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Introduction.

Let X7 be the Fermat variety of dimension n (n=even) and degree m
defined over C, that is, a hypersurface in the projective space P2+' defined by
the diagonal equation :

xF+xP+ -+ =0,

Let pn, be the group of m-th root of unity and set G, =(un,)"*?/diagonal. Then
G?%, acts on X7 and its character group G2 can be identified with the following
group:

{(al)} as -, an+1)E(Z/m)n+2

by setting a(g)=(;°-- {3 for any a=(ay, -, @a+)EGH and any g=

(CO: "ty C'IL+1)EG’Z"L'
As for the cohomology group of X2, the following results are well known

(see [3], [4D:
H;‘rim(X?n, C) = EB V(a)) dim V(a)zl)

n
ac¥y,

(H"(XNH (X5, QIQC= D V(a),

aEQB:L
where V(a)={6cH"( X2, C) | g*®)=a(g)é, Vg=G%} and r=n/2. The index
sets A2 and B? are defined as follows:

A = {(ay, , Ans)EGE | a;#0 for every 0=i<n-+1},

%;I'L = {(GO; R an+1>E%I$l‘ g<tai/m>=n/2+l, VtE(Z/m)X}’

where, for a=Z/m, <{a/m) expresses the unique rational number such that
0=<a/m><1, m-<{a/m>=a (modm).

The Hodge conjecture for X? asserts that the following claim is true for
every a3,

CLAIM(a): V(a) is generated by the cohomology classes of algebraic cycles
on X2,
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For any algebraic cycle Z of dimension n/2 on X%, put Gz=
{geGr | g(Z)=Z}, and for any a= U}, define an element of H*(X%, C) by

1 -
Z) = —=~ *LZD),
0.(Z) #Cy) ggma(mg (LzD
where [Z] denotes the cohomology class of Z. Then w,(Z), which may be
zero, belongs to V(a). In fact, for any é H*(X%, C), if we put

1 -
P,(§) = m’ geZG;‘na(g)g*(E)

(i.e. P, is the projector from H™(X%, C) to V(a)), then we have

#(Gn)

w.(Z) = #G,)

P.([Z]).

We note that, for any algebraic cycle Z on X7, w,(Z)=0 unless ac B2\ {0}
and KeraDG, If there exists an algebraic cycle Z on X% such that w,(Z)+0,
then claim(a) is true, and so we want to find such an algebraic cycle for each
ac®Br. If w,(Z)#0, we say that Z represents the classa (cf. [2]).

In view of the geometric results due to Ran and Shioda [4] and the
structure theorem of BZ in our previous paper [1], there exist, for any fixed
m, finitely many elements a of \,.,Bn, called “standard” or “semistandard”
elements, such that, once claim(a) is verified for all such a, it will prove the
Hodge conjecture for the Fermat variety X% of degree m for all dimension n.
See §1 below for more details.

The purpose of this paper is to define explicitly some new algebraic cycles
on Fermat varieties. Namely, for each odd prime divisor p of m, we construct
an algebraic cycle on X%' which represents “ p-standard” elements (Theorem
2-1). As a corollary we can prove the Hodge conjecture for X2 for all n when
m is a power of a prime number (Corollary 2-3).

The author is deeply gratefull to Professor Shioda for many helpful com-
ments on this paper.

§1. Structure of BZ.
First let us consider a subset ®72 of B2 defined as follows
D = {acU} | a~(a,, —a, -, ar, —a,) for some a,, -, a,€Z/m— {0} }

where r=n/2 and we write a~f if a is equal to § up to permutation. It is
easy to see that D7 is a subset of B%. Ran and Shioda showed that any
element of D2 is represented by a certain algebraic cycle. In fact, let
0=(a,, —ao, -+, @y, —a,) D% and L an r-dimensional linear space on X2 defined
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by the equations:

Xoit€Xgie1 =0 (¢=0,1, ---, 1),

where e=exp(r+/—1/m). Then we have the following result. (As for the case

n=2, see [5])

THEOREM 1-1 (Shioda [6]). The linear space L represents 8. More precisely
we have
ws(L)-ws(L) = (—1)'m™**.

The structure of B} has been studied in detail in our previous work
Here we recall some results. Fix m and let p be a prime divisor of m, and
put d=m/p. Then, for each ; such that d/(z, d)>2, let

(G itd, e, i =D, mepi)  if pZ3,
T20= G itd, m—2, d) if p=2.

