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In the neighbourhood of a fixed singular point of the regular type, Painlevé
equations (V) and (VI) are transformed into an equation of the form

(E) x(xu’) = Fy(x, e7*, xe")+Fi(x, e™%, xe*)(xu')+ Fy(x, e~ %, xe*)(xu’)? ('=d/dx).
Here Fi(x, &, n)’s (=0, 1, 2) are holomorphic and bounded in the polydisk

(0.1) x| <ro, 1§l <ryy 9l <7y (7o, 7:>0)

and satisfy
0.2) F;0,0,0)=0

(cf. [6]). In [6] and [7], we constructed a two-parameter family of solutions
of equation (E), and obtained families of solutions of Painlevé equations [IIT),
(V) and (VI) expanded into convergent series near the fixed singuiar point of
the regular type. In particular, for the sixth Painlevé equation (VI), our series
expansion represents part of solutions studied by R. Garnier [1]. Using Hamil-
tonian systems (given by K. Okamoto [5]), H. Kimura and K. Takano [9]
obtained families of solutions of Painlevé equations [III}, (V) and (VI), of which
the expressions are different from ours.

In this paper, we show that the series expansion of solutions of equation
(E) obtained in [6] and converges in a larger domain, and we give some
analytic representations of solutions of Painlevé equations [III), (V) and (VI) near
the fixed singular point of the regular type. In some special cases, our repre-
sentations of solutions of Painlevé equations are valid in the domain where the
solutions have infinitely many movable poles and zeroes.

In Section 1, we explain the notation used in this paper. Our main theorems
concerning equation (E) are stated in Section 2. In Section 3, preliminary pro-
positions are proved, and in Section 4, using these propositions, we prove the
main theorems. We construct a formal series of solutions by iteration, and
show the convergence of it using a kind of majorant series. In the final sec-
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tion, we apply the main theorems to Painlevé equations [III), (V) and (VI) and
obtain analytic representations of solutions near the fixed singular point.

§1. Notation.

Throughout this paper, we use the following notation.

1) R, denotes the universal covering of C—{0}.

2) 2,=C—({weR;ws0}U{veR; 0=1}).

3) Let ¢ be an arbitrary constant satisfying 0<e<1/2. Then £2(¢) denotes
a domain defined by

{weC ; s<Rew<1——€}U{wEC? ]Imw|>s!Rew—%1}

Let 2 be an arbitrary domain included in 2, and let » be an arbitrary
positive constant.
4) 4(2, r) denotes a domain defined by

{(Cl), K, x)EQXCX Ry ; |x|<r, |7 x| <72, Ielcxl—w|<r1/2}.
5) %R denotes a set of formal series ¢ expressed as

(1.1) ¢ = X al@)x'+ 3 bi@)x (e x) + T cifl@)xi(erxt=e),
ng Jax
where wef, and k=C are complex parameters and the coefficients a;(®)’s,
bi(w)'s and ¢;;(w)’s belong to C(w) (i.e. rational function field in w).
6) Let ¢ be an element of R expressed as [I.1). Then T :%R—% denotes
an operator defined by

ai(w) xit 2 zj(w) xie*x a))j_i_z cw(w) x¥efxt- yJ,

(L2)  TIgl= & i+tl—w)

7) Let ¢ be an element of R expressed as (1.1} Then | @] denotes a func-
tion of (w, x)e2,XC (which is not necessarily finite valued) defined by
ol = g)l |ai(w)] |x1i+i§'(lbij(w)l+|cij(w)])lx!i+(j/2) .
J=1
8) R, r)={peR ; sup{ldll; |x|<r, w2} <co}.
9) &(£, r) denotes a set of functions s(w, x, &, ) with the following pro-
perties:

a) s(w, x, & ) is a holomorphic and bounded function of (o, x, &, )
in the domain

(1.3 {(@, x, &, el ; 0, |x|<r, |E]<r', || <r'?},

b) s(w, x, §, n) is represented by a convergent series
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(1.4) s(w, x, §, ) = f; Afw)x+ 1_220 Bij(w)xi5j+i§) Ciflw)xin?
=1 j=1

J

in domain [(1.3), where the coefficients A;(w)’s, Bijw)’s and C;;j(w)’s be-
long to Clw). :

§2. Main results.

