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The purpose of this note is to prove a theorem which implies the following:
Given an arbitrary open Riemann surface $R$ and an arbitrary positive real num-
ber $p$ . There exist a holomorphic function $f$ on $R$ and two subregions $S$ and
$T$ of $R$ with $S\cup T=R$ such that $f|S$ ($f|T$ , resp.) belongs to $H^{p}(S)(H^{p}(T)$ ,
resp.) and yet $f$ does not belong to $H^{p}(R)$ .

1. We denote by $H^{p}(R)$ for a positive real number $p$ the class of holo-
morphic functions $f$ on an open Riemann surface $R$ such that $|f|^{p}$ has a har-
monic majorant on $R$ . In this note we prove the following

THEOREM. For an arbitrary holomorphjc function $f$ on an arbitrary open
Riemann surface $R$ and any p0sitive real number $p$ , there exest two subregions $S_{f}$

and $T_{f}$ of $R$ with $S_{f}\cup T_{f}=R$ such that $f|S_{f}$ ( $f|T_{f}$ , resp.) belongs to $H^{p}(S_{f})$

( $H^{p}(T_{f})$ , resp.).

This result was originally obtained by Banuelos and Wolff [1] when $R$ is
the unit disk. The proof will be given in nos. 2-7.

Proof of the Theorem.

2. First we fix our basic notation. We take an exhaustion $\{R_{n}\}_{1}^{\infty}$ of $R$

(cf. $e.g$ . $[2]$ ) and denote by $\{U_{nj}\}_{j=1}^{\nu_{n}}(n=1, 2, )$ the connected components of
$U_{n}=R_{2n- 1}-\overline{R}_{2n- 2}$ , where we set $R_{0}=\emptyset$ . We connect $U_{nj}(]^{=1}, \cdots, \nu_{n} ; n=2,3, \cdots)$

with $R_{2n-\}$ by a strip $V_{nj}=\psi_{nj}(D_{nj})$ in $R_{2n- 2}-\overline{R}_{2n- 3},$ $i.e$ . an image of a rectangle

$D_{nj}=\{x+yi : 0<x<1,0<y<y_{nj}\}$

by a conformal mapping $\psi_{nj}$ of a neighborhood of $\overline{D}_{nf}$ to $R$ . We may assume
that

$\psi_{nf}([0, y_{nj}i])=\partial V_{nj}\cap\partial R_{2n- 3}$ ,

$\psi_{nj}([1,1+y_{nj}i])=\partial V_{nj}\cap\partial U_{nj}$ ,
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$\overline{V}_{nj}\cap\overline{V}_{nk}=\emptyset$ $(J\neq k)$ ,

where $[z_{1}, z_{2}]$ means the line segment $\{tz_{1}+(1-t)z_{2} : 0\leqq t\leqq 1\}$ for points $z_{1},$ $z_{2}$

in the complex plane. We divide $V_{nj}$ into two strips

$V_{nj}^{-}=\psi_{nj}(\{x+yi : 0<x<1/2,0<y<y_{nj}\})$ ,

$V_{nj}^{+}=\psi_{nj}(\{x+yi : 1/2<x<1,0<y<y_{nj}\})$ .

Then we set $V_{1}^{+}=\emptyset$ ,

$V_{n}= \bigcup_{j=1}^{\nu_{n}}V_{nj}$ , Vii $= \bigcup_{j=1}^{\nu_{n}}V_{nj}^{-}$ ,

and

$V_{n}^{+}= \bigcup_{j=1}^{\nu_{n}}V_{nj}^{+}$ $(n=2, 3, )$ ,

$W_{n}=[ \bigcup_{m=1}^{n}(\overline{V}_{m}^{+}\cup U_{m}\cup\overline{V}_{m+1}^{-})]^{o}$ $(n=1, 2, )$ .

Here $X^{o}$ means the interior of the set $X$.

