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Let N=1 be an integer and X (N) be the modular curve defined over @
which corresponds to the modular group I'o(N). The modular curve X,(N) is
the coarse moduli space /@ of the isomorphism classes of the generalized elliptic
curves E with a cyclic subgroup A of order N [3]. The fundamental involution
wxy of X,(N) is defined by

(E; A) '_—_)(E/A: EN/A)y

where E y=ker(N: E—E). Let X{(N) be the quotient X,(N)/<wy>. The rational
points on X,(N) are determined for all integers N=1[10][5, 6, 7, 8] [12]. We
here discuss the rational points on X{(N). The author [13, 14] discussed the
case when N are powers of a prime number. The similar method as in [13, 14]
can be applied to the case for composite numbers N. There are @Q-rational
points on X§(N) which are represented by elliptic curves with complex multi-
plication. We call these points C. M. points. Let n(N) denote the number of
the @Q-rational points on X{(N) which are neither cusps nor C.M. points. Then
our result is as follows.

THEOREM (0.1). Let N be a composite number. If N has a prime divisor p
which satisfies the following conditions (i) and (ii), then n(N)=0:
(i) p=17 or p=11.
(i) p#37 and #]J5(p)(@Q)<co.
Here J5(p) is the quotient Jo(p)/(1+wp)Jo(p) of the jacobian variety Jo(p) of X (p)
and wyp is the automorphism of Jo(p) induced by the fundamental involution w, of

Xo(p).

For the prime numbers p, 17=<5<300, the condition (ii) above is satisfied,
except for p=37, 151, 199, 227 and 277 [9] table 5 pp. 135-141. We here
describe a sketch of the proof of theorem (0.1). Let f=fy , be the morphism
of X,(N) to Jo(p) defined by

f(E, A)r—>cl(E/Ap, Ep/Ap)—(E/A, (Ep+A)/A)),

where A, is the subgroup of A of order p. Then f defines a morphism
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f*=r%, of X{(N) to Ji(p). Firstly, using a result on the structure of
Jo(0),z2QF, etc. [9] Appendix 1, we show that f*(x)®F, is the unit section
for any non cuspidal @Q-rational point x on X{(N). Secondly, under the con-
ditions (i) and (ii) as above, we show that f*(x) is the unit section. Finally,
we show that the condition that f*(x) is the unit section leads to that x is a
C.M. point.

In §1, we prepare some results on modular curves Xy (N) and some lemmas
on elliptic curves. We will prove theorem (0.1) in §2.

NoTATION. For a prime number ¢, Z, Q, and Q,* denote respectively
the ring of g-adic integers, the g¢-adic completion of @ and the maximal
unramified extension of @,. Let K be a finite extension of @, @, or @,*", and
A be an abelian variety defined over K. Then Oy denotes the ring of integers
of K and Ao, denotes the Néron model of A over the base Ox. Further
(A,0K®F’q)° is the connected component of the unit section of the special fibre
A,0K®F’q. For a quasi-finite flat group scheme G over Ok, G° denotes the
connected component of the unit section. For a subscheme Y of a modular
curve /Z, Y" denotes the open subscheme of Y obtained by excluding the
supersingular points on Y®UF, for a fixed prime number p.

§1. Modular curves X,(IV).

Let N=1 be an integer and X,(N) be the modular curve defined over @
which corresponds to the modular group I,(N). For a finite subgroup G of an
elliptic curve and for an integer d=1, put Gy=ker(d: G—G). Let N=N’-N"
be a decomposition with coprime integers N’ and N”. Let wy- be the canonical
involution of X,(N) defined by

(E, A)—>(E/Ay, (Ex++A)/Ay).

The involutions wy: commute with each other. Let X{(IN) be the quotient
X (N)/{wy> by the fundamental involution wy. Let go(N) (resp. g.(N)) denote
the genus of X (V) (resp. X§(N)). In §2, we will discuss the @Q-rational points
on X{(N) for composite integers N with g,(N)>0. For any integer N with
g2+(N)>0, we know that the set of the @-rational points X,(N)(@) consists of
cusps (5, 6, 7, 8][12].

Let NN/ be a positive divisor of N such that N/N’ is a square of an integer
d>1. Define a morphism of X (N) to X,(N’) by

(E, A)—>(E/Aq, Axu/Ag).

Then the morphism above induces a covering of X¥ (V) to X{(N'). Let J(IV)
and J§(N) denote the jacobian varieties of X (N) and X{(N), respectively.
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Further let J; and J§ denote the “new part” of J,(d) and J{(d) for each
positive divisor d of N: Under the canonical identification of the space of the

holomorphic cusp forms of weight 2 on I',(d) (resp. <F o(d), (2 _(l))>) with the

cotangent space of [y (d) (resp. Ji(d)), the cotangent space of J, (resp. J3i
corresponds to the subspace spanned by the new forms of level d [1]. For
each positive divisor d of N, m(d) denotes the number of the positive divisors
of N/d. Then the jacobian variety J§(N) is isogenous over @ to the following
abelian variety:

md)/2 X (m(d)—l)/zx + .
N/d is xgol'gvsquare]d N/d ig]]}guare (]d ]d)
If g,(d)>0 and d is not a power of 5, then J,(d) has a factor /@ with finite
Mordell-Weil group [2][9] By the above formula, we see that J{(N) has a
factor /@ with finite Mordell-Weil group, except for N=65, 91 and 5" (»=3)
loc. cit., [22] table 1 pp. 81-113, table 5 pp. 135-141.

