On a pseudoconvex domain spread over a complex projective space induced from a complex Banach space with a Schauder basis

By Masaru Nishihara

(Received May 29, 1986)

Introduction.

Oka [18] solved the Levi problem, which is the problem to ask if a pseudoconvex domain is a domain of holomorphy, in a domain spread over \boldsymbol{C}^{n}. At the same time, Bremermann [1] and Norguet [16] solved this problem in \boldsymbol{C}^{n}. Their results were extended to a domain spread over the complex projective space $\boldsymbol{P}_{n}(\boldsymbol{C})$ of dimension n by Fujita [4], Kiselman [9] and Takeuchi [22].

In the last fifteen years, the Levi problem has been discussed in various infinite dimensional spaces. Gruman [5] and Gruman and Kiselman [6] solved this problem in a complex Banach space E with a Schauder basis, and Hervier [7] extended this result to a domain spread over E. Dineen [2] and Gruman [5] solved this problem in an infinite dimensional vector space E with the finite open topology, and Kajiwara [8] extended this result to a domain of the complex projective space induced from E.

The aim of this paper is to prove the following two theorems having their sources in the Levi problem and in the imbedding theorem of a Stein manifold.

Theorem 1. Let E be a complex Banach space with a Schauder basis, and $\boldsymbol{P}(E)$ the complex projective space induced from E. Let (Ω, ϕ) be a domain spread over the complex projective space $\boldsymbol{P}(E)$. Suppose that Ω is not homeomorphic to $\boldsymbol{P}(E)$ through ϕ. Then the following conditions are equivalent:
(1) Ω is pseudoconvex.
(2) For every finite dimensional linear subspace F of E and the projective space $\boldsymbol{P}(F)$ induced from F, the inverse image $\phi^{-1}(\boldsymbol{P}(F))$ of $\boldsymbol{P}(F)$ by ϕ is a Stein manifold.
(3) Ω is a domain of holomorphy.
(4) Ω is a domain of existence.

Theorem 2. Let H be a separable complex Hilbert space, $\left\{e_{j}\right\}_{j=1}^{\infty}$ an ortho-

[^0]normal basis of H, and $\boldsymbol{P}(H)$ the complex projective space induced from H. Let (Ω, ϕ) be a pseudoconvex domain spread over $\boldsymbol{P}(H)$. Suppose that Ω is not homeomorphic to $\boldsymbol{P}(H)$ through ϕ. We denote by H_{n} the linear span of the set $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ and denote by $\boldsymbol{P}\left(H_{n}\right)$ the complex projective space induced from H_{n}. Then there exists an injective holomorphic mapping f of Ω into H such that for every positive integer n the restriction mapping $f \mid \phi^{-1}\left(\boldsymbol{P}\left(H_{n}\right)\right)$ of f on $\phi^{-1}\left(\boldsymbol{P}\left(H_{n}\right)\right)$ is a regular and proper holomorphic mapping of $\phi^{-1}\left(\boldsymbol{P}\left(H_{n}\right)\right)$ into H.

The author would like to thank the referees for their kindly advice, valuable suggestion and encouragement.

1. Banach complex manifolds and domains spread over Banach complex manifolds.

Let E and F be complex Banach spaces, and U an open subset of E. A mapping $f: U \rightarrow F$ is said to be holomorphic in U if f is continuous in U and if, for any ($a, b) \in U \times\left(E-\{0\}\right.$) and for any continuous linear functional $\alpha \in F^{\prime}$, the composite mapping $\lambda \rightarrow \alpha \circ f(a+\lambda b)(\lambda \in \boldsymbol{C})$ is holomorphic where it is defined. A function $p: U \rightarrow[-\infty,+\infty)$ is said to be plurisubharmonic if p is uppersemicontinuous in U and if, for any point (a, b) of $U \times(E-\{0\}$), the function $\lambda \rightarrow p(a+\lambda b)(\lambda \in \boldsymbol{C})$ is subharmonic where it is defined.

A Hausdorff space M is called a complex manifold modeled on a complex Banach space E if there exists a family $\mathfrak{F}=\left\{\left(U_{i}, \phi_{i}\right) ; i \in I\right\}$ of pairs $\left(U_{i}, \phi_{i}\right)$ of open sets U_{i} of M and homeomorphisms ϕ_{i} of open sets U_{i} onto open sets of E satisfying the following conditions:
(1) For any elements i, j of I with $U_{i} \cap U_{j} \neq \varnothing$, the mapping $\phi_{i}{ }^{\circ} \phi_{j}^{-1}$: $\phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)$ between open sets in E is holomorphic.
(2) $\bigcup_{i \in I} U_{i}=M$.
\mathfrak{F} is called the atlas of M. An element of \mathscr{F} is called a chart of M.
Let M and N be complex manifolds with atlases $\left\{\left(U_{i}, \phi_{i}\right) ; i \in I\right\}$ and $\left\{\left(U_{\alpha}^{\prime}, \phi_{\alpha}^{\prime}\right) ; \alpha \in A\right\}$ respectively. Then a mapping $f: M \rightarrow N$ is said to be holomorphic if, for any $i \in I$ and $\alpha \in A$ with $f\left(U_{i}\right) \cap U_{\alpha}^{\prime} \neq \varnothing$, the mapping $\phi_{\alpha}^{\prime} \circ f \circ \phi_{i}^{-1}$ is holomorphic. Particularly, if $N=\boldsymbol{C}, f$ is called a holomorphic function. We denote by $H(M)$ the family of all holomorphic functions in M. A function $p: M \rightarrow[-\infty,+\infty)$ is said to be plurisubharmonic if, for any $i \in I$, the function $f \circ \phi_{i}^{-1}$ is plurisubharmonic.

We consider subsets Δ_{1} and Δ_{2} in \boldsymbol{C}^{2} defined by

$$
\begin{align*}
& \Delta_{1}=\left\{\left(z_{1}, z_{2}\right) \in C^{2} ;\left|z_{1}\right|=1, z_{2} \in[0,1]\right\} \cup\left\{\left|z_{1}\right| \leqq 1, z_{2}=0\right\}, \tag{1.1}\\
& \Delta_{2}=\left\{\left|z_{1}\right| \leqq 1, z_{2} \in[0,1]\right\} . \tag{1.2}
\end{align*}
$$

A complex manifold M is said to satisfy the Kontinuitätssatz if any holomorphic mapping of a neighborhood of Δ_{1} into M is extended holomorphically to Δ_{2}.

Let M be a complex manifold. If there exists a local biholomorphic mapping ϕ of a complex manifold Ω into $M,(\Omega, \phi)$ is called a region spread over M. Moreover, if Ω is connected, (Ω, ϕ) is called a domain spread over M.

Let (Ω, ϕ) and ($\Omega^{\prime}, \phi^{\prime}$) be regions spread over M. If a holomorphic mapping λ of Ω into Ω^{\prime} satisfies $\phi=\phi^{\prime} \circ \lambda, \lambda$ is called a mapping of (Ω, ϕ) into ($\Omega^{\prime}, \phi^{\prime}$).
 If ($\Omega^{\prime}, \phi^{\prime}$) is a region spread over M then a mapping λ of $\left(\Omega, \phi\right.$) into ($\Omega^{\prime}, \phi^{\prime}$) is said to be an \mathfrak{F}-extension of Ω if for each $f \in \mathfrak{F}$ there exists a unique $f^{\prime} \in H\left(\Omega^{\prime}\right)$ such that $f^{\prime} \circ \lambda=f$. A mapping λ of (Ω, ϕ) into $\left(\Omega^{\prime}, \phi^{\prime}\right)$ is said to be a holomorphic extension of Ω if λ is an $H(\Omega)$-extension of $\Omega . \Omega$ is said to be an \mathfrak{F}-domain of holomorphy if each $\mathfrak{\vartheta}$-extension of Ω is an isomorphism. Ω is said to be a domain of holomorphy if Ω is an $H(\Omega)$-domain of holomorphy. Ω is said to be a domain of existence if there exists $f \in H(\Omega)$ such that Ω is an $\{f\}$-domain of holomorphy.