THEOREM 2.1. Let £’ be an arbitrary bounded domain of which the closure
is included in 2,. Then, for a sufficiently small positive constant r'=r'(2’), equa-
tion (E) admits a family of solutions {u(w, k; x); w2’, kC} such that

i) ulw, £; x) is a holomorphic function of (w, &, x) in 4(2’, r’),

i) u(w, £; x) is expressed as

2.1) ulw, £; x) = —wlog x+r+olw, x, e *x?, eFx17?)
in 402, r"), where o(w, x, &, 0) is some element of &S(82’, r').

THEOREM 2.2. Assume that Fi(x, &, 9)=Fy(x, & 0)=0. Let &(<1/2) be an
arbitrary small positive constant. Then, for a sufficiently small positive constant
7=#(e), equation (E) admits a family of solutions {u(w, £; x); @<= 8(e), kC}
such that

i) ulw, £; x) is a holomorphic function of (w, &k, x) in 4(2(e), 7),

i) wlw, k; x) is expressed as

(2.2) ulw, £; x) = —owlog xt+e+dlw, x, e *x2, e*x*~?)
in d(Q(e), 7), where d(w, x, &, 1)) is some element of S(8(e), 7).
From [Theorem 2.1, we immediately obtain

COROLLARY 2.3. For each (w, k)= 8,XC, equation (E) admits a holomorphic
solution u(w, £; x) expressed as (2.1) in the domain defined by

(xERo ;5 || <ri, [e7ox®| <ri?, |esxi~o| <ri'?},
where ri=ryw) is a sufficiently small positive constant.

REMARK 2.1. For every positive constant »” (<r’) (resp. r” (<#)), the

series ¢(w, x, e*x®, e*x'~*) (resp. &(w, x, e *x?, e*x'~?)) in (resp. in
converges absolutely and uniformly in 4(£2’, »”) (resp. in 4(2(g), ")) and satisfies

0@, %, e=x°, ex1%) = O(| x|+ |e~x| +|e*x1~9]),
(resp. &(w, x, e™*x®, ¢x'~®) = O(| x| +|e~*x®| +|e"x'~*]))

uniformly in the same domain (cf. the definition of &(£2, r)).
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§13. Preliminaries.

Throughout this paragraph, 2 denotes a domain included in £,, and » de-
notes a positive constant.

3.1. First we have

PROPOSITION 3.1. 1) %R is a ring.

2) An element ¢=R(R2, r) represents a holomorphic function of (w, &, x) in
42, v), and satisfies |@ll=0(x|?) uniformly for |x|<r, €. Moreover ¢
can be differentiated with respect to (w, k, x) term by term in A2, r).

3) For each ¢=R(Q, r), there exists an element s(w, x, &, 7)ES(2, r) such
that ¢=s(w, x, e *x®, e*x'"*).

4) For every positive constant ¥ (<r), each element s(w, x, & 9)ES(R, 7)
satisfies s(w, x, e *x?, e*x'" ) R(Q, 7).

PROOF. Let X and ¢ be elements of . Clearly X+¢<®R. Note that, for
every pair (I, /)e(NU{0})*—{(0, 0)}, the number of triples (a, B, N=(NU{0})®
satisfying x*(e*x*)f(e*x*-*Y=x1(e *x*)’ or =x%(e*x'~*)’ is finite. This implies
that 2¢®. Thus assertion 1) is proved. Let ¢ be an element of R(£2, ») ex-
pressed as Then, from the definition of HR(2, r), we obtain estimates
ladw)| SMr=t ((21), |bif@)|SMr-+9®, |ciw)| SMr-9® (=20, j=1) for
w2, where M=sup{||@|; |x|<r, o=2}. Hence, for every positive constant
7<r, the series ¢=R(L2, ) converges absolutely and uniformly in 4(2, #), and
satisfies [@l|=0(] x|*/?) uniformly for |x|<r, w=£. Using Weierstrass’s theo-
rem, we can easily verify assertion 2). From assertion 2) and the definition of
R(2, r), assertion 3) follows immediately. Let s(w, x, & 7n) be an element of
&(R, r) represented by By the boundedness of s in domain [1.3), estimates
|Asw)| SLr~t (1=21), |By@)|SLr 9%, |Cyl@)| <Lr-9® (20, j=1) are
valid uniformly for w< £, where L is some positive constant independent of
and j. From this fact, assertion 4) follows.

PROPOSITION 3.2. Let ¢ and ¢ be elements of R(L2, r).