(1.1) We will make use of the following morphisms. Let N’ be a positive
divisor of N and N’=N{-Nj be a decomposition with coprime integers Ni and
N;. Let #=nry, » be the natural morphism of X (N) to X,(N'):

(E, A)—>(E, Ay').

Let f=fN,N,,Ni be the morphism of X N) to J,(N’) defined by f(2)=
cl((wy,w(2)—(rwy(2)), i e.,

i (E, A) —>cl(E/Ayy, (Exy+Ax)] Ax)—(E/A, (Ex+A)/A)).

Then f induces a morphism f*=f% w5 of X3(N) to the quotient J5(N’, Nj)
=Jo(N")/(L+wy) Jo(N'):
Xo(N) ——> XF(N)

oo e
JN') ——— Jo(N’, Ni).

If N{#=N and g,N’)>0, then f is not a trivial morphism. Denote by 2,(N)
the normalization of the projective j-line 26,(1)~P% in the function field of
Xo(N). Let Xf(N) denote the quotient X,(N)/<wy)>. Then XFN)YKRKZ[1/N]
is smooth over Z[1/N], since ¥, (N)XRZ[1/N] is smooth and wyQF, has
fixed points of finite number. We denote also by m=ny y- (resp. f=fn. n'. N
resp. ft=f% n. N’1> the morphism of X,(N) to X,(N’) (resp. the smooth part
/Z X(N)smooth to the Néron model [o(N'),z, resp. X(N)s™°°th to Jo(N’, N1),z).

(1.2) ([3]V, VL) Let p be a prime divisor of N with »=ord,N. Then the
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special fibre X,(N)QF, has »+1 irreducible components E; for 0=<:=r. These
irreducible components E; are defined over ¥, and intersect at the supersingular
points on X (N)RF,. Let {={y be a primitive N-th root of unity. For each
positive divisor d of N and an integer 7, 0=<:/<d, prime to d, let A4 ; be the

subgroup of G, X Z/(N/d)Z generated by the section ({?, 1 mod N/d). Let (é)

denote the cuspidal section of ,(N) which is represented by the pair
(GuXZ/(N/d)Z, Ag ;) for the integers d and 7 as above. For d=1 and N, we

denote 0=<?> and oo:(]%/) We choose the irreducible components E; so that

(2)®Fp are the sections of E; for the positive divisor d of N with j=ord,d.

For a subscheme Y of a modular curve X /Z, Y* denotes the open subscheme
of Y obtained by excluding the supersingular points on Y®F,. Then E} and
E! are smooth over F,. For an integer 7, 1=/=<r/2, E? has the multiplicity
pi-Yp—1). The irreducible component E} (resp. E}) is the coarse moduli space
/F, of the isomorphism classes of the generalized elliptic curves E with a
subgroup scheme A such that A=Z/NZ (resp. A=pu,XZ/(N/p")Z), locally for
the étale topology. Let N=N’-N” be a decomposition with coprime integers
N’ and N”. If py/N’, then wy. fixes E; for all 7. If p|N’, then wy
exchanges E; by E,_;. Now assume p||N, i.e., ord,N=1. Let w=my y/p, be
the natural morphism of Z,(N) to X,(N/p): (E, A)—(E, Awwp). Let x be a
supersingular point on X,(N)QF, and (FE, A)iF, be a pair which represents
n(x). Then the completion of the local ring at x (XW(F,)) is isomorphic to

W(Fp)[[x, y11/(xy—p*)

for k=(1/2)|Aut(E, A)|. When p=5, we know that if £=2, then the modular
invariant j(x)=1728 mod p, and that if 2=3, then j(x)=0 mod p.

(1.3) (3] V lemme (2.8).) Let p be a prime number and K be a finite
extension of Q,*" of degree e. Denote by R the ring of integers Ox of K with
a prime element 7. Let E be an elliptic curve over Spec R and A be a finite
flat subgroup scheme of rank (/R) p. Then

A =~ SpecR[x]/(x?P—7m%x)

for an integer a, 0<a=<e [17][19]. Let 1 be the representation of Gal(K/K)
induced by the Galois action on A(K). Then A=0,% where 6, is the funda-
mental character loc. cit. Let z be the R-section of the fine moduli stack
Gryxy Whose object is a pair (E, A);z. Assume that zQF, is a supersingular
point. Let W(F)[[x, y11/(xy—p) be the completion of the local ring at zQF,
such that the ideal (y, p) defines the locus of the irreducible component E, (1.2).
Then a+#0 nor ¢, and (z*x, z*y)=(x%u, n¢*u~*!) for a unit u of R. On the
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level of the coarse moduli space X,(p), the completion of the local ring along
the section defined by z®F, is isomorphic to

W(F,)[[x’, y'11/(x"y'—p*)

for k=(1/2)|Aut(EQF,)| and x’=x*X(a unit), y’=3*X(a unit). Then the
section z of 2, (N) is defined by (z*x’, z*y/)=(x*%v, k¢~ p-1) for a unit v of R.