Let E be a complex Banach space with a norm $\|\cdot\|$ and let (Ω, ϕ) be a region spread over E. For a point z of E and for a positive number ε, we define the open ball $B(z, \varepsilon)$ by

$$
\begin{equation*}
B(z, \varepsilon)=\{w \in E \quad ;\|w-z\|<\varepsilon\} . \tag{1.3}
\end{equation*}
$$

For any point x of Ω, there exists a positive number $\varepsilon(x)$ such that, for any positive number ε with $\varepsilon<\varepsilon(x)$, there exists uniquely an open neighborhood $\Delta(x, \varepsilon)$ of x which is mapped by ϕ homeomorphically onto the open ball $B(\phi(x), \varepsilon)$. The open neighborhood $\Delta(x, \varepsilon)$ is called the open ball in Ω with center x and with radius ε. We define the boundary distance function $d_{\Omega}(x)$ on Ω by

$$
\begin{equation*}
d_{\Omega}(x)=\sup \{x ; \text { the open ball } \Delta(x, \varepsilon) \text { exists }\} . \tag{1.4}
\end{equation*}
$$

Let a and b be points of Ω. By a line segment $[a, b]$ in Ω we mean a set in Ω containing the points a and b and homeomorphic under ϕ to the line segment $[\phi(a), \phi(b)]$ in E. By a polygonal line $\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ in Ω we mean a finite union of line segments of the form $\left[x_{j-1}, x_{j}\right]$ with $j=1, \cdots, n$.

Remark 1.1. Let x and y be two points which belong to a connected component of Ω. Since there exists a polygonal line $\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ with $x_{0}=$ x and with $x_{n}=y$, there exists a finite dimensional linear subspace F of E such that the set $\{x, y\}$ is contained in a connected component of the inverse image $\phi^{-1}(F)$ of F by ϕ.

2. Complex projective spaces induced from complex Banach spaces.

In this section we first give some properties of a complex projective space induced from a complex Banach space. Then we give the definition of pseudoconvexity of a domain spread over the complex projective space, and prove some lemmas with respect to pseudoconvexity.

Let E be a complex Banach space with the norm $\|\cdot\|$. Let z and z^{\prime} be points in $E-\{0\} . \quad z$ and z^{\prime} are said to be equivalent if there exists a complex number $\lambda \in \boldsymbol{C}-\{0\}$ such that $z^{\prime}=\lambda z$. The quotient space $\boldsymbol{P}(E)$ of $E-\{0\}$ by this equivalence relation is called the complex projective space induced from E. We denote by Q the quotient map of $E-\{0\}$ onto $\boldsymbol{P}(E)$. For any $\xi \in E-\{0\}$, we denote by $[\xi]$ the equivalence class of ξ. Then we have $Q(\xi)=[\xi]$.

Let E^{\prime} be the complex Banach space of continuous linear functionals on E. We set

$$
\begin{equation*}
S=\left\{(f, a) \in E^{\prime} \times E ; f(a) \neq 0\right\} \tag{2.1}
\end{equation*}
$$

For each $f \in E^{\prime}-\{0\}$, we consider a hyperplane $E(f)$ of E and an open subset $U(f)$ of $\boldsymbol{P}(E)$ defined by

$$
\begin{align*}
& E(f)=\{\xi \in E ; f(\xi)=0\} \tag{2.2}\\
& U(f)=\{[\xi] \in \boldsymbol{P}(E) ; f(\xi) \neq 0\} \tag{2.3}
\end{align*}
$$

respectively. For every $(f, a) \in S$, we define a homeomorphism $\phi_{(f, a)}$ of $U(f)$ onto $E(f)$ by

$$
\phi_{(f, a)}([\xi])=(1 / f(\xi)) \xi-(1 / f(a)) a
$$

for every $[\xi] \in U(f)$. The family $\left\{U(f), \phi_{(f, a)}\right\}_{(f, a) \in S}$ defines the complex structure of the projective space $\boldsymbol{P}(E)$.

Let $S(E)$ be the unit sphere in E. Then the topological space $\boldsymbol{P}(E)$ is a quotient space of $S(E)$. The topology of $S(E)$ as a subspace of E induces the topology on the quotient space $\boldsymbol{P}(E) . \quad S(E)$ is a principal fibre bundle over $\boldsymbol{P}(E)$ with circle group. Since $S(E)$ is a subspace of the metric space E, the metric on $S(E)$ induces a metric $d($,) on $\boldsymbol{P}(E)$ by

$$
\begin{equation*}
d\left(p, p^{\prime}\right)=\inf \left\{\left\|z-z^{\prime}\right\| ; z \in Q^{-1}(p) \cap S(E), z^{\prime} \in Q^{-1}\left(p^{\prime}\right) \cap S(E)\right\} \tag{2.4}
\end{equation*}
$$

for any points p and p^{\prime} of $\boldsymbol{P}(E)$. Since E is complete and $S(E)$ is closed, $S(E)$ is a complete metric space. From the compactness of the fibre of $S(E)$, it follows that $\boldsymbol{P}(E)$ is also complete.

Let (Ω, ϕ) be a domain spread over the complex projective space $\boldsymbol{P}(E)$ induced from $E . E-\{0\}$ is the total space of the holomorphic principal bundle over $\boldsymbol{P}(E)$ with the complex multiplicative group \boldsymbol{C}^{*}. We consider the fibre product X of Ω and $E-\{0\}$ given by

$$
\begin{equation*}
X=\{(z, w) \in \Omega \times(E-\{0\}) ; \phi(z)=Q(w)\} . \tag{2.5}
\end{equation*}
$$

We denote by $\tilde{\phi}$ and \tilde{Q} projections of the fibre product X into $E-\{0\}$ and into Ω respectively. Then ($X, \tilde{\phi}$) is a domain spread over E.

For any $(z, w) \in X$ and for any $\lambda \in \boldsymbol{C}^{*}$, we set

$$
\begin{equation*}
\lambda \cdot(z, w)=(z, \lambda w) . \tag{2.6}
\end{equation*}
$$

Then points $\lambda \cdot(z, w)$ of $\Omega \times(E-\{0\})$ belong to X for all $(z, w) \in X$ and for all $\lambda \in \boldsymbol{C}^{*}$. The mapping $(\lambda, x) \rightarrow \lambda \cdot x$ is a holomorphic mapping of $\boldsymbol{C}^{*} \times X$ onto X. Then Ω is the quotient space of X by this C^{*}-action and \tilde{Q} is the quotient map of X onto $\Omega . X$ is the total space of a holomorphic principal bundle over Ω with the complex multiplicative group \boldsymbol{C}^{*}. We have the following commutative diagram:

Let f be a holomorphic function in X. We set

$$
\begin{equation*}
\tilde{f}(x)=(1 / 2 \pi) \int_{0}^{2 \pi} f\left(e^{i \theta} \cdot x\right) d \theta \tag{2.8}
\end{equation*}
$$

for every $x \in X$. Then \tilde{f} is a holomorphic function in X and we have

$$
\begin{equation*}
\tilde{f}\left(e^{i \eta} \cdot x\right)=\tilde{f}(x) \tag{2.9}
\end{equation*}
$$

for every $\eta \in[0,2 \pi)$ and for every $x \in X$. By the identity theorem of a complex variable holomorphic function theory, we have

$$
\begin{equation*}
\tilde{f}(\lambda \cdot x)=\tilde{f}(x) \tag{2.10}
\end{equation*}
$$

for every $\lambda \in \boldsymbol{C}^{*}$. Therefore \tilde{f} is constant on $\tilde{Q}^{-1}(z)$ for every $z \in \Omega$. We define a holomorphic function f^{*} in Ω by

$$
\begin{equation*}
f^{*}(z)=\tilde{f}\left(\widetilde{Q}^{-1}(z)\right) \tag{2.11}
\end{equation*}
$$

for every $z \in \Omega$. We have

$$
\begin{equation*}
(g \circ \widetilde{Q})^{*}=g \tag{2.12}
\end{equation*}
$$

for every $g \in H(\Omega)$. Hence we obtain the following lemma.
Lemma 2.1. For any $f \in H(X)$, a holomorphic function \tilde{f} in X defined by (2.8) is constant on $\widetilde{Q}^{-1}(z)$ for every $z \in \Omega$. Thus we can define a holomorphic function f^{*} in Ω by (2.11).

