Q(x)$ . The representation on its N-torsion is
given by $\omega k^{3N-1)/4}$ , where $\omega_{N}$ is the character giving the Galois action on $N^{th}$

roots of unity.

PROPOSITION 6.6. 1) If $N\equiv 7(8)$ then $E_{x}\cong E(N)$ and $F_{x}\cong E(N)^{\sqrt{-N}}$ .
2) If $N\equiv 3(8)$ then $E_{x}\cong E(N)^{\sqrt{-N}}$ and $F_{x}\cong E(N)$ .

PROOF. The unique Q-curve whose N-torsion representation has order
$(N-1)/2$ is equal to

$\{\begin{array}{ll}E(N)^{\sqrt{}}\overline{-N} if N\equiv 7(8)E(N) if N\equiv 3(8).\end{array}$

In particular, $E_{x}$ always has good reduction at the places of $Q(x)$ not dividing
$N$. In the next section we will see this is true for the fibre $E_{x}$ over a point
of $Y$ where $j(x)$ is an algebraic integer.

\S 7. Integral models.

Assume first that $N$ is an arbitrary prime. Let $\underline{S}$ be the ring
$Z[j, j_{N}]/\phi(j, j_{N})$ and let $\underline{R}$ be the integral closure of $\underline{S}$ in its quotient field
$Q(X)$ . We obtain models for $Z^{aff}$ and $Y$ over $Z$ by taking the affine schemes:

(7.1) $\underline{Z}^{aff}=Spec(\underline{S})$ , $\underline{Y}=Spec(\underline{R})$ .
The arithmetic surface $r$ is normal, and is known to be regular outside the
supersingular points in characteristic $N$ where $j=0$ , 1728 [1, p. 284]. The
arguments of \S 4 can be extended to show that $\underline{Y}[1/N]$ is smooth over $Z[1/N]$ .

A modular function $f$ for $\Gamma_{0}(N)$ lies in $\underline{R}$ if and only if $f$ is regular on $\mathfrak{H}$

and the Fourier coefficients of $f$ at both cusps are integers. Thus $f= \sum a_{n}q^{n}$

and $f_{N}= \sum b_{n}q^{n}$ have integral Fourier expansions at $\infty$ . The elements $t$ and $i_{N}$

lie in $\underline{R}$ , and are units in $\underline{R}[1/N]$ .
When $N-1$ divides 12, so $X$ has genus $0$ , we have

(7.2) $\underline{R}=Z[t, t_{N}]/(tt_{N}=N^{12/(N-1)})$ .
This ring is regular when $N=13$ ; otherwise there is a singularity of type $A_{k-1}$

(with $k=12/(N-1)$ ) at the unique supersingular point $t=t_{N}=0$ in characteristic
$N$. Fricke [3, Ch. 9] gives formulae for $j$ and $j_{N}$ as polynomials in $t$ and $t_{N}$ ;
for example
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(7.3) $\{\begin{array}{ll}N=2 j=t+2^{8}\cdot 3+2^{4}\cdot 3t_{2}+t_{2}^{2}N=3 j=t+2^{2}\cdot 3^{3}\cdot 7+2\cdot 3^{3}\cdot 5t_{3}+2^{2}\cdot 3^{2}i_{3}^{2}+t_{3}^{3}.\end{array}$

Now assume $N\equiv 3(mod 4)$ and $N>3$ . We will extend the fibre system
$Earrow Y$ to a system of elliptic curves $\underline{E}$ over $\underline{Y}[1/N]$ . We will also discuss the
reduction of $\underline{E}$ at the two primes dividing $N$ in $\underline{R}$ , corresponding to the two
irreducible components $Z_{\infty}$ and $Z_{0}$ in $\underline{Y}\otimes Z/N$. These components are indexed
by the cusps they contain; the ordinary points on $Z_{\infty}$ correspond to elliptic
curves with multiplicative subgroups of order $N$. We label the prime ideals
with residue rings the affine rings of $Z_{\infty}$ and $Z_{0}$ by $N_{\infty}$ and $N_{0}$ respectively;
then $\underline{R}/N_{\infty}\simeq Z/N[j]$ and $\underline{R}/N_{0}\simeq Z/N[j_{N}]$ .

PROPOSITION 7.4. The curves $\underline{E}$ and $\underline{F}$ have good reduction over $\underline{Y}[1/N]$

and $\underline{\phi}:\underline{E}arrow E$

’ extends to an N-isogeny over this base. The kernel of $\phi^{v}$ is an
\’etale group scheme which splits over the extension $\underline{Y}_{1}[1/N]$ of degree $(N-1)/2$ .

As for the reduction at $N$, we will prove the following.