3. We give complementary ’slits’ $\sigma_{n}$ in $V_{n}$ as follows. For every integer
$n$ with $n\geqq 2$ and real number $r$ with $0<r<1$ , we consider a subset

$\sigma_{n}(r)=J=U_{1}^{n}\psi_{nj}([1/2\nu 1/2+ry_{nj}i])$

of $\partial W_{n-1}$ . Since the harmonic measure $v_{n}(r;z)=\omega$( $\sigma_{n+1}(r),$ $W_{n}$ ; z) $(n=1,2, -)$

of $\sigma_{n+1}(r)$ considered on $W_{n}$ converges to $0$ as $rarrow 0$ , there exists a real number
$a_{n+1}=a_{n+1}(f)$ with $0<a_{n+1}<1$ depending on the positive number

$M_{n+1}(f)= \max\{|f(z)|^{p} : z\in\overline{U}_{n+1}\cup\overline{V}_{n+2}\}+1$

in such a way that

$v_{n}(a_{n+1} ; z) \leqq\frac{1}{2M_{n+1}(f)}$

on
$\Gamma_{n+1}^{-}=W_{n}\cap\partial R_{2n-1}$ .

The first requirement for $\sigma_{n}$ is thus given here in this number and the second
in Number 5.

4. Now we give slits $\tau_{n}$ in $V_{n}$ as follows. We fix a sequence $\{r_{n}\}_{2}^{\infty}$ of
real numbers $r_{n}$ with $0<r_{n}\leqq a_{n}$ and consider slits

$\tau_{n}(r_{n})=j=1U^{n}\psi_{nj}([1/2+r_{n}y_{nj}i\nu 1/2+y_{nj}i])$

in $V_{n}(n=2, 3, )$ . Let $u$ be any bounded harmonic function on an unbounded
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open subset

$S_{n}=S_{n}( \{r_{m}\}_{n+1}^{\infty})=[_{m}U_{=n}^{\infty}(\overline{V}_{m}^{+}\cup U_{m}\cup\overline{V}_{m+1}^{-})]^{o}-\bigcup_{m=n+1}^{\infty}\tau_{m}(r_{m})$

$(n=1, 2, )$ of $R$ with vanishing boundary values on $\partial S_{n}$ . Since $|u(z)|$ is do-
minated by

$\Vert u\Vert=\sup_{s_{n}}|u(z)|$

on $\sigma_{m}(r_{m})(m=n+1, n+2, \cdots)$ , we have

$|u(z)|\leqq\Vert u\Vert v_{m- 1}(r_{m} ; z)\leqq\Vert u\Vert v_{m-1}(a_{m} ; z)\leqq\Vert u\Vert/2$

on $\Gamma_{m}^{-}$ and hence on $\sigma_{m-1}(r_{m-1})$ if $m\geqq n+2$ . Then by induction we obtain

$|u(z)|\leqq\Vert u\Vert/2^{m-n}$

on $\Gamma_{n+1}^{-}$ so that $u\equiv 0$ . This shows the uniqueness of the solution for the
Dirichlet problem on $S_{n}$ which is equivalent to the maximum principle for
$S_{n}$ : $\sup_{s_{n}}u=\sup_{\partial S_{n}-X^{\mathcal{U}}}$ for any bounded continuous function $u$ on $\overline{S}_{n}$ except for
a subset $X$ of $\partial S_{n}$ of logarithmic capacity zero locally and harmonic on $S_{n}$ .