Let F be a closed linear subspace of E. We denote by X_{F} and by Ω_{F} regions spread over F and spread over the complex projective space $\boldsymbol{P}(F)$ induced from F, respectively, defined by

$$
\begin{align*}
& X_{F}=\tilde{\phi}^{-1}(F-\{0\}), \tag{2.13}\\
& \Omega_{F}=\phi^{-1}(\boldsymbol{P}(F)) . \tag{2.14}
\end{align*}
$$

X_{F} is a holomorphic principal bundle over Ω_{F} with the complex multiplicative group \boldsymbol{C}^{*}. We have the following commutative diagram induced from the commutative diagram (2.7):

Let (Ω, ϕ) be a region spread over a complex projective space $\boldsymbol{P}(E)$ induced from a complex Banach space E. Then the region (Ω, ϕ) is said to be pseudoconvex if, for every $f \in E^{\prime}-\{0\}$ and for the open set $U(f)$, defined by (2,3), of $\boldsymbol{P}(E)$, the open set $\phi^{-1}(U(f))$ of Ω satisfies the Kontinuitätssatz.

Lemma 2.2. Let E be a complex Banach space and (Ω, ϕ) be a domain spread over the complex projective space $\boldsymbol{P}(E)$. Suppose that Ω is not homeomorphic to $\boldsymbol{P}(E)$ through ϕ. Then for any finite dimensional linear subspace F of E and for any connected component V_{F} of Ω_{F}, there exist a finite dimensional linear subspace G of E and a connected component V_{G} of Ω_{G} satisfying the following conditions:
(1) V_{F} is a closed complex submanifold of V_{G}.
(2) V_{G} is not homeomorphic to $\boldsymbol{P}(G)$ through $\boldsymbol{\phi} \mid V_{G}$.

Proof. By Remark 1.1 and by the commutative diagram (2.15), there exist a finite dimensional linear subspace F_{0} of E and a connected component $V_{F_{0}}$ of $\Omega_{F_{0}}$ such that $V_{F_{0}}$ is not homeomorphic to $\boldsymbol{P}\left(F_{0}\right)$ through $\phi \mid V_{F_{0}}$. We take a point z of V_{F} and a point w of $V_{F_{0}}$. By Remark 1.1 and by the commutative diagram (2.15), there exists a finite dimensional subspace F_{1} such that a connected component $V_{F_{1}}$ of $\Omega_{F_{1}}$ contains the set $\{z, w\}$. Let G be the complex vector space spanned by all elements of the union $F \cup F_{0} \cup F_{1}$. Then $\boldsymbol{P}(F)$ and $\boldsymbol{P}\left(F_{0}\right)$ are closed complex submanifolds of $\boldsymbol{P}(G)$. We denote by V_{G} the connected component of Ω_{G} containing the set $\{z, w\}$. Since ($V_{G}, \phi \mid V_{G}$) is a domain spread over $\boldsymbol{P}(G)$, both V_{F} and $V_{F_{0}}$ are closed complex submanifolds
of V_{G}. Then V_{G} satisfies the required conditions (1) and (2). This completes the proof.

Lemma 2.3. Suppose that Ω is not homeomorphic to $\boldsymbol{P}(E)$ through ϕ and that Ω is pseudoconvex. Then, for any finite dimensional linear subspace F of E, Ω_{F} is a Stein manifold. X satisfies the Kontinuitätssatz.

Proof. Let F be a finite dimensional linear subspace of E. Let V_{F} be any component of Ω_{F}. By Lemma 2.2 there exists a finite dimensional subspace G of E and a component V_{G} of Ω_{G} satisfying the conditions (1) and (2) in Lemma 2.2. Since Ω is pseudoconvex, V_{G} is also pseudoconvex. By Fujita [4], Kiselman [9] and Takeuchi [22], the pseudoconvex domain V_{G} spread over $\boldsymbol{P}(G)$ is a Stein manifold. Since V_{F} is a closed complex submanifold of the Stein manifold V_{G}, V_{F} is a Stein manifold. Thus Ω_{F} is a Stein manifold. X_{F} is the total space of a holomorphic principal bundle over the Stein manifold Ω_{F} with the complex multiplicative group \boldsymbol{C}^{*}. Therefore X_{F} is a Stein manifold by Matsushima and Morimoto [12]. Since $(X, \tilde{\phi})$ is a domain spread over E, X satisfies the Kontinuitätssatz by Noverraz [17]. This completes the proof.

Lemma 2.4. With the assumption of Lemma 2.2 the following conditions are equivalent:
(1) Ω is pseudoconvex.
(2) Ω_{F} is a Stein manifold for every finite dimensional linear subspace F of E.

Proof. It follows from Lemma 2.3 that (1) implies (2).
We will show that (2) implies (1). Let f be an element of $E^{\prime}-\{0\}$. By the assumption, for every finite dimensional linear subspace F of E with $\operatorname{dim}_{C} F$ $\geqq 2$ and $F \not \subset\{f=0\}, \Omega_{F}$ is a Stein manifold. We set $H=\phi^{-1}(\{[\xi] \in \boldsymbol{P}(F) ; f(\xi)$ $=0\}$). Since H is a hypersurface of Ω_{F} and $\Omega_{F} \cap \phi^{-1}(U(f))=\Omega_{F} \backslash H, \Omega_{F} \cap \phi^{-1}(U(f))$ is a Stein manifold. $\phi^{-1}(U(f))$ and $\Omega_{F} \cap \phi^{-1}(U(f))$ are identified with regions spread over the Banach space $\{f=0\}$ and spread over the finite dimensional subspace $\{f=0\} \cap F$ of $\{f=0\}$ respectively. Therefore by Noverraz [17] the domain $\boldsymbol{\phi}^{-1}(U(f))$ satisfies the Kontinuitätssatz. Thus Ω is pseudoconvex. This completes the proof.

3. Some properties of the fibre product X.

In this section we will research some properties of the fibre product X, defined in the preceding section, of Ω and $E-\{0\}$ for a complex Banach space E with a Schauder basis and for a pseudoconvex domain (Ω, ϕ) spread over the complex projective space $\boldsymbol{P}(E)$.

Let E be a complex Banach space with the norm $\|\cdot\|$ and a Schauder basis
$\left\{e_{j}\right\}_{j=1}^{\infty}$. Let (Ω, ϕ) be a pseudoconvex domain, which is not homeomorphic to $\boldsymbol{P}(E)$ through ϕ, spread over the complex projective space $\boldsymbol{P}(E)$.

Since Ω is pseudoconvex, by Lemma $2.3 X$ satisfies the Kontinuitätssatz. By Noverraz [17], we have the following Lemma 3.1.

Lemma 3.1. $-\log d_{X}$ is a continuous plurisubharmonic function in X where d_{X} is the boundary distance function on X. For any finite dimensional linear subspace F of E, $\tilde{\phi}^{-1}(F)$ is a Stein manifold.

We can choose a Schauder basis $\left\{e_{j}\right\}_{j=1}^{\infty}$ of E such that the intersection of the image of $\tilde{\phi}$ and the linear space $\left\{\lambda e_{1} ; \lambda \in \boldsymbol{C}\right\}$ is nonempty. For every $\xi \in E$, ξ can be represented in a unique way

$$
\begin{equation*}
\xi=\sum_{n=1}^{\infty} \xi_{n} e_{n} . \tag{3.1}
\end{equation*}
$$

We denote by E_{n} the linear span of the set $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$, and by u_{n} the mapping of E onto E_{n} defined by

$$
\begin{equation*}
u_{n}(\xi)=\sum_{j=1}^{n} \xi_{j} e_{j} . \tag{3.2}
\end{equation*}
$$

We denote by μ_{n} a continuous linear functional of E defined by

$$
\begin{equation*}
\mu_{n}(\xi)=\xi_{n} \tag{3.3}
\end{equation*}
$$

for every $\xi=\sum_{j=1}^{\infty} \xi_{j} e_{j}$.
Lemma 3.2. There exist a norm $\|\cdot\| \|$ of E and positive constants c_{1} and c_{2} satisfying the following conditions:
(1) $\quad c_{1}|\xi| \leqq\|\xi\| \| c_{2}|\xi| \quad$ for every $\xi \in E$.
(2) $\left\|u_{n}(\xi)\right\| \leqq\|\xi\| \| \quad$ for every positive integer n.