We now prepare some lemmas on elliptic curves. Let K be a finite ex-
tension of @, of degree e with R=0x. Let E be an elliptic curve defined
over K with a cyclic subgroup A /K of order N. Let A,z denote the schematic
closure of A in the Néron model E,;z. Then A,z is a quasi-finite flat subgroup
scheme of E,r [197 §2. Let x be an R-section of X,(N) such that x®K is
represented by the pair (E, A).

LEMMA (1.4) ([14] lemma (2.2)). Under the notation as above, assume that
E g is semi-stable and that r=ord,N=2. Then
(i) If x@F, is a section of E?, then K contains a primitive p™‘P-th root of
unity for m@)=min{Z, r—7}.
(i) If x@®F, is a supersingular point, then e=p-1.

Let n=3 be an integer and
o : Gal(K/K) — Aut E(K) =~ GLy(Z/nZ)

be the representation of the Galois action on the n-torsion points on an elliptic
curve £ over K. If p/f n, then the kernel of p, is independent of n (=3, p} n),
and the image of p, is contained in SLy(Z/nZ) [21]. Now assume p=5 and
let L be the extension of K of degree d=#(image of p,) for n=3, pt n. Then
E®L has semi-stable reduction and d=1, 2, 3,4 or 6 loc. cit. Put ¢’=d if d
is odd, and e¢’=d/2 if d is even.

LEMMA (1.5) ([14] corollary (2.3)). Under the notation as above, assume that
r=ord,N=2. Then
(i) If xQF, is a section of E¥ for an integer i, 1<i<r—1, then ee’Zp™*(p—1)
for m(@)=min{s, r—1}.
() If xQF, is a supersingular point, then ee’=Zp-+1.

§2. Rational points on X{(N).

Let N=1 be a composite integer with the genus g,(N)>0 of X{(N). Let
N’ be a positive divisor of N and N’=N{-N; be a decomposition with coprime
integers N{ and N;. Let J5(N’, Ni) be the quotient Jo(N')/(1+wy;)Jo(N') and
J§(N’, Ni) be the jacobian variety of X (N’)/<wy;>. Further let z=ny, 5,
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f=fw.n.wy and f*=f% x vy be the morphisms defined in (1.1). In this section,
we always assume that

(2.1) go(N")>0, Ni#1 nor N, and wy, has fixed points if go(N')=L.

Under the assumption (2.1), the quotient J;(N’, N{)#{0}. If g,N’)=1, then
N’=11, 14, 15, 17, 19, 20, 21, 24, 27, 32 or 36. For (N’, N{)=(14, 2), (15, 3), (20, 5),
(21,7), (24,3) and (36,9), wyy have no fixed point. Let y be a non cuspidal
Q-rational point on X{(N). Let x and x’=wy(x) be the sections of the fibre
X,(N), at y. Under the assumption g.(N)>0, we know that X,(N)(@Q) consists
of cusps [5, 6,7, 8][12]. Then x and x’ are defined over a quadratic field
P and x'=x° for l#o<Gal(k/Q). These points x and x’ are represented
respectively by pairs (E, A) and (E/A, Ey/A) for an elliptic curve E over £k
with a cyclic subgroup A /& of degree N [3]1VI(3.2). The pair (E/A, Exy/A)
is isomorphic over C to (E?, A%).

There are rational points on X{(/N) which are represented by elliptic curves
with complex multiplication. We call them C. M. points. Let y be a @-rational
C.M. point on XF(N) for an integer N with g (N)>0. Let x and x'=wy(x)
be the sections of the fibre X (N),. These points x and x’ are defined over a
quadratic field and x is represented by an elliptic curve E over %2 with a cyclic
subgroup A /k such that EQC=C/0O for an order © of an imaginary quadratic
field, changing x by x’ if necessary. Then the class number A(©) of © is one
or two. Put a={as0|alA={0}}. Then (E/ARC=C/a"! and E/A~E° for
l#0<Gal(k/Q). If h(©)=2, then E° is not isomorphic to E and a is not a
principal ideal of ©. We consider the case when N is not a prime number.
There is an endomorphism a<© such that the principal ideal a® divides a and
aa+N, since a is not principal if h(©)=2, where & is the complex conjugate
of @. Let b be the ideal a(a)~! and ¢ be an ideal such that $2Dc¢Da and that
the ideal ¢b-! is prime to 6. Put N’=c and N{=0b. Then the pairs
(E/A, Ext+ A H=(C/a, (57 0+0) /a) and (B/Aw, Evyt-Aw) Av)=

(C/b‘l, (1\17{ O—H“)/B"). The endomorphism «:C/b"'—C/b~! induces an iso-

morphism of the pair (C/a‘l, (1\:}’ 0—{—a‘1)/a'1) to (C/B'l, (1\1], O—i—c*’)/b'l).
1

Therefore 7y v wy(x)=wy;wy, 5 (x). Then the morphism f=fw.n, n; sends
the point x to the unit section of the jacobian variety J,(N’). Then the
Q-rational point f*(y) is the unit section of Jy(IN/, NJ).