5. Now the second requirement for complementary slits $\sigma_{n}$ is formulated.
We fix an integer $n$ with $n\geqq 2$ . For a real number $r$ with $0<r\leqq a_{n}$ , we con-
sider the harmonic measure

$w_{n}(r;z)=\omega(\partial S_{n}(\{a_{m}\}_{n+1}^{\infty})-\sigma_{n}(r), S_{n}(\{a_{m}\}_{n+1}^{\infty});z)$

of $\partial S_{n}(\{a_{m}\}_{n+1}^{\infty})-\sigma_{n}(r)$ on $S_{n}(\{a_{m}\}_{n+1}^{\infty})$ . Since $w_{n}(r;z)$ converges to 1 as $rarrow 0$ ,
there exists a real number $b_{n}=b_{n}(f)$ with $0<b_{n}\leqq a_{n}$ such that

$w_{n}(b_{n} ; z)\geqq 1/2$

on
$\Gamma_{n}^{+}=S_{n}(\{a_{m}\}_{n+1}^{\infty})\cap\partial R_{2n-2}$ .

6. Finally we construct a harmonic majorant for $|f|^{p}$ on $S_{f}$ . We set

$S_{f}=S_{1}(\{b_{m}\}_{2}^{\infty})$ .
The open set $S_{f}$ is connected since $\nu_{1}=1$ and $U_{11}=R_{1}$ is connected. For every
integer $n$ with $n\geqq 2$ we consider a positive harmonic function $h_{n}$ on $S_{f}$ such
that boundary values of $h_{n}$ is $0$ for (Carath\’eodory) boundary points accessible
from $S_{f}-S_{n}(\{b_{m}\}_{n+1}^{\infty})$ and $2M_{n}$ for boundary points accessible from $S_{n}(\{b_{m}\}_{n+1}^{\infty})$ .
Since $h_{n}$ is dominated by 2 $M_{n}$ on $\sigma_{n}(b_{n})$ , we have

$h_{n}(z)\leqq 2M_{n}v_{n-1}(b_{n} ; z)\leqq 2M_{n}v_{n-1}(a_{n} ; z)\leqq 1$
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on $\Gamma$ fi and hence on $\sigma_{n-1}(b_{n-1})$ if $n\geqq 3$ . Then by induction $h_{n}$ is dominated by
1/2n-2 on $\Gamma_{2}^{-}$ . On the other hand we have

$h_{n}(z)\geqq 2M_{n}w_{n}(b_{n} ; z)\geqq M_{n}$

on $\Gamma_{n}^{+}$ and hence on $S_{f}-R_{2n-2}$ . Therefore we can define a harmonic majorant

$h_{f}(z)=M_{1}(f)+ \sum_{n=2}^{\infty}h_{n}(z)$

of $|f|^{p}$ on $S_{f}$ , where we set $M_{1}(f)= \max\{|f(z)|^{p} ; z\in\overline{R}_{1}\cup\overline{V}_{2}\}$ .

7. We now briefly complete our proof by constructing another subregion
$T_{f}$ of $R$ . We take another exhaustion $\{P_{n}\}_{1}^{\infty}$ of $R$ with

$\bigcup_{n=1}^{\infty}((R_{2n- 1}-\overline{R}_{2n- 2})\cup(P_{2n- 1}-\overline{P}_{2n- 2}))=R$ ,

where $P_{0}=\emptyset$ . We consider a subregion $T_{f}$ of $R$ by connecting the components
$\{P_{2n-1}-\overline{P}_{2n-2}\}_{1}^{\infty}$ in the same way as that of $S_{f}$ . Then $S_{f}\cup T_{f}=R$ and $f|S_{f}$

( $f|T_{f}$ , resp.) belongs to $H^{p}(S_{f})$ ( $H^{p}(T_{f})$ , resp.). $\square$

8. To derive the statement in the introduction from the theorem we need
to construct a holomorphic function on an arbitrary open Riemann surface $R$

which is not in $H^{p}(R)(0<p<\infty)$ . This follows at once from the Behnke-Stein-
Florack existence theorem and the fact that any $g$ in $H^{p}(R)$ is Lindel\"ofian $(i.e$ .
$\log^{+}|g|$ admits a superharmonic majorant) by observing special distributions of
zeros of Lindel\"ofian holomorphic functions (cf. $e$ . $g$ . $[2]$ , p. 270).
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