These elements belong to B! or B2, respectively, which are called “standard ”
(more precisely “ p-standard ”) elements. Put

Un=UA%, B=UBp and D,=D;,
nz0 nz0 nz0

then we have ®,C38,CU,.. We define a subset &, of A, by
S, = {acsU, | a~ac,*ad,* - xg,, ¢;:standard},

where * denotes the juxtaposition. Clearly &, is a subset of B,.

When m is a power of a prime number, the standard elements form
« generators ” of B, modulo ®,, in the sense of the following theorem, which
is a special case of Theorem D of

THEOREM 1-2. Suppose that m is a power of a prime number p. Then for
any a<€B,, there exist 68, §, 8'€D,, such that axd~a=*d’.

However the above theorem does not hold for general m. To state the
general structure theorem for ¥B,, we need another type of elements of B, i.e.
“semi-standard ” elements defined in [1], §5. Put

Gn = {asU, | a~pBi* - *B;, Bi:semi-standard}.
Then Theorem D of can be restated as follows.

THEOREM 1-3. For any ac®B, there exist 6@, '8, and 6,6,
such that a*o~ag*c’'*d’.

On the other hand we can show the following theorem using inductive
structure.
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THEOREM 1-4 (Shioda [4], Ran [3]). Let » and s be non-negative even integers
such that n=r+s+2, and let a= B, BBs. Then the following statements hold.
(i) If claim(a) and claim(B) are true, then claim(axf) is also true.

(ii) If there exists 6=Ds, such that claim(a*0) 7s true, then claim(a) is also true.

In view of the above theorems, to prove claim(a) for all ac%B,, we have
only to prove claim(a) for « of standard type and semi-standard type. In the
next section we shall define a subvariety of X! which represents p-standard
elements for every odd prime p. As for the case p=2, see [2] As for semi-
standard elements, however, we have not yet found such a subvariety except
for a few cases.

§2. Statement of the main theorem.

Let p (=3) and d be as before (i.e. m=pd), and put r=(p—1)/2. Let
a=a, .,=(a, a+d, -, a+(p—1)d, —pa), (a, d)=1, and fix it throughout this
paper. We shall study a subvariety Y CP% of codimension »+1 defined by the
following equations:

2.1 { x8pxhidfxhe, = Ak,

xg'—spd\/ p XoXy1** Xp-1 = 0,

where s=exp(zv'—1/m). The main result in this paper is the following theo-
rem.

THEOREM 2-1. The wvariety Y defined by (2.1) is a subvariety of X5 of
codimension v and it represents the class a. More precisely we have

0 (Y ) 0, (Y) = (=1 p?P~2m?.

REMARK 2-2. In case p=2, define a curve C on X2, by the equation:
{ x¢+xi++/—1x¢ =0,
23— 2 x,x, =0,
where d=m/2. Then we have
04(C):04(C) = —2m?,
where a=(i, i+d, m—2i, d)eB% (cf. [Z]).

COROLLARY 2-3. If m is a power of a prime number, then Hodge conjecture
for X% is true for all n.

Proor. This is an immediate consequence of [Theorem I-2, [Theorem 14,
Theorem 2-1 and Remark 2-2. Q.E.D.
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§3. Some properties of Y.

Throughout this section and the next section we shall fix the following
notation :
p =an odd prime divisor of m

d=m/p>1
r=(p—1)/2=1
X=Xz

G=Gg?, G=Gut

Go={geCG | g¢=1:1:--:1:%)}

c=@1,1,,1, —peé

a=(a, a+d, a+2d, -, a+(p—1)d, —pa)=a, .
e = exp(xvV—1/m), em=—

yi=x¢ (0=i=p—1)

fo= XB—cCxoXy+ Xpoy, ¢=eP¥/ P

fox = x5—=8cxoxy - Xpy, (=1

fi = the i-th fundamental symmetric polynomial in y,, -+, ¥p-1 ISi=Zp)
Y = the subvariety of P% defined in §2
Y,=g), geG

Gr={geCG | Y, =Y}

wg=wg(Y), BeG

L = a linear space section of X of codimension r

PROPOSITION 3-1. The variety Y has the following properties:
(i) Y is a subvariety of X of middle dimension.
(ii) Gy=GoNKera. In particular GyCKera.
(ili) degY=prld".
(iv) Let D; be the divisor on X defined by the equation: f;=0 (1=i<r), then we
have : :
DD, - D= 3 Y,.