We want to discuss the @Q-rational points on X§ (V) for the integers N with
the genus g.(N)>0. The proposition below gives a criterion on the deter-
mination of the Q-rational points.

PROPOSITION (2.2). Under the notation as above and the assumption (2.1), let
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¥y be a non cuspidal Q-rational point on X{(N) for an integer N with g.(N)>O0.
If the following condition is satisfied, then vy is a C. M. point:

N’#37 and f*(y) is the unit section of J;(N’, Ni).

PrOOF. Let x and x’=wy(x) be the sections of the fibre X,(N), at y.
Then x is represented by an elliptic curve E with a cyclic subgroup A of order
N. The morphism f sends the point x to the divisor class

J(x) = cl{(w yym(x)—(rwx(x))).

The points wyym(x) and zwy(x) are represented by the pairs (E/Ayy, (Enyt+An)
/Any) and (E/A, (Ey+A)/A), respectively. Firstly consider the case when
XO(N’)/<wNi>:P1. In this case, [o(N)=J7(N’, N)) and f(x)=f*(y). By the
assumption of this proposition, wy;w(x)=nwy(x), so that E/Ay, is isomorphic
over C to E/A. Then there is an endomorphism a of E /Ay, such that

ker(a: E/Ay,— E/Ayy) = Z/(N/N)Z + {0}.

Therefore E/Ay, and E have complex multiplication. Now consider the case
when X,(N’)/{wy;> is not P In this case g,(N’)=2, since wyy has fixed
points if g,(N/)=1 (2.1). By the assumption of this proposition, f(x) is a
section of the jacobian variety J3(N’, N7) of Xo(N")/<wyy>. Then wy,f(x)=f(x),
and we get the following linearly equivalent relation of divisors of degree 2:

(W () (W rwy (x)) ~ (2(x)+(rwy(x).
Since g,(N")=2, by the relation above, we get
lelyr(x) =7a(x) or mwy(x), or wwy(x)=7rm(x)

for the hyperelliptic involution y of Xo(N’) if Xo(N’) is hyperelliptic. If w wy7(x)
=n(x), then the elliptic curves E/Ay; and E are isomorphic over C. Since
Ni{#1 (2.1), E has complex multiplication. If wy;n(x)=rwy(x), then E/Ay,
and E/A are isomorphic over C. Since N{#N, E has complex multiplication.
There are exactly 19 values of integers N’ for which X,(N’) are hyperelliptic
with g,(N")=2. These integers are N’=22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 40,
41, 46, 47, 48, 50, 59 and 71 [16]. Except for N’=37, 40 and 48, the hyperelliptic
involutions are the canonical involutions w, for some positive divisors of N’
prime to N’/M. Firstly consider the cases for N’+#37,40 nor 48. The point
ym(x) is represented by the pair (E/Ay, (Exy+Ax)/Ay). Then E/A and E/Ay
are isomorphic over C. If M=N, then N'=N and g,(N)=0. Thus by the
assumption g.(N)#0, M=+N, so that E has complex multiplication. For N’/=40
and 48, the hyperelliptic involutions y are represented by the matrices g below



276 F. MoMOSE

loc. cit. :

(Zhb o) if N'=40, and
T (Z& 5 it N=ss

The point x is represented by an elliptic curve C/Z+Zt for rC with Im(z) >0.
Then mwy(x) is represented by C/Z+Z(—1/Nt)=C/Z+ZNz. Then by the
relation wrwy(x)=7n(x), for some integers q, b, ¢, d with ad—bc=1,

—107+1 e N
aNe+b | —120c410 LA
¢Nt+d | —6r+1 T

Then 7 is a root of a quadratic equation with rational coefficients. Thus x is
a C.M. point. O

REMARK (2.3). The group Aut X,(37) is isomorphic to Z/2Z X Z/2Z [11]§5

[16]. The hyperelliptic involution of X,(37) is not represented by any matrix
loc. cit.

For an application of proposition (2.2) to a non cuspidal @-rational point y
on X§(N), we discuss the special fibre y&F, and f*(y)QF, for a prime divisor
p of N’.

LEMMA (2.4). Under the assumption (2.1), let p be a prime divisor of N'. If
the following conditions (i), and (i), are satisfied, then f[*(y)QF, is the unit
section of J5(N’, N1),zQF,:

(i)y fY(»)QF, is a section of the connected component (J5(N’, N1);zQF,)° of the
unit section.

