J. Math. Soc. Japan Vol. 39, No. 4, 1987

Note on H^p on Riemann surfaces

By Mitsuru NAKAI and Toshimasa TADA

(Received April 21, 1986)

The purpose of this note is to prove a theorem which implies the following: Given an arbitrary open Riemann surface R and an arbitrary positive real number p. There exist a holomorphic function f on R and two subregions S and T of R with $S \cup T = R$ such that f | S(f | T, resp.) belongs to $H^p(S)(H^p(T), \text{ resp.})$ and yet f does not belong to $H^p(R)$.

1. We denote by $H^{p}(R)$ for a positive real number p the class of holomorphic functions f on an open Riemann surface R such that $|f|^{p}$ has a harmonic majorant on R. In this note we prove the following

THEOREM. For an arbitrary holomorphic function f on an arbitrary open Riemann surface R and any positive real number p, there exist two subregions S_f and T_f of R with $S_f \cup T_f = R$ such that $f | S_f(f | T_f, resp.)$ belongs to $H^p(S_f)$ $(H^p(T_f), resp.)$.

This result was originally obtained by Bañuelos and Wolff [1] when R is the unit disk. The proof will be given in nos. 2-7.

Proof of the Theorem.

2. First we fix our basic notation. We take an exhaustion $\{R_n\}_1^\infty$ of R (cf. e.g. [2]) and denote by $\{U_{nj}\}_{j=1}^{\nu_n}$ $(n=1, 2, \cdots)$ the connected components of $U_n = R_{2n-1} - \bar{R}_{2n-2}$, where we set $R_0 = \emptyset$. We connect U_{nj} $(j=1, \cdots, \nu_n; n=2, 3, \cdots)$ with R_{2n-3} by a strip $V_{nj} = \psi_{nj}(D_{nj})$ in $R_{2n-2} - \bar{R}_{2n-3}$, i.e. an image of a rectangle

$$D_{nj} = \{x + yi : 0 < x < 1, 0 < y < y_{nj}\}$$

by a conformal mapping ψ_{nj} of a neighborhood of \overline{D}_{nj} to R. We may assume that

$$\begin{split} \psi_{nj}([0, y_{nj}i]) &= \partial V_{nj} \cap \partial R_{2n-3}, \\ \psi_{nj}([1, 1+y_{nj}i]) &= \partial V_{nj} \cap \partial U_{nj}, \end{split}$$

This research was partially supported by Grants-in-Aid for Scientific Research (Nos. 61540094 and 60302004), Ministry of Education, Science and Culture.

M. NAKAI and T. TADA

where $[z_1, z_2]$ means the line segment $\{tz_1+(1-t)z_2: 0 \le t \le 1\}$ for points z_1, z_2 in the complex plane. We divide V_{nj} into two strips

$$V_{nj}^{-} = \psi_{nj}(\{x + yi : 0 < x < 1/2, 0 < y < y_{nj}\}),$$

$$V_{nj}^{+} = \psi_{nj}(\{x + yi : 1/2 < x < 1, 0 < y < y_{nj}\}).$$

Then we set $V_1^+ = \emptyset$,

$$V_{n} = \bigcup_{j=1}^{\nu_{n}} V_{nj}, \qquad V_{n}^{-} = \bigcup_{j=1}^{\nu_{n}} V_{nj}^{-}, \qquad V_{n}^{+} = \bigcup_{j=1}^{\nu_{n}} V_{nj}^{+} \qquad (n=2, 3, \cdots),$$

and

$$W_n = \left[\bigcup_{m=1}^n (\overline{V}_m^+ \cup U_m \cup \overline{V}_{m+1}^-)\right]^\circ \quad (n=1, 2, \cdots).$$

Here X° means the interior of the set X.

3. We give complementary 'slits' σ_n in V_n as follows. For every integer n with $n \ge 2$ and real number r with 0 < r < 1, we consider a subset

$$\boldsymbol{\sigma}_n(r) = \bigcup_{j=1}^{\nu_n} \boldsymbol{\phi}_{nj}([1/2, 1/2 + ry_{nj}i])$$

of ∂W_{n-1} . Since the harmonic measure $v_n(r; z) = \omega(\sigma_{n+1}(r), W_n; z)$ $(n=1, 2, \cdots)$ of $\sigma_{n+1}(r)$ considered on W_n converges to 0 as $r \to 0$, there exists a real number $a_{n+1} = a_{n+1}(f)$ with $0 < a_{n+1} < 1$ depending on the positive number

$$M_{n+1}(f) = \max\{|f(z)|^p : z \in \overline{U}_{n+1} \cup \overline{V}_{n+2}\} + 1$$

in such a way that

$$v_n(a_{n+1}; z) \leq \frac{1}{2M_{n+1}(f)}$$

on

$$\Gamma_{n+1} = W_n \cap \partial R_{2n-1}.$$

The first requirement for σ_n is thus given here in this number and the second in Number 5.