0) If |¢ll=0 for |x|<r, @R, then ¢=0.

1) If clw)eClw), then |c(w@|=|c@)| @] for |x|<r, 0.
2) lg+gI=<lgl+lgl for 1x|<r, weL.

3) lggl=lgllgl for |x|<r, 0.

Proor. Assertions 0), 1) and 2) are clear. Assertion 3) follows immediately
from the facts that, for = R(Q2, r) expressed as [1.1),

ol = :2; lla@)xt|+ go(libw(w)x‘(e“x‘”)f I+ lei@)x(erxt=)])),

Jjz1
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and that, for every quadruplet (7, 7, k, (N U{0})4,
lx(esx) - x¥(efx =) | = |lx* e~ x ) [[l|x*(efx )] .
Let f(y4, -+, ¥») be a power series
fG o 9= B epd e 9

(¢p.a=C) which converges for |y,|<R, (1=v=n) and satisfies ¢,..=0. Then
we have

PrROPOSITION 3.3. 1) If ¢,eR (1=<v=n), then f(¢;, -+, ¢.)ER.
2) Assume that ¢,’s (ER(2, r)) 1=<v=<n) satisfy |g.| <R, for |x|<r, o= L.
Then
1/(@1, =+ @) = [ FIUSall, -, 1Bal)

for |x|<r, o€, where

L1, s yn) = 2 |Cpgl 3T 4.
P, qz0

Proor. Note that, for every n-tuple (p, ---, gy (NU{0})"— {0, ---, 0)},
Cpg®? - 92ER and that the lowest term of the series |c,.. .97 -+~ ¢4 is of order
O(]| x| »++0/2) (as |x|—0). Hence, for every pair (I, J)e(N\U{0})2—{(0, 0)}, the
number of n-tuples (p, ---, ¢) such that ¢,.,¢? --- ¢ contains the term x’(e *x®)”
or the term x?(efx'-¢)’ is finite. From this fact and the condition c¢,.,=0, as-
sertion 1) follows immediately. Next assume that ||@¢,[|<R, for |x|<r, wsf.
Then, using assertion 1) and [Proposition 3.2, we have

1£(@s, ==+, @)l ép,%:z;o [Cpql @:ll® - 1 @n ]

3.2. We consider an operator T :R—R defined by (1.2). Clearly T is a
C(w)-linear operator. By [Proposition 3.1, 2), we have

PROPOSITION 3.4. If T[@1€R(2, r), then (d/dx)T[¢l=x""¢ in AL, r).
Furthermore we have

PROPOSITION 3.5. Let ¢ (<1/2) be an arbitrary small positive constant. Then
every element ¢=R(L2(e), r) satisfies

ITCe11 < 267 " glwar

for |x|<r, wsLQ(e), where ||@|(t) denotes a series obtained from ||@|l by replacing
x| with t.
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In the proof of this proposition, we use the following lemma which will be
proved afterward.

LEMMA 3.6. We have

G e G2 .
e =2 MO D= gy =

for every (i, ))e(INU{O0}) XN and for every we Q(e).

AG, ) =

PROOF OF PROPOSITION 3.5. By we have

[x|+0m TIN

—ll-_}_—w].‘l— = 28—150 trrum=ldy (=0, j=1),
‘x‘i+(j/2) < et 1zl i+(j/2)_1d >0, i>1

*m=550f £ @=0,72D

for |x|<r, ws£2(e). Assume that g=% is expressed as [I.I). Then, from
these inequalities, we derive

1Tl = 26_1& xll’—l(g)l | ai(w)| '+ i}a;o(lbij(w)l + [ cojlw) | )tH+I2)de

[
0 ‘3
Jzl

|
0

- 25"15 1@ l)dt
for |x|<r, w=£2(e). This completes the proof.

PROOF OF LEMMA 3.6. Assume that weQ(¢s). If e<Rew<l—e, then, for
(¢, NEWU{0})X N, we have
.. .. i+(7/2) _ G/5)+(1/2) -
< = < 1
A4, 7), pl, 1) = Tes iIhte = (2¢)71.
Next consider the case where o satisfies |Imw|>¢|Rew—(1/2)|. Note that, for
every ac R—{0},

1
a( ~§) € 2,&) = {r: |Imz|>e|Rez]|}.
Using this fact, we have

o 0—(1/2) |-_ _ o
X, ) = |ty | S Wistd =1}, @)t <267,

(1/2)—w
@/)+1/2)

for (7, )N U{0})XN. Thus we obtain the lemma.

i, )= |1+ T < (ist({—1}, 2y < 2671,
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§4. Proof of main results.
We may assume that the constants 7, and 7, in satisfy

4.1) 0o = log (riv3"%) > 0.