(1) Jo(N', NDiz(ZIN(J5(N’, N1, z2QF )= {0}.

If the following conditions (ii), and (ii), are satisfied, then f*(y) is the unit section:

(ii); fH(y)RF, is the unit section.

(i), Jo(N’, N))(Q) generates a finite étale subgroup scheme of the Néron model
J(N’, Nz,

Let vy be a non cuspidal Q-rational point on X{(N) for an integer N with
g+(N)>0. Let x, x’=wy(x) be the sections of the fibre X,(V), at y, which are
defined over a quadratic field # and x'=x° for 1#+o<=Gal(k/Q). The point x
is represented by an elliptic curve £ with a cyclic subgroup A defined over k&
[3]VI(3.2). Let N’ be a positive divisor of N satisfying the condition (2.1), p
be a prime divisor of N/, p be a prime of % lying over the rational prime p
and ¢, be the ramification index of p in 2. If the modular invariant j(x)=0 or
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1728, then we can easily check the rational points with these modular invariants.
So we assume j(x)#0 nor 1728. Then the pairs (E?, A°) and (E/A, Eyx/A) are
isomorphic over a quadratic extension k2’ of k. Let 4, 1 and 17 be the characters
of the idéle group k4 of k induced by the Galois action of Gal(k/k) on A,(k),
(Ep+A)/A)E)=(E ,/Ay)E) and A,°(k), respectively. Then

2.5) BA=1s,
' A9=A-p  for a character g of degree 1 or 2,

where X, is the cyclotomic character. The restriction of X, to the decomposition
group of a prime p of & lying over the rational prime p is 6, for the funda-
mental character 6, [17][19]. Let X,(N)—SpecZ be the minimal model of
Xo(N) and @4(N)—SpecOx be the minimal model of X,(N)RXk. Further, let Aps
2,, be the restrictions of 4 and 1 to the subgroup Oy of ki The following
lemma (2.6) gives a sufficient condition for (i), in lemma (2.4).

LEMMA (2.6). Under the notation as above and the assumption (2.1), assume
that N has a prime divisor p, p=11 or p=17. Let f=fy , be the morphism of
Xo(N) to Jo(p) defined in §1. Then f(x)Qk(p) is a section of the connected
component (Jo(p),0,Qk(p))’ of the unit section.

REMARK (2.7). For the prime numbers p, p=7 or p=13, X,(p) are of genus
zero. If the square of p=13 divides N, we can show that fy 16(x)RQx(p) is a
section of the connected component (/,(169),0,&Qk(p))" of the unit section.

PROOF OF LEMMA (2.6). Let E; be the irreducible components X,(N)QF,
for 1=0, 1, ---, r=o0rd,N (1.2). Let ==my, , be the natural morphism of 2,(N)
to X.(p) : (E, A)—(E, Ap). It suffices to show that w,z(x) and =mwy(x)
define the sections of the same irreducible component of the smooth part
G (p)P™o°thQk(p), where Go(p)—SpecO, is the minimal model of X, (p)Rk. If
xQk(p) is a section of EMUEP, then the result follows, since wy exchanges
Elr by E} and w, exchanges the two irreducible components of X,(p)QF,
(1.2). If p* divides N, then by (1.5), x®«k(p) is a section of E}\UE?!, since
3e,<6<p—1. If p* does not divide N and x@k(p) is not a supersingular point,
then x@«(p) is a section of E¢\UE} for »=1. Now consider the case when p?
does not divide N and x®«(p) is a supersingular point. The elliptic curve E /&
associated with the point x has good reduction over an extension K of k Q"
of degree ¢<6 [22] p.46. The Fk-rational points w,x(x) and wwy(x) are rep-
resented by the pairs (E/A,, E,/A,) and (E/A, (E,+A)/A), respectively. Let
y be the character of Gal(/K) which is induced by the Galois action on
(E/A)K)=((E,+A)/A)K). The completion of the local ring at xQ®«(p)
(QW(F ) is isomorphic to



278 ‘ F. MoMOSE

W(F)[[x, y11/(xy—p*),

for k=1,2 or 3 (1.2). We choose the coordinate y so that the ideal (y, p)
defines the locus of E,. Firstly consider the case ¢,=1. Then k=2 (j(x)=1728
mod p) or k=3 (j(x)=0 mod p), and w,n(x), wwy(x) define the sections of
the smooth part @,(p)s™°°®, The modular invariants j(w,z(x))=j(z(x))=
J(rwy(x)) mod p, hence w,n(x)Rk(p)=nrwy(x)Qk(p). Further there is a unique
integer a with 1<a=e—1 such that v=60,% since e<p—1 [17][18]. Then