The proof of Lemma 3, 2 is in Singer [21]. The condition (1) of Lemma 3.2 implies that the Banach space ($E, \|||| |$) with the norm ||| || is equivalent to the Banach space E with the original norm \|\|. Therefore we may assume that the norm of E satisfies the condition

$$
\begin{equation*}
\left\|u_{n}(\xi)\right\| \leqq\|\xi\| \tag{3.4}
\end{equation*}
$$

for every positive integer n.
Let x_{0} be a point of X with $\tilde{\phi}\left(x_{0}\right) \in E_{1}$. We may assume that the norm $\left\|\|\right.$ of E is chosen such that $d_{X}\left(x_{0}\right) \geqq 1$. For every n we set

$$
\begin{align*}
& X_{n}=\tilde{\phi}^{-1}\left(E_{n}\right), \tag{3.5}\\
& A_{n}=\left\{x \in X ; \sup _{m \geqq n}\left\|u_{m} \circ \tilde{\phi}(x)-\tilde{\phi}(x)\right\|<d_{X}(x)\right\}, \tag{3.6}\\
& v_{n}(x)=\left(\tilde{\phi} \mid \Delta\left(x, d_{X}(x)\right)\right)^{-1} \circ u_{n} \circ \tilde{\phi}(x) \tag{3.7}
\end{align*}
$$

for every $x \in A_{n}$. Then $\sup _{m \geq n}\left\|u_{m} \circ \tilde{\phi}(x)-\tilde{\phi}(x)\right\|$ is continuous on X, and A_{n} is an open subset of $X . \quad v_{n}$ is a holomorphic mapping of A_{n} into X_{n} for every n.

Let (Y, ψ) be a region spread over a complex Banach space F. Then we use the notation $d_{Y}(A)=\inf \left\{d_{Y}(x) ; x \in A\right\}$ where A is a subset of Y.

The proof of the following lemma is in Lemma 54.5 of Mujica [13].
Lemma 3.3. There exist two increasing sequences $\left\{B_{n}\right\}_{n=1}^{\infty}$ and $\left\{C_{n}\right\}_{n=1}^{\infty}$ of open sets B_{n} and C_{n} of X such that
(a) $\left\{x_{0}\right\} \subset C_{n} \subset B_{n} \subset A_{n}$ for every $n \geqq 1, X=\bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty} C_{n}$.
(b) $d_{A_{n}}\left(B_{n}\right) \geqq 2^{-n}$ and $B_{m} \cap X_{n}$ is relatively compact in $A_{m} \cap X_{n}$ for every m, $n \geqq 1$.
(c) $\quad d_{C_{m+1}}\left(C_{m}\right) \geqq 2^{-m-1}$ and $v_{n}\left(C_{m}\right) \subset B_{m} \cap X_{n}$ for every $m \geqq 1$ and every $n \geqq m$.

For every $x \in X$, we define the sets $V(x)$ and $S(x)$ by

$$
\begin{gather*}
V(x)=\left\{\lambda \cdot x ; \lambda \in \boldsymbol{C}^{*}\right\}, \tag{3.8}\\
S(x)=\left\{e^{i \theta} \cdot x ; 0 \leqq \theta \leqq 2 \pi\right\} . \tag{3.9}
\end{gather*}
$$

Let K be a compact subset of a Stein manifold S. We use the notation

$$
\begin{equation*}
K(S)=\left\{x \in S ;|f(x)| \leqq \sup _{y \in K}|f(y)| \quad \text { for all } f \in H(S)\right\} \tag{3.10}
\end{equation*}
$$

The set $K(S)$ is called the holomorphically convex hull of K in the Stein manifold S. If $K(S)=K, K$ is said to be Runge in S. Let S_{1} be a Stein manifold and S_{2} be a Stein open subset of $S_{1} . S_{2}$ is said to be Runge relative to S_{1} if, for any compact subset K of $S_{2}, K\left(S_{1}\right)$ is a compact subset in S_{2}.

We denote by K_{n} the holomorphically convex hull of the topological closure of the set $B_{n} \cap X_{n+1}$ in the Stein manifold X_{n+1}. Since X_{n+1} is a Stein manifold, K_{n} is a compact subset of X_{n+1} and Runge in X_{n+1}. On the other hand $\sup _{m \geq n}\left\|u_{m} \circ \tilde{\phi}(x)-\tilde{\phi}(x)\right\| \quad$ is continuous in X, and $\sup _{m \geq n} \log \left\|u_{m} \tilde{\phi}(x)-\tilde{\phi}(x)\right\|$ $-\log d_{X}(x)$ is a continuous plurisubharmonic function of X into $[-\infty, \infty)$. Therefore by Narasimhan [15], $A_{n} \cap X_{n+1}$ is Runge relative to X_{n+1} and K_{n} is compact in $A_{n} \cap X_{n+1}$.

Lemma 3.4. Let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a sequence of points of X such that $c_{n} \in X_{n}$, $c_{n} \notin X_{n-1}$ and $V\left(c_{n}\right) \subset X \backslash K_{n}$. Then, for any sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of positive numbers, there exists a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of holomorphic functions f_{n} in X_{n} such that

$$
\begin{gather*}
f_{n+1} \mid X_{n}=f_{n}, \tag{3.11}\\
\left|f_{n+1}(x)-f_{n} \circ v_{n}(x)\right|<1 / 2^{n} \tag{3.12}
\end{gather*}
$$

for any $x \in K_{n}$, and

$$
\begin{equation*}
\operatorname{Re} f_{n}(x) \geqq \lambda_{n} \tag{3.13}
\end{equation*}
$$

for any $x \in S\left(c_{n}\right)$ where $\operatorname{Re} f_{n}$ represents the real part of f_{n}.
Proof. We will show this lemma by induction with respect to n. We set $f_{1}(x)=\lambda_{1}$ for every $x \in X$. Then f_{1} satisfies (3.13). We assume that there exist holomorphic functions f_{k} in $X_{k}(1 \leqq k \leqq n)$ with (3.11), (3.12) and (3.13). We set

$$
\begin{equation*}
g(x)=f_{n} \circ v_{n}(x) \tag{3.1}
\end{equation*}
$$

for every $x \in X_{n+1} \cap A_{n}$. Closed subsets $K_{n} \cup X_{n}$ and ($X_{n+1} \backslash A_{n}$) are mutually disjoint because K_{n} is a compact subset of $X_{n+1} \cap A_{n}$. Therefore there exists a C^{∞}-function η in X_{n+1} such that $\eta=1$ on a neighborhood of $K_{n} \cup X_{n}$, and that $\eta=0$ on a neighborhood of ($X_{n+1} \backslash A_{n}$).

We consider a $\bar{\delta}$-equation on X_{n+1} :

$$
\begin{equation*}
\bar{\partial} v=\left(\mu_{n+1}{ }^{\circ} \tilde{\phi}(x)\right)^{-1} g \bar{\partial} \eta \tag{3.15}
\end{equation*}
$$

where μ_{j} are defined in (3.3). Since X_{n+1} is a Stein manifold, and since the right hand side of (3.15) is $\bar{\delta}$-closed, there exists a C^{∞}-function v on X_{n+1} satisfying (3.15). We set

$$
\begin{equation*}
h(x)=\eta(x) g(x)-\left(\mu_{n+1} \circ \tilde{\phi}(x)\right) v(x) \tag{3.16}
\end{equation*}
$$

for every $x \in X_{n+1}$. Then h is holomorphic in X_{n+1} and satisfies $h \mid X_{n}=f_{n}$. Since v is holomorphic in a neighborhood of a Runge compact subset K_{n} of X_{n+1}, by Oka-Weil theorem there exists a holomorphic function w in X_{n+1} such that

$$
\begin{equation*}
|v(x)-w(x)|<1 /\left(2^{n+1} M\right) \tag{3.17}
\end{equation*}
$$

for every $x \in K_{n}$ where $M=\sup \left\{\left|\mu_{n+1} \circ \tilde{\phi}(x)\right| ; x \in K_{n}\right\}$. We set

$$
\begin{equation*}
F(x)=h(x)+\left(\mu_{n+1^{\circ}} \tilde{\phi}(x)\right) w(x) \tag{3.18}
\end{equation*}
$$

for every $x \in X_{n+1}$. Then we have

$$
\begin{equation*}
\left|F(x)-f_{n} \circ v_{n}(x)\right|<1 / 2^{n+1} \tag{3.19}
\end{equation*}
$$

for every $x \in K_{n}$.
We set

$$
\begin{align*}
& T=S\left(c_{n+1}\right) \cup K_{n}, \tag{3.20}\\
& V_{n+1}=V\left(c_{n+1}\right) . \tag{3.21}
\end{align*}
$$

We denote by \hat{T} the holomorphically convex hull of T in X_{n+1}. Since X_{n+1} is Stein, \hat{T} is compact in X_{n+1}.