4.1. Using [0.2), by a simple computation, we have

PROPOSITION 4.1. For (w, k, x)4(2,, ro), by the transformation u=
—wlog x+k+v, equation (E) is changed into an equation of the form

(E") - x(xv’Y = H(x, e *x°, e*x'"?)+ K(x, e *x*, e*x*~, v, xv’)

with the following properties:

1) H(x, &, n)is holomorphic for | x| <ro, |E| <rd'% 9| <ry?, and K(x,§, 1, v, w)
s holomorphic for [x|<rwro, |&E|<rY?, I9|<rd?, |v|<po, lw|<po,
2) H(@, 0, 0)=0, K(x, &, 5,0,0)=0 and K(0, 0, 0, v, w)=0.

REMARK 4.1. H and K are written as
H(x, & 7) = Go(x, &, 1),
K(x, & 1, v, w) = Gyx, &7, ne")—Go(x, & 1)
+Gi(x, e, e )w—+Gy(x, §e7°, pe”)w?,
where Goy=F,—wF,+o’F,, Gi=F,—20wF,, G,=F,.
We have
K(x, & 1, vy, wo)—K(x, & 1, vy, wy)
= (Vy—v)Ki(x, &, 1, Uy, Vs, w1, wo)H(we—w)Ky(x, §, 9, V1, Uy, w1, W)
for (x, &, 0, vy, Vs, Wy, w,) satisfying
4.2) x| <7, &1 <rd Ipl <78 il <po, lwil <po (=1, 2).

Here Ki(x, & 9, vy, vs, wy, wy)’s (1=1, 2) are holomorphic in domain (4.2), and
satisfy K;0, 0, 0, vy, v,, wy, wo)=0 (t=1, 2). Note that K and K;’s are poly-
nomials in w of degree 2. Under the assumption that £” is bounded , applying
Propositions 3.2 and to each coefficient of w* (=0, 1, 2), we have

PROPOSITION 4.2. Let 2" (C£,) be a bounded domain and r be an arbitrary
positive constant satisfying r<ro/2. If ¢i, ;=R(Q7, v) (=1, 2) satisfy il < p0/2,
il <po/2 for |x|<r, ws8”, then

IK(x, e *x, e*x'°, @,, ¢o)—K(x, e7*x°, e"x'%, ¢y, 1)l
=< clx |V (|lga— 1l + | P— D)
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uniformly for |x|<r, w=R2”, where c=c(2”) (>0) is some constant independent
of r (<ro/2).

Since H is a polynomial in @ of degree 2, we have

PROPOSITION 4.3. Under the same assumptions as above, we have
[H(x, e7*x®, e*x*~*)|| = col x|'/?

uniformly for |x|<r, w€R”, where co=c,(2”) (>0) is some constant independent
of v (<ro/2).

REMARK 4.2. In case F,=F,=0, the functions H and K,'s (=1, 2) are in-
dependent of w (cf. Remark 4.1), and, in Propositions 4.2 and the assump-
tion that £” is bounded is unnecessary. Therefore, in such a case, a bounded
domain 27 (C#,) in these propositions can be replaced by an arbitrary domain
0 (cQ,), and the constants ¢ and ¢, can be taken independently of £.

4.2. Consider equation (E’) (cf. [Proposition 4.1)) and the corresponding formal
integral equations

xv) =T[H(x, e *x?, e*x'~ )+ K(x, e *x?, e"*x?, v, xv')],
v="T[xv'].

By Propositions 4.1 and B.3,1), we can define sequences {v,(x)e%; n=0},
{wa(x)eR; n=0} recursively by

vo(x) = wo(x) =0,

@3 { wa(x) =T[H(x, e7*x®, e* 2~ )]+T[K(x, e7*x°, e*x'%, vy-1(X), Wa-1(x))],
valx) = TLwa(x)]  (n21).

Furthermore we put, for n=1,

(4.4) Va(x) = va(x)=va-s(x), Walx) = walx)—wa-1(x) .