8EGy/Gy
(v) The right hand side of the above equality is rationally equivalent to r!d"L.

ProOF. First we note that ¥ can be defined by the equations f,=f,= -
=f,=0 since xf+x¥+4 .o +xb =yt .- +35_, (1=Sk=<r) are symmetric poly-
nomials of y,, -+, ¥,-;, and so they can be expressed by the polynomials of
fis. Since the converse is also true, the equations f,= --- =f,=0 and equations
define the same variety.

The assertions (iii), (iv) and (v) are easy consequences of the definition of
Y. So we prove (i) and (ii). To show (i), we need the following

LeEmMA 3-2. For any integer =1, we have
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(et +e,—1)!

. _ _
Yot o+ yho1=( 1)1122 z( Lare el -+ ey

1e4=
e¥z0

flel fpep

where the summation runs over p-tuples (e, ey, -+, e,) of non-negative integers e;
satisfying 2P jie;=l1.

If we put /=5 in the above lemma, we have

)51+"'+3p (el+ +ep_1)'
eyl - ep!

@B xPA+ - Axpa = —p_ ,,(‘1 fifr - fpfr

ie;=
€20

since y?=x7 (0=/<p—1). It is easily shown that the right hand side of (3.1)
can be written as follows:

f1&:1+ - + o8+ Df 5y
where

3.2) 8i = —pfp-s+(polynomials in fy, -, fp-i-1) .
Note that
xp+pfp= x4+ p(xexy - xp-x)d = Cdl—I fo.ts
=1

where the product runs over the d-th roots of unity. Therefore we have

(3'3) x3"+"'+XZ‘=f1g1+"'+frgr+Hfo,C-
Since Y is defined by the equations f,= :-- =f,=0, shows that Y is a

subvariety of X. This proves (i).
Next note that Y, (g=G) is defined by the following equations:

Cﬁdx§d+ +C'},d—1x§>d—1 =0 (I=k=r),
xﬁ—@cxoxx rXpa1 = 0.

It follows that GoN\KereGy. To show the converse it is sufficient to show
the existence of a point P€Y such that P¢£Y, for each geG—(G,N\Kera).
For that purpose let { be a primitive m-th root of unity. Then {¢ is a
primitive p-th root of unity. Put P,=(1:{:{%:.--: PVt R/ p), 1St<p—1.
Then P,eY, but for any gG—(G,NKero) there exists some ¢ such that
P,¢Y .. This proves (ii) and completes the proof of Proposition 3-1. Q.E.D.

For i=0, 1, -+, », let Y© be the variety defined by the equations:
f0=f1 == fr»izgr-—i+l = =gr= O-
By [3.3), Y is contained in X2 for every i.

LEMMA 3-3. For each 1=1, 2, ---, r, there exists an integer s; such that
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Y ~ (=1)Y®D+s,L,
where ~ denotes rational equivalence.
PROOF. By the definition of Y ’s, we have
(3.4) YPLY D ~ g, L (=0, 1, -, r—1),

where a;=p(r—j—!(r+)!/r!. -Taking the alternating sum of from ;=0
to j=i:—1, we have

Y+H(—DiY® ~ s, L, s= jz;‘;(——l)faj.
This proves the assertion. Q.E.D.
For i, j (0<i#j<p—1), put
Giy={G::0peCG | =1, k+i, j, p, CL*=1}.
Then obviously G;;DG,.

PROPOSITION 3-4. For any g G;j—Kero,
(i) if g=G,, then Y .Y ,=0,
(ii) if g=Gij—G,, then Y V.Y =0,

Proor. (i) If geG,—Kero, then Y NY, is defined by the equations:
fozfo'izfl_—_- :frzglz ':_"gr—_—o,

where {=0a(g)#1. It follows from the first two equations that x,=x,x; - x -,
=0. Furthermore from the other equations we have f;=0 (1=/<p—1). Since
XoXy - Xp-1=0, f,is also zero. This implies that y,=y,=--- =y ,-,=0 or equiva-
lently x,=x,= - =x,:,=0. Since x, is also zero, this shows that Y " NY =@,
and so Y.Y ,=0. ’

(ii)) We may assume 1=0, j=1 without loss of generality. If g=(Z,:::-:{,)
€Gu—(GyUKerg), then Y"-PNY, is defined by the equations:

fo=fot=fi==fi=fi=g,=-=g=0,

where {=0(g)#1 as before, and where fi=f{(7yo, 7V1, Y2, =+, Vp-1), =L+
As before we have x,=x,x, - x,-,=0. The equations f{=f,=0 implies

7-}3’0+7]y1+y2+ +yp-1 =0,
Yot yit+yet - +yp-.=0.