We will show that $\hat{T} \subset V_{n+1} \cup K_{n}$. Let x be a point of $X_{n+1} \backslash\left(V_{n+1} \cup K_{n}\right)$. Since X_{n+1} is a Stein manifold, by Oka-Cartan theorem there exists a holo-
morphic function s in X_{n+1} with $s=0$ on V_{n+1} and with $s(x)=1$. Since K_{n} is a Runge compact subset of X_{n+1}, there exists a holomorphic function t in X_{n+1}, such that $|t(x)|>1$ and $\|t\|_{K_{n}}<1 /\left(\|s\|_{K_{n}}+1\right)$ where $\|s\|_{K_{n}}$ and $\|t\|_{K_{n}}$ represent supremums of functions $|s(\cdot)|$ and $|t(\cdot)|$, respectively, on the compact set K_{n}. Then we have $|s(x) t(x)|>1$ and $\sup \{|s(y) t(y)| ; y \in T\}<1$. Therefore x cannot belong to \hat{T}. Thus we have $\hat{T} \subset V_{n+1} \cup K_{n}$.

Since by the assumption $V_{n+1} \cap K_{n}=\varnothing$, it follows that ($\hat{T} \cap V_{n+1}$) $\cap K_{n}=\varnothing$ and $\hat{T}=\left(\hat{T} \cap V_{n+1}\right) \cup K_{n}$.

Since \hat{T} is a Runge compact subset of X_{n+1}, there exist Stein neighborhoods Δ_{1} and Δ_{2} of $\left(\hat{T} \cap V_{n+1}\right)$ and of K_{n}, respectively, in X_{n+1} with $\Delta_{1} \cap \Delta_{2}=\varnothing$. We set $L=\sup \left\{|F(x)| ; x \in S\left(c_{n+1}\right)\right\}$. We define a holomorphic function α in a Stein manifold $\Delta_{1} \cap V_{n+1}$ by

$$
\begin{equation*}
\alpha\left(\lambda \cdot c_{n+1}\right)=\left(L+\lambda_{n+1}+1\right) / \lambda \mu_{n+1} \circ \tilde{\phi}\left(c_{n+1}\right) \tag{3.22}
\end{equation*}
$$

for every $\lambda \cdot c_{n+1} \in \Delta_{1} \cap V_{n+1}(\lambda \in \boldsymbol{C}-\{0\})$. Since $\Delta_{1} \cap V_{n+1}$ is a closed complex submanifold of Δ_{1}, by Oka-Cartan theorem there exists a holomorphic function A in Δ_{1} such that $A \mid V_{n+1} \cap \Delta_{1}=\alpha$. We define a holomorphic function B on $\Delta_{1} \cup \Delta_{2}$ by $B \mid \Delta_{1}=A$ and $B \mid \Delta_{2}=0$. Since $\Delta_{1} \cup \Delta_{2}$ is a neighborhood of the Runge compact subset \hat{T} in X_{n+1}, there exists a holomorphic function G on X_{n+1} such that

$$
\begin{equation*}
|G(x)-B(x)|<1 /\left\{2^{n+1}\left(L^{\prime}+1\right)\right\} \tag{3.23}
\end{equation*}
$$

for every $x \in \hat{T}$ where $L^{\prime}=\sup \left\{\left|\mu_{n+1}{ }^{\circ} \tilde{\phi}(x)\right| ; x \in S\left(c_{n+1}\right) \cup K_{n}\right\}$. We set $f_{n+1}(x)$ $=F(x)+\left(\mu_{n+1} \circ \tilde{\phi}(x)\right) G(x)$ for every $x \in X_{n+1}$. By (3.19) and (3.23) we have

$$
\begin{equation*}
\left|f_{n+1}(x)-f_{n} \circ v_{n}(x)\right|<1 / 2^{n} \tag{3.24}
\end{equation*}
$$

for every $x \in K_{n}$. By (3.22) and (3.23) we have

$$
\begin{equation*}
\operatorname{Re} f_{n+1}\left(e^{i \theta} \cdot c_{n+1}\right) \geqq \lambda_{n+1} \tag{3.25}
\end{equation*}
$$

for every $\theta \in \boldsymbol{R}$. Since $f_{n+1} \mid X_{n}=f_{n}$, this completes the proof.
Lemma 3.5. Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers with $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of holomorphic functions f_{n} in X_{n} such that $f_{n+1} \mid X_{n}=f_{n}$ and $\left|f_{n+1}(x)-f_{n} \circ v_{n}(x)\right|<\varepsilon_{n}$ for every $x \in K_{n}$. Then there exists a holomorphic function f in X such that $f \mid X_{n}=f_{n}$.

Proof. Since, by Lemma 3.3, $v_{n+j}\left(C_{n+j-1}\right) \subset B_{n+j-1} \cap X_{n+j} \subset K_{n+j-1}$ and $C_{n} \subset C_{n+j-1}$, we have $\left|f_{n+j}{ }^{\circ} v_{n+j}(x)-f_{n+j-1} \circ v_{n+j-1}(x)\right|=\mid f_{n+j}\left(v_{n+j}(x)\right)-f_{n+j-1}$ ${ }^{\circ} v_{n+j-1}\left(v_{n+j}(x)\right) \mid<\varepsilon_{n+j-1}$ for any positive integers n and j and for any $x \in C_{n}$. Thus for any m, n we have

$$
\begin{aligned}
\left|f_{n+m} \circ v_{n+m}(x)-f_{n} \circ v_{n}(x)\right| & \leqq \sum_{j=1}^{m}\left|f_{n+j} \circ v_{n+j}(x)-f_{n+j-1} \circ v_{n+j-1}(x)\right| \\
& \leqq \sum_{j=1}^{m} \varepsilon_{n+j-1} \leqq \sum_{j=1}^{\infty} \varepsilon_{j}
\end{aligned}
$$

for every $x \in C_{n}$. Therefore the sequence $\left\{f_{n} \circ v_{n}\right\}_{n=1}^{\infty}$ converges uniformly on each C_{n} to a function $f \in H(X)$. Then f satisfies $f \mid X_{n}=f_{n}$. This completes the proof.

We can obtain the following two lemmas by the application of Lemma 3.4 and Lemma 3.5.

LEMMA 3.6. With the conditions of Lemma 3.4, there exists a holomorphic function f in X such that $\operatorname{Re} f(x) \geqq \lambda_{n}$ for every n and for every $x \in S\left(c_{n}\right)$.

Lemma 3.7. Let F be any finite dimensional complex linear subspace of E. Then the restriction mapping of $H(X)$ into $H\left(\tilde{\phi}^{-1}(F)\right)$ is surjective.

4. Proofs of Theorem 1 and Theorem 2.

In order to prove Theorem 1 and Theorem 2, we will prepare some lemmas. Throughout this section E means a complex Banach space with a Schauder basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ and (Ω, ϕ) means a domain, which is not homeomorphic to the projective space $\boldsymbol{P}(E)$ through ϕ, spread over $\boldsymbol{P}(E)$.

LEMMA 4.1. If Ω is a domain of holomorphy, Ω is pseudoconvex.
Proof. For any continuous linear functional f of E and the open set $U(f)=\{[\xi] \in \boldsymbol{P}(E) ; f(\xi) \neq 0\}$, we have only to show that the domain $\dot{\phi}^{-1}(U(f))$ satisfies the Kontinuitätssatz. Since there exists a biholomorphic mapping p of $U(f)$ onto the complex Banach space $L=\{\xi \in E ; f(\xi)=0\}$, the domain ($\phi^{-1}(U(f)), p^{\circ}\left(\phi \mid \phi^{-1}(U(f))\right)$ is a domain spread over L. Since Ω is a domain of holomorphy and since, for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of $\phi^{-1}(U(f))$ converging to a point of $\Omega \backslash \phi^{-1}(U(f))$, the set $\left\{p \circ \phi\left(x_{n}\right)\right\}$ is an unbounded subset of $L, \phi^{-1}(U(f))$ is also a domain of holomorphy. By Noverraz [17], $\phi^{-1}(U(f))$ satisfies the Kontinuitätssatz. This completes the proof.