Let £’ be an arbitrary bounded domain of which the closure is included in
2,. Clearly there exists a positive constant &'=¢’(2’) (<1/2) such that
2'cQ(e’). Then estimates of these sequences are given by

PROPOSITION 4.4. There exists a positive constant r'=r"(£2’) such that
(4.5, n) loa()ll < po/3, Nwa(x)l < po/3  (n=0),
(4.6, n) IVall = Calx ™, W)l < Culx®® (nz])
(Cr=0,(28)71 (328" H)*(n )7,
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4.7) n§1C”1x|n/2 < po/4,

for |x|<r’, ws8’. Here i=c(’) and ¢o=co(R") are some positive constants (cf.
Propositions 4.2 and 4.3).

We shall prove [Proposition 4.4] afterward. Using these estimates, we prove
[Theorem 2.1l

PrROOF OF THEOREM 2.1. By (4.6, n), in the expressions of V,(x), W(x)
(eRQ’, 7)), the coefficients of x's, x(e *x?)’s and x%(e*x-*)”’s vanish for i
satisfying 0</<n/2, and for (7, j) satisfying 0</+(j/2)<n/2. Therefore, if we
consider formal series v(x)=2 121V (%), w(x)=2521Wa(x), then v(x)ER, w(x)=R.
Furthermore, by (4.6, n) and [4.7),

4.8) lv(ll < po/3, [w(x)ll < po/3,
4.9 lo(x)—vn(x)] < Myl x1¥7%, lwx)—wxy(x)] < M| x|¥7?

(Nz=1) uniformly for |x|<r’, w=$’, where M, is some positive constant inde-

pendent of N. By [4.8), and Propositions 3.3, 4.1, 4.2 and (with e=
e’(2")), we have

ITLK(x, e*x?, e*x*~*, v(x), w(x))]

—T[K(x, e*x?, e*x'7?, vy_1(x), wy-1(x)]I| < Mp|x|¥/%,
and hence

lwx(x)—TL[H(x, e*x®, ex'~*)]
—T[K(x, e*x, e*x'~, v(x), w(x)]| & M| x|V

uniformly for |x|<r’, wcQ’, where M, is some positive constant independent

of N. Combining this estimate with [4.9), and using [4.8) and Proposition 3.2, 0),
we have

w(x) = TLH(--)+K(---, v(x), w(x))] € R, »").
Similarly

v(ix) = T[w(x)] € R, ).

By [Proposition 3.4, the function v(x) satisfies

xv'(x) = wix),
x(xv'(x)) = H(--- )+ K(--+ , v(x), xv'(x))

(=d/dx) in 4(£2’, r’), namely v(x) is a solution of equation (E’). By Proposi-
tion 3.1, 3), there exists an element o(w, x, & 9)E6&(£2’, r') such that v(x)=
olw, x, e*x?, e*x*~?). Thus we obtain a solution u(w, £; x)=—wlog x+£+
glw, x, e~ *x?, e*x*~*) of equation (E) with properties i) and ii) in [Theorem 2.1l.
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4.3. It remains to prove [Proposition 4.4,

PROOF OF PROPOSITION 4.4. Take a constant r'=r'(2’) (<r,/2) so small
that

21 Car'™? = &(22) ' (exp (32¢ce’*r""%)—1) < po/4.
ne

Then [4.7) is valid for |x|<<r’. We verify (4.5, n), (4.6, n) by induction on n.
Using Propositions 4.3 and B.5 (with e=¢’(27)), we have, for |x|<r' <ro/2,
we ),

Wil = lwi(x)| = | TLH(x, e=*x®, e*x'~*)]|| < 4’| x|,

so that w,(x)=T[H(x, e**x?, e*x*~*)]R(£2’, r’). Using [Proposition 3.5 again,
we have

IV ()l = o)l = I TLwi(x)] < 16 % x |2,

for |x|<r’, weQ’. This implies that (4.5,1) and (4.6,1) are true (note that
4¢’-*>1). Suppose that (4.5, n) and (4.6, n) are true for n<N—1. Using Pro-
positions 3.5 and 4.2, we derive from (4.3) that wx(x), va(x)eR(2’, r’), and that

W w0l < 2672 etV O+ W y- (0l @)t
< 80/ INCyalx|¥2 < Cylx |V,
IVl = 26 eI
< 306N Cy | x|V Coylx |V

for |x|<7’, w=8’. This implies that (4.5, N) and (4.6, N) are true. Thus we
have proved that (4.5, n) and (4.6, n) are true for n=1.