(wprm(x)*x, wyn(x)*y) = (a**u, a*“-»y") and

(rwy(x)*x, Twy(x)*y) = (a*v, a*€-2p-1)

for some units u, v of O and a prime element a of O (1.2). Therefore
w,n(x) and zwy(x) define the sections of the same irreducible component of
Go(p)smo°hQk(p). Secondly consider the case e,=2. In this case, x(p)=F,
and xQe(p)=x°Qr(p)=nmwy(x)RXk(p) for 1+o<Gal(k/Q). Further w,m(x)Rk(p)
=7(x)Qk(p)=7wx(x)Qk(p), since w, fixes all the F,-rational supersingular
points on X,(p)QF, Since ord,zw(x)*x=ord,(x(x)*x)’=0rd,7wy(x)*x, the
restrictions of the characters 4,, 4,° and ip to Gal(K/K) are all equivalent to v
(1.2). Then by [2.5), »*=0,%. Then v=0,°% or v=0,*?"2/2 if p=11 and e=6.
If y=0,% then by the same argument as above gives the result. In the remain-
ing case, the modular invariant j(x)=0 mod p and ord,z(x)*x=3 or 33 (1.2),
where a is a prime element of Ox. But then ord,z(x)*x=1/2 or 11/2. It is a
contradiction. O

Now consider the condition (i), in lemma (2.4). For p=11 or p=17,
Zo(p)>0 and the torsion part of the Mordell-Weil group of J,(p) is a cyclic
group of order n=num(—p 1_ 1), which is the cuspidal group C=<cl((0)—(o0))>
[9] The natural morphism of [Jo(p) to J5(p)=Jo(p)/(1+w,)Jo(p) sends C
isomorphically onto Je(D)@)sor loc. cit. In the rest of this section, J, J* and J-
denote respectively Jo(p), Ji(p) and J5(p). Let g be the natural morphism of
Xo(p) to XF(p)=X(p)/<wpy>. Then g has ramification points, so that the
natural morphism ;=g* of J* to J as Picard varieties is injective. Then we

have the following exact sequence of the abelian varieties:

0—s E8 o,

Denote also by C the image u(C) of the cuspidal subgroup C. The schematic
closure €=Cjo, of C in the Néron model /0, is a finite étale subgroup scheme
for any finite extension K of Q,%".

PROPOSITION (2.8). Under the notation as above, let K be an extension of
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Q,"" of degree <2. Then
C®Fpm(.]-/0]<®ﬁp)o = {0} .

p—1

ProOOF. Since C=(Z/nZ);» for nznum(—f— and R=0g, it suffices to

show that
C®Fpm(]—/R®Fp)2z = {O} .

For a semistable abelian variety A defined over K, let A(K)[n=]¢ denote the
divisible part of torsion group A(K)[n=]=\UiA(K),t, and put A,(K)¢=
A n=1¢NALK). Then A,(K)* generates a finite étale subgroup scheme A,
such that A.QF ,=(A;zQF )% Put Di=JH(K)/JHE)?, Dp=J.(K)/J.(K),
D;=]+K)/J+(K)¢. In the following diagram, the vertical sequences and the
second horizontal sequence are exact, and the map ¢¢ is injective:

0 0 0

7¢ ud l
0 —> JH)E —— Jo(K)* —— J3(K)* —> 0

) U \i/
0 — JHK) —— Ju(K) —— J7(K)

i 7 L

0— D} —— D, —— D;

l

0 0 0

If 7 is injective, then the horizontal sequences are exact, since degree of J,(K)?
= degree of J#(K)?+degree of JL(K)? and the second horizontal sequence is
exact. Then it suffices to show that i is injective and

CNJ.(K)*= {0},  iDHN(C mod J,(K)*) = {0}.

Let 4%, 4 and 4- denote the Néron models J*z J,z and J-,z respectively.
Let 4%, 4, and 4; denote the special fibres S*QF,, $QF, and $-QF,, and
(49)°, 4% and (45)° denote the connected components of the special fibres of the
unit sections. Then Dj, D, and D; can be regarded as subgroups of 4f/(47)°,
45/ and 45/(45)°, respectively. Let g=g.(p) and g,=g.(p) be the genus of
Xo(p) and X$(p), respectively. Let a;==x4-1, ai=aiP=x,; be the non
F,-rational supersingular points on X(p)QF, for 1=i<g,, and let Bi=xs; +s
be F,-rational supersingular points on X,(p)QF, for 1=i<g—2g.+1. The
fundamental involution w, exchanges @; by a; and fixes 8;. Let X—Spec W(F,)
be the minimal model of X,(»)®@Q,*", which is obtained by blowing up along
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the supersingular points x with modular invariants j(x)=1728 if p=—1 mod 4,
and j(x)=0 if p=—1 mod3. The quotient X*=2¢(p)/{w,»> is the minimal
model of XF(p).