PROPOSITION 7.5. The curve $\underline{E}$ has good reduction $(mod N_{\infty})$ and the reduction
of $(\underline{E}, \omega)$ over $\underline{R}/N_{\infty}$ has invariants

$c_{4}\equiv j^{a}(j-1728)^{a’}f_{ss}(])^{2}$

$c_{6}\equiv-j^{b}(j-1728)^{b’}f_{ss}(j)^{3}$

$\Delta\equiv j^{c}(j-1728)^{C’}f_{ss}(j)^{6}$

$j\equiv j$ ,

where $f_{ss}(j)$ is the momc supersingular p0lyn0mial $(mod N)$ with the p0ssible
factor $(j)(j-1728)$ removed and the exp0nents $a,$ $a’,$ $b,$ $b’$ and $c,$

$c’$ are given by
the following table.

NOTE. The reduction of $\underline{E}$ has modular interpretation over the ordinary
points of the component $Z_{\infty}$ . It represents ordinary curves in characteristic $N$

such that the kernel of $(Fr)^{\vee}=(Ver)$ splits over an extension of degree dividing
$(N-1)/2$ , or equivalently with Hasse invariant a square. The number of points

of such a curve over a finite field $F_{q}$ has the form $1+q-a$ , where $( \frac{a}{N})=+1$ .
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We now turn to the proofs of Propositions 7.4 and 7.5, $in_{\wedge}\vee the$ simplest case
when $N\equiv 23(24)$ . In that case, $f_{4},$ $f_{6}$ and $f_{12}=t$ lie in $\underline{R}$ and $f_{12}$ is a unit in
$\underline{R}[1/N]$ . Hence equation (5.4) defines an elliptic curve over $\underline{E}$ over $\underline{Y}[1/6N]$ .
The curve $\underline{F}$ is also defined over this base.

LEMMA 7.6. The cumes $\underline{E}$ and $E$
’ have good reduction at the prime ideals

$2\underline{R}$ and $3\underline{R}$ .
PROOF. We first claim there are functions $f_{2}\in\underline{R}/3\underline{R}$ and $f_{1}\in\underline{R}/2\underline{R}$ such

that

$\{\begin{array}{ll}f_{2}^{2}\equiv f_{4} mod 3f_{2}^{3}\equiv-f_{6} mod 3^{2},\end{array}$

$\{\begin{array}{ll}f_{1}^{4}\equiv f_{4} mod 2^{3}f_{1}^{6}\equiv-f_{6} mod 2^{2}. \end{array}$

To define $f_{2}$ and $f_{1}$ we recall the modular forms $b_{2}(mod 3)$ and $a_{1}(mod 2)$ which
have weights 2 and 1 and put

$f_{2}=b_{2}/e^{2}$ , $f_{1}=a_{1}/e$ .
Since $b_{2}^{2}\equiv c_{4}(mod 3),$ $b_{2}^{3}\equiv-c_{6}(mod 3^{2}),$ $a_{1}^{4}\equiv c_{4}(mod 2^{3})$ and $a_{1}^{6}\equiv-c_{6}(mod 2^{2})$ , these
functions have the desired properties.

To discuss the reduction of $\underline{E}(mod 3\underline{R})$ , we change co-ordinates in (5.4) by
taking $u=w+(f_{2}/3)$ . Then

$v^{2}=w^{3}+f_{2}w^{2}+( \frac{2^{4}f_{2}^{2}-f_{4}}{2^{4}3})w+(\frac{2^{5}f_{2}^{3}-2\cdot 3f_{2}f_{4}-f_{6}}{2^{5}3^{3}})$

is an equation with coefficients in $\underline{R}[1/2]$ with discriminant $t\in\underline{R}[1/N]^{*}$ . To
see that the coefficients are integral at 3, we use the previous congruences
for $f_{2}$ :

$2^{4}f_{2}^{2}-f_{4}\equiv f_{2}^{2}-f_{4}\equiv 0$ mod $3\underline{R}$

$2^{5}f_{2}^{3}-2\cdot 3f_{2}f_{4}-f_{6}\equiv 5f_{2}^{3}-6f_{2}^{3}-f_{6}\equiv 0$ mod $9\underline{R}$ .
Thus the coefficient of $w$ lies in $\underline{R}[1/2]$ and the constant coefficient lies in
$\frac{1}{3}\underline{R}[1/2]$ . If this coefficient does not lie in $\underline{R}[1/2]$ , the reduction is of type