4.4. Let ¢ (<1/2) be an arbitrary positive constant. In case F,=F,=0, the
constants ¢ and ¢, (in Propositions 4.2 and can be taken independently of
(¢) (cf. Remark 4.2). Therefore, using [Proposition 3.5, we obtain inequalities
(4.5, n), (4.6, n) and which are valid uniformly for |x|<#, ws8(e), where
7=#(e) is a sufficiently small positive constant. Using these inequalities, we
can prove in a similar way.

§5. Application to Painlevé equations (III), (V) and (VI).
5.1. Consider Painlevé equations
12 y/

//_y______ _1_ 2 3 é_
(1) == ST (ay +ﬁ)+ry+y,
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= ()= L O (ay By 12 DOED,

R st

y(y—1)y—x) ﬂx r(x—=1)  ox(x—1)
+ x¥x—1) ( T +(y 1)2+ (y—x)z)
These equations have a fixed singular point at x=0. By a straightforward
computation, we have

PROPOSITION 5.1. By y=x"'e™*, x*=t, equation (Ill) is transformed into

[AYA— __]_‘_ -U u -2U 2,2u I__é_
(5.1 ') = — 1 (ae "+ Bte*+ye " +ot*e®™) (_dt)'
By y=th*u/2), equation (V) is transformed into
(5.2) x(w') = (athlz‘— + ﬁth‘?‘%)ch‘z%—i——%xshu —g—xzshZu .
By y=ch~*(u/2), equation (VI) is transformed into
yoo 2C@SW) (x| aC)
63 =) = =5 ) ( 1 xC )2>(
A=xCw)*)Sw)C(u)y «a r(x—1) ox(x—1)
e (et s e )

Here Cu)=ch(u/2)=(e*2+e"%/?)/2, S(u)=sh(u/2)=(e**—e"**)/2, th{u/2)=
(eu/Z__e-u/Z)/(eu/Z_*_e—u/Z).

REMARK 5.1. For equation (V) the transformation y=th*(u/2) (or y=th®u)
is used in and [8].

Equations [(5.1), and (5.3) are written in the form (E). For example,
equation (5.3) corresponds to equation (E) with F)’s given by

(4—2x—xE—7) ( af1—E) | Bln—xf)
(x—1)® 148y 16

r(x—1)§(1+8§) o(x—1)(n—x&)
T ey +(4—2x-—x$——1])2)’

2x+xE+7 )
4—2x—x6—7m

Fo(x, Er 77) =

Fix, & =—(5+

xE—7)
2(4—2x—xE—7) °

Fj(x, & 7)'s are holomorphic for |x| <1, |§]<1, |n]<]1, and satisfy F;0, 0, 0)=0.

F2(xy E’ 77) =
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Moreover F)’s in equations corresponding to [(5.1) and satisfy Fi(x, & )
:F2(x: S; 77)50.
Using Propositions 3.1 and B.3, we easily have

PROPOSITION 5.2. Let g(z) be a function which satisfies g(0)=0 and is holo-
morphic for |z| <R, and let s(w, x, &, 1) be an element of &(8, r), where R and
r are positive constants and R is a domain included in 2,. Then, for a sufficiently
small positive constant v’ (<r), g(s(w, x, e™*x*, e*x'~)) is a holomorphic function
of (w, k, x) in A(Q, r') and is represented by

(5.4) g(s(w, x, e~*x?, e*x'"9) = sy(w, x, e "x?, e x1"?)
in 482, '), where s(w, x, & ) is some element of &(2, r’).

Applying [Theorem 2.1 to equation (5.3), we obtain a solution yvi(w, £; x)
=ch *(u(w, £; x)/2). Note that ch~*(u/2)=4e *(1+e~*)~% and that exp(—u(w, £ ; x))
=e*x?exp(—oa(w, x, e *x?, ¢*x'~?)). Using [Proposition 5.2, we have

THEOREM 5.3. Let £’ be an arbitrary bounded domain of which the closure
is included in Q,. Then, for a sufficiently small positive constant ro=r2’), equa-
tion (V1) admits a family of solutions {yvilw, &; x); w=82’, k€C} such that

i) yvilw, k; x) is a holomorphic function of (w, &, x) in 4(Q’, ),

ii) yviw, £; x) is expressed as

yvilw, £; x) = de " x*(1+s4(w, x, e7x, e*x'™*))
in 4(82’, ry), where sgw, x, &, 1) is some element of S(Q’, re).