With the conditions and notations in Section 3, we set

$$
\begin{equation*}
S\left(K_{n}\right)=\left\{e^{i \theta} \cdot x ; \theta \in[0,2 \pi], x \in K_{n}\right\} \tag{4.1}
\end{equation*}
$$

for each n. $S\left(K_{n}\right)$ is compact in $X_{n+1} \cap A_{n}$. We denote by $\widehat{S\left(K_{n}\right)}$ the holomorphically convex hull of $S\left(K_{n}\right)$ in X_{n+1}. Since $A_{n} \cap X_{n+1}$ is Runge relative to $X_{n+1}, \widehat{S\left(K_{n}\right)}$ is a compact subset of $A_{n} \cap X_{n+1}$. We set $e^{i \theta} \cdot C_{n}=\left\{e^{i \theta} \cdot x ; x \in C_{n}\right\}$. For any $\theta \in \boldsymbol{R}$, we have

$$
\begin{align*}
& e^{i \theta} \cdot C_{n} \cap X_{n+1} \subset S\left(K_{n}\right) \subset \widehat{S\left(K_{n}\right)}, \tag{4.2}\\
& v_{n}\left(e^{i \theta} \cdot C_{n}\right) \subset S\left(K_{n}\right) \subset \widehat{S\left(K_{n}\right)} . \tag{4.3}
\end{align*}
$$

Hereafter we assume that Ω is pseudoconvex in a series of lemmas.
Lemma 4.2. Then for any holomorphic function f in X_{n} there exists a sequence $\left\{f_{n+k}\right\}_{k=0}^{\infty}$ of holomorphic functions in X_{n+k} satisfying the following conditions:
(1) $f_{n}=f$,
(2) $f_{n+k} \mid X_{n+k-1}=f_{n+k-1}$,
(3) $\left|f_{n+k}(x)-f_{n+k-1} \circ v_{n+k-1}(x)\right|<1 / 2^{n+k} \quad$ for every $x \in \widehat{S\left(K_{n}\right)}$.

Proof. We can prove this lemma by the same way as the proof of Lemma 3.4.

Remark 4.3. By the same way as the proof of Lemma 3.5, we can prove that there exists a holomorphic function F in X such that $F \mid X_{n+k}=f_{n+k}, F(x)$ $=\lim _{k-\infty} f_{n+k}{ }^{\circ} v_{n+k}(x)$ for every $x \in X$. By (4.2) and (4.3), we have

$$
\begin{align*}
|F(x)| & =\lim _{m \rightarrow \infty}\left|f_{m} \circ v_{m}(x)\right| \tag{4.4}\\
& \leqq \lim _{m \rightarrow \infty} \sup \left\{\sum_{k=N}^{m}\left|f_{k} \circ v_{k}(x)-f_{k-1} \circ v_{k-1}(x)\right|+\left|f_{N} \circ v_{N}(x)\right|\right\} \\
& \leqq 2^{-N}+\sup \left\{\left|f_{N^{\prime}} v_{N}(y)\right| ; y \in S\left(C_{N}\right)\right\}<\infty
\end{align*}
$$

for every $N \geqq n$ and for every $x \in S\left(C_{N}\right)$ where $S\left(C_{N}\right)$ is the set $\left\{e^{i \theta} \cdot z ;(\theta, z) \in\right.$ $\left.\boldsymbol{R} \times C_{N}\right\}$. Thus we have $\sup \left\{|F(x)| ; x \in S\left(C_{N}\right)\right\}<\infty$ for every $N \geqq 1$.

We denote by D_{m} an open subset of Ω defined by $D_{m}=\widetilde{Q}\left(C_{m}\right)$ for every $m \geqq 1$.

Lemma 4.4. For any holomorphic function f in $\phi^{-1}\left(\boldsymbol{P}\left(E_{n}\right)\right)$ there exists a holomorphic function F in Ω such that $F \mid \phi^{-1}\left(\boldsymbol{P}\left(E_{n}\right)\right)=f$ and $\sup \left\{|F(x)| ; x \in D_{m}\right\}$ $<\infty$ for every $m \geqq 1$.

Proof. We consider a holomorphic function g in X_{n} defined by $g=f \circ\left(\tilde{Q} \mid X_{n}\right)$. By Lemma 4.2 and by Remark 4.3, there exists a holomorphic function G in X such that $G \mid X_{n}=g$ and $\sup \left\{|G(x)| ; x \in S\left(C_{m}\right)\right\}<\infty$ for every $m \geqq 1$. We set

$$
\tilde{G}(x)=(1 / 2 \pi) \int_{0}^{2 \pi} G\left(e^{i \theta} \cdot x\right) d \theta
$$

for every $x \in X$. Then \tilde{G} is a holomorphic function in X and constant on $\tilde{Q}^{-1}(z)$ for every $z \in \Omega$. We define a holomorphic function F by $F(z)=\tilde{G} \circ \tilde{Q}^{-1}(z)$ for every $z \in \Omega$. Then we have $F \mid \phi^{-1}\left(\boldsymbol{P}\left(E_{n}\right)\right)=f$ and $\sup \left\{|F(x)| ; z \in D_{m}\right\} \leqq$ $\sup \left\{|G(x)| ; z \in S\left(C_{m}\right)\right\}<\infty$ for every $m \geqq 1$. This completes the proof.

Lemma 4.5. For any different points z and w in Ω, there exists a holomorphic function f in Ω such that $f(z) \neq f(w)$ and that $\sup \left\{|f(p)| ; p \in D_{m}\right\}<\infty$ for every $m \geqq 1$.

Proof. There exist two different points x and y in X such that $\widetilde{Q}(x)=z$ and $\widetilde{Q}(y)=w$. There exists a positive integer N such that the set $\left\{x, y, v_{N}(x)\right.$, $\left.v_{N}(y)\right\}$ is contained in C_{N} and that $\widetilde{Q}\left(v_{N}(x)\right) \neq \widetilde{Q}\left(v_{N}(y)\right)$. Then the compact sets $S(x), S(y), S\left(v_{N}(x)\right)$ and $S\left(v_{N}(y)\right)$, defined in (3.9), are contained in $S\left(C_{N}\right)$. We consider closed submanifolds $V\left(v_{N}(x)\right)$ and $V\left(v_{N}(y)\right)$, defined in (3.8), of the Stein mainfold X_{N}. By Oka-Cartan theorem, there exists a holomorphic function g in X_{N} satisfying $g \mid V\left(v_{N}(x)\right)=2$ and $g \mid V\left(v_{N}(y)\right)=0$. By Lemma 4.2, there exists a sequence $\left\{g_{m}\right\}_{m=N}^{\infty}$ of holomorphic functions g_{m} in X_{N+m} such that $g_{m} \mid X_{m-1}$ $=g_{m-1}, g_{N}=g$ and $\left|g_{m} \circ v_{m}(t)-g_{m-1}{ }^{\circ} v_{m-1}(t)\right|<1 / 2^{m}$ for every $m>N$ and every $t \in S\left(C_{m-1}\right)$. Let G be a holomorphic function defined by $G(t)=\lim _{m \rightarrow \infty} g_{m}{ }^{\circ} v_{m}(t)$ for every $t \in X$. Then we have $\left|G(t)-g \circ v_{N}(t)\right| \leqq 1 / 2^{N}$ for every $t \in S\left(C_{N}\right)$. Thus we have $\operatorname{Re} G\left(e^{i \theta} \cdot x\right) \geqq \operatorname{Re} g \circ v_{N}\left(e^{i \theta} \cdot x\right)-1 / 2^{N} \geqq 3 / 2 \quad$ and $\quad \operatorname{Re} G\left(e^{i \theta} \cdot y\right) \leqq$ $\operatorname{Re} g \cdot v_{N}\left(e^{i \theta} \cdot y\right)+1 / 2^{N} \leqq 1 / 2$. By Remark 4.3, the holomorphic function G in X satisfies $\sup \left\{|G(t)| ; t \in S\left(C_{m}\right)\right\}<\infty$ for every $m \geqq 1$. We set

$$
\tilde{G}(t)=(1 / 2 \pi) \int_{0}^{2 \pi} G\left(e^{i \theta} \cdot t\right) d \theta
$$

for every $t \in X$. Then \tilde{G} is a holomorphic function in X and constant on $\tilde{Q}^{-1}(\zeta)$ for every $\zeta \in \Omega$. We set $f(\zeta)=\tilde{G}^{\circ} \widetilde{Q}^{-1}(\zeta)$ for every $\zeta \in \Omega$. Then f is a holomorphic function and satisfies $\operatorname{Re} f(w) \leqq 1 / 2<3 / 2 \leqq \operatorname{Re} f(z)$. Moreover we have $\sup \left\{|f(\zeta)| ; \zeta \in D_{m}\right\} \leqq \sup \left\{|G(t)| ; t \in S\left(C_{m}\right)\right\}<\infty . \quad f$ satisfies the requirement of this lemma. This completes the proof.