e=1
7=0
(if 31p+1)

j=1728
(if 4[p+1)

x: Z, __L ------

The minimal model @ —SpecR (resp. Y+*—SpecR) of X (p)RK (resp. Xi(p)KRK)
is obtained by blowing up along the non regular ordinary double points on
XRR (resp. X*QR) (if e=2). Denote also by g the morphism of & to @+
induced by g of 2X,(p) to X(p)/<wp>. Let 2?° and 2} be the connected
components of the Picard groups @=Picd, and @,=Pic%*,z of the unit
sections. Let @7 and @% be the kernels of the degree maps ¢—Z and ®?,—Z,
and E, E. be the Zariski closures of the unit sections of QK and L,QK in
¢ and @., respectively. Then 4=<¢°/FE and 4,=PL/E, §8. Let {C;},
{C}} be the sets of the irreducible components of the special fibres ¥, =GFRF,
and Ji=GY*QF,. Let 9, 9, be the free groups generated by the divisors C;
and Cj, and 9°, 9% be the subgroups of divisors of degree zero. Let a:9—9
(resp. a,:9D,—9,.) be the maps defined by

a(C) = ; (C, C)C; (resp. a,(C’) = jE ’, CHCY,

where (C, C;) and (C’, Cj) are the intersection numbers (Note. ¥, and @} are
reduced loc. cit.). Then 4,/43=D°/a(D) and 4§/(FH°=D%/a. (D,) loc. cit. The
morphism g* defines a map of 9%/a.(D.) to 9°/a(D). If e=1, then Tt is
irreducible and 4¢ is connected. Then Di={0} and 4,=4IXCRF,
Appendix 1. Now consider the case e=2. The pictures of the special fibres
G, and Y7 are as follows:
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7=0
Gf 3|p+1)

7=1728
(if 4]p+1)

Foon  Fy F, H-,
Z P ——

{Z}s H,

. 7 o
H,

K;
v /‘\
Gt Z, ] """

Put t=g+1 it p=1 mod 12, t=g—1 if p=—1 mod 12 and ¢=g otherwise. Let
Z=72-2',l F;.=F,—2', G;=G;—Z’ and H;=H;—Z’ be the basis of 9° and
K,=K;—Z. be the basis of 9% (see above pictures). By a calculation, we see
that

g)fli-/a+<@+) == <Ki>/<2Ki>lsisg+ and
CFiy[2F;—2F;, 2nF> <5, and Z=2F, mod a(9)
XDy =1 if p%£—1 mod 12
<Fi) H0>/<2Fl—2H0, 2"H0>1§i§,: and ZEZHO InOd a(.@)
if p=—1 mod 12

for n=num(p1——;). Further g*(Z,)=Z-+Z’ and g*(K;)=F,;-,+ F;; for 1=i=g,.
Then

g*(Kz) = in—1+F2i—Z = F2i—1—F2i mod a(9D).
Thus we see that 1 is injective and that CQF ,NJ,(K)?={0}. Since 9%/a.(D,)
~(Z)2Z)5+, <Z>Ni(DY) is a subgroup of <%Z> mod a(9). If p==1 mod8, then
n is odd and <Z>Ni(D})=1{0} in 9°/a(P). Suppose that p=1 mod8 and %Z
mod a(®) belongs to i(@%). Then -;iZ =nF,=>%¢,(Fyi.1—Fs) mod a(®) for

e;=0 or 1. But we see that nF,—Xf{%e,(Fy_,—F,;) does not belong to a(9)
for any &;=0 or 1. Thus (D})N\(D mod J,(K))={0}. O
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COROLLARY (2.9). Let vy be a non cuspidal Q-rational point on X{(N) for an
integer N divisible by a prime number p=11 or p=17. If the Mordell-Weil
group J3(p)Q) is of finite order, then f% () is the unit section of J3(p).

PrOOF. Let x, x’=wy(x) be the sections of the fibre X (N), at y. Under
the notation as in lemma (2.6), fy, ,(x)Qk(p) is a section of the connected
component (fo(p),0,Qk(p))* of the unit section. Under the assumption that
#]5(P) Q)< o, fk »(¥) is a section of the cuspidal subgroup C=<cl((0)—(0))>
in J5(p) [9]. Then by proposition (2.8), f% »(3)®«(p) is the unit section of
Jo(0)10,Qk(p). Then f§ ,(y) is the unit section of J5(p), since C generates a
finite étale subgroup scheme =~ (Z/nZ),o, for n:num(?—ljz-l—> loc. cit. O

Now we can show the following theorem.

THEOREM (2.10). Let N be a composite number divisible by a prime number
p=11 or p=17. If p+37 and #]J7(p)(Q)< oo, then n(N)=0.

PrROOF. Let y be a non cuspidal @Q-rational point on X{(N). Then by
corollary (2.9), f% ,(») is the unit section of J;(p) under the assumption
#]5(P)@)< co. If moreover p+37, by proposition (2.2), y is a C.M. point. O

The same method can be applied to some other cases. For an example, we
get the following result.

PROPOSITION (2.11). Let N be a composite number with the genus g.(N)>0.
If one of the following conditions (a) and (b) s satisfied, then n(N)=0:
(a) M=27, 35 or 26 divides N.
(b) M=49 divides N and m=N/49 satisfies one of the following conditions:
(1) 7 or 9 divides m, (2) a prime number q¢ with g=—1 mod 3 divides m, and

(3) m is prime to 7 and the quadratic residue <—m~):——1.