4. Now we give slits τ_n in V_n as follows. We fix a sequence $\{r_n\}_2^{\infty}$ of real numbers r_n with $0 < r_n \le a_n$ and consider slits

$$\tau_n(r_n) = \bigcup_{j=1}^{\nu_n} \psi_{nj}([1/2 + r_n y_{nj}i, 1/2 + y_{nj}i])$$

in V_n (n=2, 3, ...). Let u be any bounded harmonic function on an unbounded

664

open subset

$$S_n = S_n(\{r_m\}_{n+1}^{\infty}) = \left[\bigcup_{m=n}^{\infty} (\overline{V}_m^+ \cup U_m \cup \overline{V}_{m+1}^-)\right]^\circ - \bigcup_{m=n+1}^{\infty} \tau_m(r_m)$$

 $(n=1, 2, \dots)$ of R with vanishing boundary values on ∂S_n . Since |u(z)| is dominated by

$$||u|| = \sup_{S_n} |u(z)|$$

on $\sigma_m(r_m)$ $(m=n+1, n+2, \cdots)$, we have

$$|u(z)| \leq ||u||v_{m-1}(r_m; z) \leq ||u||v_{m-1}(a_m; z) \leq ||u||/2$$

on $\Gamma_{\overline{m}}$ and hence on $\sigma_{m-1}(r_{m-1})$ if $m \ge n+2$. Then by induction we obtain

 $|u(z)| \leq ||u||/2^{m-n}$

on Γ_{n+1} so that $u \equiv 0$. This shows the uniqueness of the solution for the Dirichlet problem on S_n which is equivalent to the maximum principle for $S_n: \sup_{S_n} u = \sup_{\partial S_n - X} u$ for any bounded continuous function u on \overline{S}_n except for a subset X of ∂S_n of logarithmic capacity zero locally and harmonic on S_n .

5. Now the second requirement for complementary slits σ_n is formulated. We fix an integer *n* with $n \ge 2$. For a real number *r* with $0 < r \le a_n$, we consider the harmonic measure

$$w_n(r; z) = \omega(\partial S_n(\{a_m\}_{n+1}^\infty) - \sigma_n(r), S_n(\{a_m\}_{n+1}^\infty); z)$$

of $\partial S_n(\{a_m\}_{n+1}^{\infty}) - \sigma_n(r)$ on $S_n(\{a_m\}_{n+1}^{\infty})$. Since $w_n(r; z)$ converges to 1 as $r \to 0$, there exists a real number $b_n = b_n(f)$ with $0 < b_n \le a_n$ such that

on

$$\Gamma_n^+ = S_n(\{a_m\}_{n+1}^\infty) \cap \partial R_{2n-2}.$$

 $w_n(b_n; z) \geq 1/2$

6. Finally we construct a harmonic majorant for $|f|^p$ on S_f . We set

$$S_f = S_1(\{b_m\}_2^\infty).$$

The open set S_f is connected since $\nu_1=1$ and $U_{11}=R_1$ is connected. For every integer *n* with $n \ge 2$ we consider a positive harmonic function h_n on S_f such that boundary values of h_n is 0 for (Carathéodory) boundary points accessible from $S_f - S_n(\{b_m\}_{n+1}^{\infty})$ and $2M_n$ for boundary points accessible from $S_n(\{b_m\}_{n+1}^{\infty})$. Since h_n is dominated by $2M_n$ on $\sigma_n(b_n)$, we have

$$h_n(z) \leq 2M_n v_{n-1}(b_n; z) \leq 2M_n v_{n-1}(a_n; z) \leq 1$$

on Γ_n^- and hence on $\sigma_{n-1}(b_{n-1})$ if $n \ge 3$. Then by induction h_n is dominated by $1/2^{n-2}$ on Γ_2^- . On the other hand we have

$$h_n(z) \ge 2M_n w_n(b_n; z) \ge M_n$$

on Γ_n^+ and hence on $S_f - R_{2n-2}$. Therefore we can define a harmonic majorant

$$h_f(z) = M_1(f) + \sum_{n=2}^{\infty} h_n(z)$$

of $|f|^p$ on S_f , where we set $M_1(f) = \max\{|f(z)|^p : z \in \overline{R}_1 \cup \overline{V}_2\}$.

7. We now briefly complete our proof by constructing another subregion T_f of R. We take another exhaustion $\{P_n\}_{1}^{\infty}$ of R with

$$\bigcup_{n=1}^{\infty} ((R_{2n-1} - \overline{R}_{2n-2}) \cup (P_{2n-1} - \overline{P}_{2n-2})) = R ,$$

where $P_0 = \emptyset$. We consider a subregion T_f of R by connecting the components $\{P_{2n-1} - \overline{P}_{2n-2}\}_1^{\infty}$ in the same way as that of S_f . Then $S_f \cup T_f = R$ and $f | S_f$ $(f | T_f, \text{ resp.})$ belongs to $H^p(S_f)$ $(H^p(T_f), \text{ resp.})$.

8. To derive the statement in the introduction from the theorem we need to construct a holomorphic function on an arbitrary open Riemann surface R which is not in $H^p(R)$ (0 . This follows at once from the Behnke-Stein-Florack existence theorem and the fact that any <math>g in $H^p(R)$ is Lindelöfian (i.e. $\log^+|g|$ admits a superharmonic majorant) by observing special distributions of zeros of Lindelöfian holomorphic functions (cf. e. g. [2], p. 270).

References

- [1] R. Bañuelos and T. Wolff, Note on H^p on plane domains, Proc. Amer. Math. Soc., 95 (1985), 217-218.
- [2] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970.

Mitsuru NAKAI Department of Mathematics Nagoya Institute of Technology Gokiso, Showa, Nagoya 466 Japan Toshimasa TADA Department of Mathematics Daido Institute of Technology Daido, Minami, Nagoya 457 Japan

666