We set $\mathscr{D}=\left\{D_{n}\right\}_{n=1}^{\infty}$ and set $|f|_{n}=\sup \left\{|f(x)| ; x \in D_{n}\right\}$ for every $f \in H(\Omega)$ and every $n \geqq 1$. We denote by $A(\mathfrak{D})$ the Fréchet space defined by

$$
A(\mathfrak{D})=\left\{f \in H(\Omega) ;|f|_{n}<\infty \quad \text { for every } n\right\} .
$$

Lemma 4.6. For each countable set P of Ω there exists a function $g \in A(\mathbb{D})$ such that $g(x) \neq g(y)$ for all $(x, y) \in P \times P \backslash \Delta$ where Δ is the diagonal set of $P \times P$.

Proof. By Lemma 4.5, the set $S_{x y}=\{g \in A(\mathbb{D}) ; g(x) \neq g(y)\}$ is nonempty for each $(x, y) \in P \times P \backslash \Delta$. The set $S_{x y}$ is open in $A(\mathfrak{D})$. We claim that $S_{x y}$ is dense in $A(\mathfrak{D})$. Let f be an element of $A(\mathfrak{D})$ with $f \notin S_{x y}$. We choose $g \in$ $S_{x y}$ and set $g_{n}=f+(1 / n) g$. Then we have $g_{n} \in S_{x y}$ for every n and $g_{n} \rightarrow f$ in $A(\mathfrak{D})$. Since $A(\mathfrak{D})$ is a Baire space, the set $S=\bigcap\left\{S_{x y} ;(x, y) \in P \times P \backslash \Delta\right\}$ is dense in $A(\mathbb{D})$, and in particular nonempty. This completes the proof.

Proof of Theorem 1. It follows from Lemma 2.4 that (1) and (2) are equivalent. It follows from Lemma 4. 1 that (3) implies (1). It is clear that (4)
implies (3).
Now we will show that (1) implies (4). Let E_{n} be the linear span of the set $\left\{e_{1}, \cdots, e_{n}\right\}$. We may assume that $Q\left(e_{1}\right) \in \phi(\Omega)$. Since $P(E)$ is separable, there exists a countable dense subset D of $\boldsymbol{P}(E)$. We set $P=\phi^{-1}(D)$. Then P is a countable dense subset of Ω. By Lemma 4.6, there exists a holomorphic function $g \in A(\mathfrak{D})$ such that $g(x) \neq g(y)$ for every $(x, y) \in P \times P \backslash \Delta$. Let d be the distance of $\boldsymbol{P}(E)$ defined by (2.4). We denote by Ω_{n} the region, defined by $\Omega_{n}=\phi^{-1}\left(\boldsymbol{P}\left(E_{n}\right)\right)$, spread over $\boldsymbol{P}\left(E_{n}\right)$ for every n. We denote by d_{n} the boundary distance function of the region $\left(\Omega_{n}, \phi \mid \Omega_{n}\right)$ with respect to $d \mid \boldsymbol{P}\left(E_{n}\right)$. For each $x \in \Omega_{n}$ we denote by $B_{n}(x)$ the open neighborhood, which is homeomorphically mapped by $\boldsymbol{\phi} \mid \Omega_{n}$ onto the set $\left\{\zeta \in \boldsymbol{P}\left(E_{n}\right) ; d(\boldsymbol{\phi}(x), \zeta) \leqq d_{n}(x)\right\}$, of x in Ω_{n}. We set $L_{n}=\widetilde{Q}\left(K_{n}\right)$ for each n where K_{n} is defined in Section 3. Each L_{n} is a compact subset of Ω_{n} and $\cup_{n=1}^{\infty} L_{n}=\bigcup_{n=1}^{\infty} \Omega_{n}$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of points a_{n} in Ω_{n} such that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is dense in Ω. We can find a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ in Ω such that $b_{n} \in B_{n}\left(a_{n}\right) \backslash L_{n}$ and $b_{n} \in \Omega_{n} \backslash \Omega_{n-1}$. There exists a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ in X such that $\tilde{Q}\left(c_{n}\right)=b_{n}$. Then we have $V\left(c_{n}\right) \cap K_{n}=\varnothing$. By Lemma 3.6, there exists a holomorphic function f in X such that $\operatorname{Re} f(x) \geqq n+$ $\left|g\left(b_{n}\right)\right|$ for every n and for every $x \in S\left(c_{n}\right)$. We set

$$
\tilde{f}(x)=(1 / 2 \pi) \int_{0}^{2 \pi} f\left(e^{i \theta} \cdot x\right) d \theta
$$

for every $x \in X$. Then \tilde{f} is a holomorphic function in X and constant on the fibre $\tilde{Q}^{-1}(z)$ for every $z \in \Omega$. We set $f *(z)=\tilde{f}\left(\widetilde{Q}^{-1}(z)\right)$ for every $z \in \Omega$. Then f^{*} is holomorphic in Ω and satisfies $\operatorname{Re} f^{*}\left(b_{n}\right) \geqq n+\left|g\left(b_{n}\right)\right|$. Since the set of quotient $\left(f^{*}(x)-f^{*}(y)\right) /(g(x)-g(y))$ with $(x, y) \in P \times P \backslash \Delta$ is countable, there exists $\theta \in$ $(0,1)$ such that $f^{*}(x)-f^{*}(y) \neq \theta(g(x)-g(y))$ for every $(x, y) \in P \times P \backslash \Delta$. If we set $h=f^{*}-\theta g$, then $h \in H(\Omega), h(x) \neq h(y)$ for every $(x, y) \in P \times P \backslash \Delta$ and

$$
\begin{equation*}
\operatorname{Re} h\left(b_{n}\right) \geqq n \tag{4.5}
\end{equation*}
$$

for every $n \geqq 1$. We will show that Ω is the domain of existence of h. Let $\lambda: \Omega \rightarrow \tilde{\Omega}$ be an $\{h\}$-extension of Ω, and let $\tilde{h} \in H(\tilde{\Omega})$ with $\tilde{h} \circ \lambda=h$. To prove that λ is injective, let $a, b \in \Omega$ with $\lambda(a)=\lambda(b)$. There exist an open neighborhood $U(a)$ of a and an open neighborhood $U(b)$ of b such that $\lambda(U(a))=\lambda(U(b))$ and that $\lambda|U(a), \lambda| U(b), \phi \mid U(a)$ and $\phi \mid U(b)$ are isomorphisms. Then we have $\lambda(x)=$ $\lambda(y)$, if $(x, y) \in U(a) \times U(b)$ and $\phi(x)=\phi(y)$. Thus we have $h(x)=\tilde{h} \circ \lambda(x)=\tilde{h} \circ \lambda(y)$ $=h(y)$, if $(x, y) \in U(a) \times U(b)$ and $\phi(x)=\phi(y)$. We set $W=\phi(U(a))$. Then we have $W=\phi(U(a))=\phi(U(b))$ and W is an open subset of $\boldsymbol{P}(E) . W \cap D$ is nonempty. Thus there exist $x_{0} \in U(a)$ and $y_{0} \in U(b)$ such that $\phi\left(x_{0}\right)=\phi\left(y_{0}\right) \in W \cap D$. Then $h\left(x_{0}\right)=h\left(y_{0}\right)$. Since $\left(x_{0}, y_{0}\right) \in P \times P \backslash \Delta$, this is a contradiction. Therefore λ is injective. To prove that λ is surjective, we assume that $\tilde{\Omega} \neq \lambda(\Omega)$. Then there exists a point b_{0} of $(\tilde{\Omega} \backslash \lambda(\Omega)) \cap \overline{\lambda(\Omega)}$ where $\overline{\lambda(\Omega)}$ is the topological closure of $\lambda(\Omega)$
in $\tilde{\Omega}$. Then there exists a subsequence $\left\{b_{n_{k}}\right\}$ of $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that $\left\{\lambda\left(b_{n_{k}}\right)\right\}$ converges to b_{0}. Then we have

$$
\left|\tilde{h}\left(\lambda\left(b_{n_{k}}\right)\right)\right| \geqq \operatorname{Re} \tilde{h} \circ \lambda\left(b_{n_{k}}\right)=\operatorname{Re} h\left(b_{n_{k}}\right) \geqq n_{k} .
$$

This implies that \tilde{h} is unbounded in a neighborhood of b_{0}. This is a contradiction. Thus λ is surjective. Therefore λ is an isomorphism. This implies that Ω is a domain of existence of h. This completes the proof.