Therefore y, and y,+ - +y,-, are of the form (const.)X y,. From this and
the other equations, it follows that the k-th fundamental symmetric polynomials
in s, -+, yp-, must be of the form (const.)xyt for k=1,2, .-, p—2. In
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particular, ¥, y,-;=(const.)XyP"% and s0 O0=(xq: Xp-1)%=Y0' Yp
=(const.)Xy?. Hence y,=0 and this implies that y,=y,= " =y,-,=0
Therefore we have x,=x,= - =x,-,=0. Since x, is also zero, this shows
that Y- "NY ,=¢@, and so Y.V, ,=0. Q.E.D.

COROLLARY 3-5. (i) If g=G,, then

Y.y, = { (—1ypld?~'+s.degY) g<Gy,
s, deg(Y) geGy—Gy.
(i) If g=Gij—G,, then
Y.y, = { (=D p(p—2) d?-'+s,.,deg(Y) ge(Gi;—GoNKero,
$,-,deg(Y) g€ Gi;—(GyUKera).

PrROOF. Put k=7 or r—1 according to (i) or (ii). Then, from Lemma 3-3,
we have

(3.5) Y.Y, = (—D!Y®.Y 45, deg(V),

since deg(Y ,)=deg(Y). If g&Kerag, then, by Proposition 3-4, we have Y®.Y,
=0. This implies YV -Y ,=s,deg(Y). If geKero, then by Proposition 3-1 (iii),
(iv), we have

Y~ — > Y ntrld L.

hE(G=Gy) /Gy
Therefore

Y(k),Yg —_ > Y””'an-i-?’! dr deg(Y ®)
rE(Gy=Gy) /Gy
= rld"deg(Y ®),
since Y¥*.Y ., =0 for he G,—Gy by the above argument. From [3.5), we have
Y-Y,= (=1 d deg(Y ®)+s,deg(Y).

Since deg(Y “™)=(p!/r1)d™ and deg(Y "~ P)=(p(p—2)!1/r)d", we get the conclusion.
Q.E.D.

§4. Proof of main theorem.

In this section we give the proof of Theorem 2-1. First note that

#Hov) 5 01,

m? ﬂea

[Yl= ZP([Y]) =
Bl

since Ps is the projector. Let

S’ = {B=(bo, by, -+, bp)EUR! | by="++=bp-, (mod d)},
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S={B=(by, =, bp)ES" | by=—pby, Br0ps,}.
Furthermore, for 0=Z/#;<p—1, let

Sij = {B=(bo, -, bp)ES’ | bi=b;}.
LEMMA 4-1. If Ker 8OGy, then B S"U{0}.

Proor. Let B=(b,, -+, b,) and suppose that KerDGy. Let { be a
primitive d-th root of unity and put ‘

gi=Q:1:-:1:7": 1201 1) € Gy,

>~
?

then 1=p(g,)=_{%?% for each i=1, .., p—1. This implies b;=b, (modd).
Hence f=S’U{0}. Q.E.D.

LEMMA 4-2. If B&ESUA{0}, then ws(Y)=0.
Proor. If B&S’\U{0}, then Ker $2Gy by Lemma 4-1. Therefore

@D JZ BmRCYD = (3 Bw)r]=0.

Since wp(Y)=(1/#(Cy) X scc/6yB(&)8*(Snecy BMAX([Y]), (4.1) implies ws(Y)=0.
Q.E.D.

PROPOSITION 4-3. Let a=(1,1, -, 1, —p)eG as before and put

7= 3 ,,Tg)“g«m), pi= 5 a(@) g*[Y]) for ac(Z/m)".

8€Gy/C 2€6G;/Gy

Then we have
(i) n-5=(=1yp!d>,
(i) 947:5=0 for any i, j O=i#;j=p—1).