Applying to equations [5.1) and and using [Proposition 5.2,
we have

THEOREM 5.4. Let ¢ (<1/2) be an arbitrary small positive constant. Then,
for sufficiently small positive constants v;=rs(e) and r;=r(e), equations (V) and
(IIl) admit families of solutions {yv(w, £; x); ws2(e), k€C} and {ymlw, £; x);
w<s 2(e), k= C} respectively such that

i) yvlw, £; x) is a holomorphic function of (w, &, x) in A(Q(e), rs) and
ymlw, k; x) is a holomorphic function of (w, &, x) in

A'(R(e), 7)) = {(o, &, x); (0, &, x)€d(Q(e), 75},
ii) yvlw, £; x) and ym(w, £; x) are expressed as
o, £; x) = 1—de*x°(1+ssw, x, e~ x®, e x179)),
ymw, £; x) = e x* 1+ s5(w, x°, e x, e x*"*))

in 4(2(e), rs) and in A'(8(e), rs) respectively, where sjw, x, &, 3)’s (j=5, 3) are
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some elements of &(L(e), ;).

REMARK 5.2. The domains of convergence in these theorems are larger
than those in [6; Theorem 3.1] and [7]. In fact, if |e~*| is sufficiently small,
then equation (VI) admits a solution

yvilvV=1, &; x) = 4e*(cos(log x)++/—T sin(log x))(1+O(| x| +|e~*]))
as x—+0 along Rt={x=R; x>0}.

5.2. Under the condition a=y=0, by the transformation u/2=w-4(1/2)log x,
equation (5.3) is changed into an equation of the form (E) (with the unknown
variable w) in which

52_7]2
4—(E+n)? 7
x E+n)*

Fx, & n)= —(x_l + 4—(&+n)*

32(x—1)? 4—(+n)?
Under the condition a=p=0, by the same transformation, equation is
changed into an equation of the form (E) in which

Fix, & p =T G-ty +),

Fx, & n)=F(x,§ 7 =0.
Applying Theorems 2.1 and to these equations, we have

F2(x7 E, 7]) =

1
)+ Falx, & 1),

Fix, & 1) = (B—E+mm+ )+ 5 Filx, & 7).

THEOREM b5.5. Assume that a=y=0 in (VI). Let £’ be an arbitrary bounded
domain of which the closure is included in £, Then, for a sufficiently small
positive constant ri=r{($2’), equation (V1) admits a family of solutions {Ywi(w, £; x);
wcQ’, k= C} such that

i) Yviw, £; x) is a holomorphic function of (w, k, x) in 4(2’, re),

i) Yvilw, £; x) is expressed as

Yvilw, k; x) = ch‘z((—;——w) log x +k+o04w, x, e *x°, e”xl‘"’))
in 482, ri), where aqw, x, &, ) is some element of &S(2', ri).

THEOREM 5.6. Assume that a=8=0 in (V). Let ¢ (<1/2) be an arbitrary
positive constant. Then, for a sufficiently small positive constant ri=ri(e), equation
(V) admits a family of solutions {Yv(w, k; x); w=2(s), k=C} such that

i) Yvlw, £; x) is a holomorphic function of (w, &, x) in 4(2(e), rl),
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i) Yv(w, k; x) is expressed as

Yviw, k; x) = th"((%-—w) log x+k+05(w, x; e *x°, e"x“‘”))

in 4(2(e), rl), where as(w, x, &, 0) is some element of &(L2(g), r}).

If Imw=+0, the expressions given above are valid in the domains in which
the solutions have infinitely many movable poles and zeroes. In fact, if we put
0=(1/2)—2vV—1, k=p~/—1 (A= R—{0}, p=R), then

(5.5) Yvilo, £; x) = cos~*(Alog x+ p#+0(x'/2)
(5.6) Yv(w, £; x) = —tan*(4log x +p-+0(x/%))

as x——+0 through the sector |argx|<e, where ¢ is an arbitrary small positive
constant. Yy has infinitely many poles and Yy has infinitely many poles and
zeroes in this sector. These expressions cannot be obtained from Theorems
and B4 For equation (V) with a=B=y=0, §=—2, asymptotic representation
5.6) is obtained by R. Garnier [2; 23].
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