II* at $3\underline{R}$ and the conductor $f=4$ . But this is impossible, as $\underline{E}$ achieves good
reduction once the points in ker $\phi$ are rational, and this occurs over an exten-
sion of degree $N-1$ . Since $N\equiv 2(3)$ this extension cannot be wildly ramified
at $\underline{3}$ , so the original reduction can not have conductor $f>2$ . Hence $\underline{E}$, and the
N-isogenous curve $F$ , have good reduction at $3\underline{R}$ .
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To discuss the reduction at $2\underline{R}$ , we change co-ordinates in (5.4) by $v=$

$v’+ \frac{f_{1}}{2}u’,$ $u=u’+ \frac{f_{1}^{2}}{12}$ . Then

$(v’)^{2}+f_{1}u’v’=(u’)^{3}+( \frac{-f_{4}}{2^{4}3}+\frac{f_{1}^{4}}{2^{4}3})u’+(\frac{-f_{6}}{2^{\epsilon}3^{3}}+\frac{f_{1}^{2}}{2^{2}3}(\frac{-f_{4}}{2^{4}3})+\frac{f_{1}^{6}}{2^{6}3^{3}})$

is an equation with coefficients in $\underline{R}[1/3]$ and discriminant $t\in\underline{R}[1/N]^{*}$ . To
see that the coefficients are integral at 2, we use the previous congruences
for $f_{1}$ :

$-f_{4}+f_{1}^{4}\equiv 0$ $(mod 2^{3})$

$-2f_{6}-3f_{1}^{2}f_{4}+f_{1}^{6}=-2f_{6}+f_{1}^{2}(f_{1}^{4}-3f_{4})$

$=-2(f_{6}+f_{1}^{2}f_{4}+4g)$ $g\in\underline{R}$

$\equiv 0$ $(mod 2^{3})$ .

Hence the coefficient of $u’$ lies in $\frac{1}{2\cdot 3}\underline{R}$ and the constant coefficient lies in
$\frac{1}{2^{3}\cdot 3^{3}}\underline{R}$ . If these coefficients are not 2-integral, the reduction of $\underline{E}$ has type

$I_{0}^{*},$ $m*$ , or $I^{*}$ at the prime $2\underline{R}$ and conductor $f=8,5$ , or 4. But this is impos-
sible, as $F$ and hence the isogenous curve $E$ achieve good reduction over the
extension splitting ker $\phi^{v}$ , which has degree $(N-1)/2$ . Since $N\equiv 3(4)$ , this
extension cannot be wildly ramified at 2, so the original reduction cannot have
conductor $f>2$ . Hence $\underline{E}$ and the N-isogenous $F-$ have good reduction at $2\underline{R}$ .

This completes the proof of (7.4), as $\phi$ is an isogeny of degree $N$, which
is invertible on $Y[1/N]$ . Hence ker $\phi^{v}$ is \’etale; since it is split by $Y_{1}$ over $Y$,
it is split by the normal extension $\underline{Y}_{1}[1/N]$ of $\underline{Y}[1/N]$ . Proposition 7.5 follows
almost immediately from the congruence (which holds for all primes $N$):

(7.7)
$u \equiv\prod_{E_{i}}\{j-J(E_{i})\}^{24/e_{i}}$

$(mod N_{\infty})$

where $u=\Delta(\tau)/\Delta(N\tau)$ is the modular unit, the product is taken over all super-
singular elliptic curves in characteristic $N$, and $e_{i}=|Aut(E_{i})|$ . We leave the
details to the reader.

We end with some remarks on the rank of the elliptic curve $\underline{E}$ at various
fibres of $\underline{Y}[1/N_{0}]$ . The Mordell-Weil group of $E$ over $Y=\underline{Y}\otimes Q$ is trivial; this
follows from a calculation of $h^{1.1}$ for the complex elliptic surface $B(C)$ over
$X(C)$ and a consideration of the degenerate fibres, as in Shioda [8]. One can
also show, by analytic methods, that $h^{2.0}$ for this surface is equal to the
dimension $d$ of the space of cusp forms of weight 3 for $\Gamma_{0}’(N)$ . In fact
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(7.8) $d=\{\begin{array}{ll}\frac{N-1}{6} N\equiv 7(12)\frac{N-5}{6} N\equiv 11(12),\end{array}$

and the subspace of forms with complex multiplication, which has dimension
$h(-N)$ , was studied extensively by Hecke. If $k$ is an algebraically closed field
of characteristic $l\neq 0,$ $N$ then the rank of $\underline{E}$ over the base $\underline{Y}\otimes k$ is bounded

above by $2d$ ; when $( \frac{l}{N})=-1$ the Tate conjectures suggest that it should be

bounded below by $2h(-N)$ . Finally, let $F$ be the finite field with $N^{2}$ elements;
then the Tate conjectures suggest that the rank of $\underline{E}$ over the base $\underline{Y}[1/N_{0}]\otimes F$

should be bounded below by $h(-N)$ .
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