Proof of Theorem 2. Let Δ be the diagonal set of the product space $\Omega \times \Omega$. Let (z, w) be any point of $\Omega \times \Omega \backslash \Delta$. By Lemma 4.5, there exists a holomorphic function $g_{(z, w)} \in A(\mathfrak{D})$ such that $g_{(z, w)}(z) \neq g_{(z, w)}(w)$. There exists an open neighborhood $U((z, w))$ of ($z, w)$ in $\Omega \times \Omega \backslash \Delta$ such that $g_{(z, w)}\left(\zeta_{1}\right) \neq$ $g_{(z, w)}\left(\zeta_{2}\right)$ for every $\left(\zeta_{1}, \zeta_{2}\right) \in U((z, w))$. Since $\cup\{U((z, w)) ;(z, w) \in \Omega \times \Omega \backslash \Delta\}=$ $\Omega \times \Omega \backslash \Delta$ and the open set $\Omega \times \Omega \backslash \Delta$ satisfies the Lindelöf property, there exists a sequence $\left\{\left(z_{j}, w_{j}\right)\right\}_{j=1}^{\infty}$ of elements of $\Omega \times \Omega \backslash \Delta$ such that $\bigcup_{j=1}^{\infty} U\left(\left(z_{j}, w_{j}\right)\right)=\Omega \times$ $\Omega \backslash \Delta$. We set $g_{n}=g_{\left(z_{n}, w_{n}\right)}$ and $M_{n}=\sup \left\{\left|g_{n}(\zeta)\right| ; \zeta \in D_{n}\right\}$ for every positive integer n. Each M_{n} is a finite positive number. We define an injective holomorphic mapping g of Ω into l^{2} by

$$
g=\left(\left(1 / M_{1}\right) g_{1},\left(1 / 2 M_{2}\right) g_{2}, \cdots,\left(1 / n M_{n}\right) g_{n}, \cdots\right) .
$$

Since $\phi^{-1}\left(\boldsymbol{P}\left(H_{n+1}\right)\right)$ is a Stein manifold of dimension n for every n, by Narasimhan [14] and by Remmert [20] there exists ($2 n+1$)-holomorphic functions $h_{n, j}(1 \leqq j \leqq 2 n+1)$ such that $h_{n}=\left(h_{n, 1}, h_{n, 2}, \cdots, h_{n, 2 n+1}\right)$ is a regular, injective and proper holomorphic mapping of $\phi^{-1}\left(\boldsymbol{P}\left(H_{n+1}\right)\right)$ into $\boldsymbol{C}^{2 n+1}$. By Lemma 4.4, there exists a holomorphic mapping \tilde{h}_{n} of Ω into $\boldsymbol{C}^{2 n+1}$ such that $\tilde{h}_{n} \mid \phi^{-1}\left(\boldsymbol{P}\left(H_{n+1}\right)\right)=h_{n}$ and $\sup \left\{\left\|\tilde{h}_{n}(x)\right\|_{2 n+1} ; x \in D_{m}\right\}<\infty$ for every $m \geqq 1$ where $\|\cdot\|_{2 n+1}$ is the Euclidean norm of $C^{2 n+1}$. We set $k_{n}=\sup \left\{\left\|\tilde{h}_{n}(x)\right\|_{2 n+1} ; x \in D_{n}\right\}$ for every n. We define a holomorphic mapping h of Ω into l^{2} by

$$
h=\left(\left(1 / k_{1}\right) \tilde{h}_{1},\left(1 / 2 k_{2}\right) \tilde{h}_{2}, \cdots,\left(1 / n k_{n}\right) \tilde{h}_{n}, \cdots\right) .
$$

Then $h \mid \boldsymbol{\phi}^{-1}\left(\boldsymbol{P}\left(H_{n}\right)\right)$ is a regular, injective, proper holomorphic mapping of $\phi^{-1}\left(\boldsymbol{P}\left(H_{n}\right)\right)$ into l^{2}. There exists an isomorphism α of $l^{2} \times l^{2}$ onto H. We define a holomorphic mapping f of Ω into H by $f(z)=\alpha(g(z), h(z))$ for every z. Then f satisfies the requirement of this theorem. This completes the proof.

References

[1] H.J. Bremermann, Über die Äquivalenz der pseudoconvexen Gebiete und der Holomorphiegebiete im Räum von n komplexen Veränderlichen, Math. Ann., 128 (1954), 63-91.
[2] S. Dineen, Sheaves of holomorphic functions on infinite dimensional vector spaces, Math. Ann., 202 (1973), 337-345.
[3] S. Dineen, Complex analysis in locally convex spaces, North-Holland Math. Studies, 57 (1981).
[4] R. Fujita, Domaines sans point critique intérieur sur l'espace projectif complexe, J. Math. Soc. Japan, 15 (1963), 443-473.
[5] L. Gruman, The Levi problem in certain infinite dimensional vector spaces, Illinois J. Math., 18 (1974), 20-26.
[6] L. Gruman and C.O. Kiselman, Le problème de Levi dans les espaces de Banach à base, C. R. Acad. Sc. Paris, 274 (1972), 1296-1299.
[7] Y. Hervier, Sur le problème de Levi pour les espaces étalés banachiques, C. R. Acad. Sc. Paris, 275 (1972), 821-824.
[8] J. Kajiwara, Les espaces projectifs complexes de dimension infinie, Mem. Fac. Sci. Kyushu Univ., 30 (1976), 123-133.
[9] C.O. Kiselman, On entire functions of exponential type and indicators of analytic functionals, Acta Math., 23 (1967), 1-35.
[10] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc., 92 (1959), 267-290.
[11] B. Malgrange, On the Theory of Functions of Several Complex Variables, Tata Inst. Fund. Res. Bombay, 13 (1958).
[12] Y. Matsushima and A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155.
[13] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Studies, 120 (1986).
[14] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math., 82 (1960), 917-934.
[15] R. Narasimhan, Levi problem for complex spaces II, Math. Ann., 146 (1962), 195216.
[16] F. Norguet, Sur les domaines d'holomorphie des fonctions uniformes de plurieurs variables complexes, Bull. Soc. Math. France, 82 (1954), 137-159.
[17] Ph. Noverraz, Pseudo-Convexite, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Studies, 3 (1973).
[18] K. Oka, Sur les fonctions analytiques de plusieurs variables complexes, VI. Domaines pseudoconvexes, Tôhoku Math. J., 49 (1942), 15-52.
[19] K. Oka, Sur les fonctions analytiques de plusieurs variables complex, IX, Domaines finis sans point critique intéreur, Japan. J. Math., 23 (1953), 97-155.
[20] R. Remmert, Einbettung Steinscher Mannigfaltigkeiten und holomorphvolständiger komplexe Räume, Habilitationsschrift, Münster, 1957.
[21] I. Singer, Bases in Banach spaces I, Springer-Verlag, Berlin, 1970.
[22] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, 16 (1964), 159-181.

Masaru Nishihara
Department of Mathematics
Fukuoka Institute of Technology
Wajiro, Fukuoka 811-02
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 61540070), Ministry of Education, Science and Culture.