PrROOF. Put é=7% or 5;; and H=G, or G;; according to (i) or (ii). Then

e8=(, 3, 0@ e vD)(, 3, (e (YD)

g1€H]/ 82€EH/

Yb(g‘?g“‘;w“gf([m)-g:([YJ)

81, 82€EH |G

= ¥ @ ge)*[Y]-gk(YD)
£, 82€H /Gy

= #(H/Gy) % 0(e) g[Y])[V]

=#(H/Gy) 3 a(@) V-Y,.
gEH |Gy
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(i) In this case the above formula means

N7 = d-geaz alg) Y-Y,.

o/Gy

Therefore, by Corollary 3-5 (i), we have

77 = d{(~rptari+( S 3@ )s deg(¥)}

8EGo/Gy

= (=1yrp1d?,

since X yec,/0,0(8) =0 by Proposition 3-1 (ii).
(ii) In this case we must show that

> o@'Y-Y,=0.

EEGU/GY

By Corollary 3-5 (ii) and the above argument, we have

S @YY, = 3 @YY+ 3 e@vYvY,
8€Gy/Gy

8€Gij/Gy 8€(G4j-G)/Gy

(@) )~ p(p—2)t d?-

<KE(G1:]'- GynKera /Gy

5(@)")s,-1deg(¥)+(—1yptd?-1.

<8€(Gi§Go)/GY
This is equal to
(p—L(=1y p(p—2!dP ' +(—1yp! d? =0,

since @l nkera=1 #(Gy—G)NKero/Gy)=p—1 and Tsecy;-600(8) =0.
This completes the proof. Q.E.D.

PROPOSITION 4-4. If B&ES\U{0}, then ws(Y)=0.

ProOF. In view of Lemma 4-2, it is sufficient to show that ws(Y)=0 for
all B&8’—S. Since ws(Y)=0 for B&S"U{0}, we have

#(Gy)

mp

[¥]= (@u)+ 5 0s(1).

Therefore, putting wg=ws(Y),
n=__% o(@ g¥l¥D

8€Gj/Gy
_ #(Gy) ((ge(}%/a;a(g)wwo_%_ » z,&‘@ug*w,s(Y))

m? 8€Gij/Gy PES

= FO (5 s T ges)

mP  \geéiji6y FES
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mP §€G4ilG

_ #(Gy)

= #(Gij/Gy)ﬁEEj.awﬁ
#(Gyy)

where S;; ,={B8€S:; | =0, . (modd)}.

ey e == PN »)2
Nij* Nij (#(Gu)/m )ﬁ.ﬂ'ezsi ‘

Hence, by Proposition 4-3 (ii), we have 7;;-7:;=0 and so

4.2)

B>

m? BeSij,a

— \ /o PY2 &
#CH/m, T wpTs.

> wszws=0.
BESij, a it

Therefore

395

Here, by the Hodge index theorem ([7], Th. 7, p. 77), we know that (—D)wg-@5=0
for all B AL and that the equality holds if and only if wg=0. From this fact
and we have wz=0 for all B&S;;, Since S’—S is covered with Sy,
(0=i#j=<p—1, 0<a<d), we conclude that ws(Y)=0 for all B S’'—S. Q.E.D.

Now we can prove Theorem 2-1.

as follows:

Therefore

#(Gy)

mp

Yl=

_ #(Gy)

_ #(Gy)

where Sp={B&S | f~0p,s}.

have

It follows that

#(Gy)

D 2. T@ et 5 55@ fleus)

8E€Gy/Gy

a(2)" (&) )

m? ﬁES(EEGolGY

mP  olb<d ﬂGSb<EEG()/GY

b-a —
EGGOIGYU(g) { 0  otherwise.
—_ #(GY) A, — p-1
=3 d ﬂeZSawﬁ_(l/p) ﬁEZ)Sawﬂ.

(wo+ﬁ§Swﬂ(Y)).

o(g)”‘“)wp,

d if b=a (modd),

By Proposition 4-4, [Y] can be written

Since ¢ induces an isomorphism: G,/Gy = pyq, We
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It is easy to see that
wa‘aa if [9::[9/)

g By t= :
B { 0 otherwise.

for any B, B’S,. Therefore
vy o— 2(p-1) e ar
1o =P S 0@
= (l/p)g(p-l)p!wa'é)—a )
since #(S,)=pl. By Proposition 4-3 (i), we have

(—1ypld? = (1/pyP=" pl e Ba-
Hence
Wy By = (—1)dPp*PD = (1) p?*m?.

This completes the proof of Theorem 2-1.
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