PROOF. In the case M=27 (resp. 49, resp. 35, resp. 26), put N'=N|=27
(resp. N’=N1=49, resp. N'=35 and N{=7, resp. N’=26 and N;=13). In the
cases M=27 and 49, we know that

X (V) /<wwd = P and
Jo(N', ND12(Z)XN(Js(N’, N1, z2QF,)° = {0}

for p=3 if M=27, and p=7 if M=49 [22] table 1 pp. 81-113. Let y be a non
cuspidal @-rational point on X{(N) and x, x’=wy(x) be the sections of the
fibre X,(N), at y. Further let &, p, and e, be the quadratic field over which
x and x’ are defined cf. §2, a prime ideal of £ lying over the rational prime
p (|N{) as above, and the ramification index of p in k.
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Case M=27: If x@«(p) is not a supersingular point, then x®«(p) is a
section of Ef\UE! for r=ord;N [14] theorem (3.2). If x®Q«(p) is a supersingular
point, then w,,n(x) and mwy(x) define sections of the Néron model &=3aj,(27)smeoth
over the base ©, whose special fibres at p are contained in the same irreducible
component F of €Q«k(p) loc. cit. (see below). Further we know that the Mordell-
Weil group C=X,27)(Q) is of order 3 and

Cro0,Qr(PINERQE(P))” = {0},

where C,o, is the schematic closure of C in & loc. cit. Therefore f§ ..(y) is
the unit section of X,(27). Then proposition (2.2) gives the result.

NS
N\

Case M=49: If the modular invariant j(x)==0 mod p, then x®k(p) is a
section of EMUE! for r=ord,N (1.4) (1.5). Suppose j(x)=0 mod p. If ¢,=1,
then x®«(p) is a section of EFUE? loc. cit. If e,=2, then xQ«k(p)=x"QR«(p)
=x'Qx(p) for 1#0<=Gal(k/Q), so that r=ord,N is even and x@«(p) is a section
of E%,,. By (1.5), there remains the case »=2. If the quadratic residue

ERkK(p):

(——ml>:—l, then xQ«k(p) is not a fixed point of wy, so that e,=1 and xQR«(p)

is a section of EX\JE!. For the remaining cases, put ¢=9 or a prime number
with ¢g=—1 mod 3. Let E be an elliptic curve with a cyclic subgroup A of
order N defined over %2 which represents the point x [3] VI(3.3). Then E has
good reduction over the quadratic extension of 2,XQ.*" and x@«(p) is a section
of EMUE! (1.5). Let &€= ,(49)sm°°th be the Néron model over the base ©, and
C=X,49)(@Q) be the Mordell-Weil group. Then C is of order 2 and

Cio,Qe(p)N(ERZE(p))® = {0}

table 1 pp. 81-113 (see below). Then proposition (2.2) and lemma (2.4)
give the result.
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Z4NRF, Y(49)Rk(p) (ex=2)

Eg E2
E, ™~

J-—oi\
i

2

Case M=35 and 49 Y N: The supersingular point on 2X,35)®F, are not
Fi-rational. If x®«(p) is not a supersingular point, then x®«x(p) is a section
of EMUELR. If xQ«k(p) is a supersingular point, then e,=1 and w,n(x), 7rwy(x)
define the sections of the minimal model ¥,(35) whose special fibres at p are
contained in L,\UL, see below. Let u be the natural morphism of J,(35) to
Ji(35,7). Since wy(x)Qe(p)=(x@r(p)™ and w.x(x)Qr(p)=(7(x)RDK(p))”,
uf v 35(x)Qk(p) becomes a section of the connected component of J;(35,7),,QF,
of the unit section. Further

J535,7),2(Z)N(J5(35,7),2QF)° = {0}
table 1 pp. 81-113. Then proposition (2.2) and lemma (2.4) give the result.

A

L, L v,
E, P

F,35DF, ><><

| E,

! 7

i

|

1

1

: E1 \l

1

J535, 1),:QF, |> <
E,” |

Case M=26: If 13* divides N, then x®«k(p) is a section of EMUE! for
r=ord;sN (1.5). Now we discuss the case ord;;N=1. If e,=1, then x®«(p) is
not a supersingular point (1.2), since the modular invariants of the supersingular
points on X(N)QXF,; =5. If ¢,=2 and x®«(p) is a supersingular point, then



Rational points 285

wysn(x) and mwy(x) define sections of the smooth part @,(26)sm°°th of the
minimal model of X (26)®% whose special fibres at p are contained in the same
irreducible component L, see below. Let u be the natural morphism of J,(26)
to J5(26,13). Then uf(x)®F;; becomes a section of the connected component
(J5(26,13),,F,)° of the unit section. Further

J5(26,13),2(Z)N(J5(26, 13),2QF5)° = {0}

table 1 pp. 81-113. Then proposition (2.2) and lemma (2.4) give the result.
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